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Abstract

The next generation of computing systems will be
embedded, in a virtually unbounded number, and dy-
namically connected. The current software, network
architectures, and their associated programming models
are not suitable for this scenario. This paper presents
a distributed computing model, Cooperative Comput-
ing, and the Smart Messages architecture for program-
ming large networks of embedded systems. In Cooper-
ative Computing, distributed applications are dynamic
collections of migratory execution units, called Smart
Messages, working to achieve a common goal. Vir-
tually any user-defined distributed application can be
implemented using our model. We present preliminary
results for our prototype implementation as well as sim-
ulation results for two previously proposed applications
for sensor networks, Directed Diffusion and SPIN, im-
plemented using Smart Messages.

1. Introduction

As the cost of embedding computing becomes neg-
ligible compared to the actual cost of goods, there will
be a trend towards incorporating computing capabil-
ities and wireless communication into most consumer
products. The next generation of computing systems
will be embedded, in a virtually unbounded number,
and dynamically connected. Although these systems
will penetrate every possible domain of our daily life,
the expectation is that they will operate outside our
normal cognizance, requiring far less attention from the
human users than the desktop computers today.
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The first illustration of these systems that has re-
ceived considerable interest in the last couple of years
are networks of sensors [7, 5, 6]. These networks
have severe resource limitations in terms of process-
ing power, amount of available memory, network band-
width, and energy. We envision that the next decade
will bring a large class of networks of embedded systems
(NES) with sufficiently large computing, communica-
tion and energy resources, although limited, to sup-
port distributed applications. For instance, there are
already companies that propose computer systems em-
bedded into cars and connected by Bluetooth [1]. For
some of these networks, such as a networks of intelli-
gent cameras performing object tracking over a large
area, it might be beneficial to perform local compu-
tations and to cooperate in order to execute a global
task. They may perform sophisticated filtering of data
at a node that acquired an image, or even distributed
object tracking rather than running a centralized algo-
rithm at a server. The challenge that we face is how to
program NES, namely, what is the appropriate com-
puting model and what system support is necessary to
execute distributed applications in these networks.

NES pose a unique set of challenges which make tra-
ditional distributed computing models difficult, if not
impossible to employ in programming them. The num-
ber of devices working together to achieve a common
goal will be orders of magnitude greater than those
seen in distributed systems today. These systems will
be heterogeneous in their hardware architectures, since
each embedded system will typically be tailored to per-
form a specific task. Unlike the Internet, NES will
typically be deployed in environments void of human
attention, situations in which it is unacceptable to re-
quire a human to hit a ”reset” button to recover from
a failure. NES will be inherently fragile, with node and
connection failures being the norm rather than the ex-
ception. The availability of nodes may vary greatly
with time, with nodes becoming unreachable due to



mobility, depletion of energy resources or catastrophic
failure.

Most of the nodes belonging to NES have wireless
networking, thus they communicate directly only with
nodes in their transmission range. In such a case, sim-
ilarly to most ad hoc networks, the separation between
hosts and routers disappears. Each node has to per-
form routing, and there is likely no common routing
support for the scale and heterogeneity of NES. The
applications running in NES will target specific data
or properties within the network, not individual nodes.
From an application point of view, nodes with the same
properties are interchangeable. Fixed naming schemes,
such as IP addressing, will be inappropriate in most sit-
uations. The need to target specific data or properties
within the network raises the issue of a different nam-
ing scheme with dynamic bindings between a name and
a node address. A naming scheme based on content or
properties is more appropriate for NES than a fixed
naming scheme [8].

We propose a distributed computing model, Coop-
erative Computing, and a system architecture for NES
based on execution migration. Cooperative Comput-
ing applications consist of migratory execution units,
called Smart Messages, working together to accomplish
a distributed task. Smart Messages (SM) are collec-
tions of code and data that migrate through the net-
work searching for nodes of interest and execute at each
node in the path. We believe that distributed com-
puting based on execution migration is more suitable
for NES than data migration (message passing) due
to volatility and dynamic binding of names to nodes
specific to these networks.

Nodes in the network that support Smart Messages
cooperate by providing: (1) a name-based memory
(Tag Space), and (2) an architecturally independent
environment (Virtual Machine) for the receipt and ex-
ecution of SMs. SMs are self-routing, namely, they are
responsible for determining their own paths through
the network. SMs name the nodes of interest by their
properties and self-route to them using other nodes as
stepping stones. Applications in the Cooperative Com-
puting model are able to adapt to the conditions en-
countered in the network by accepting partial results,
by changing their target nodes, or by controlling the
routing. SMs provide a flexible support for a wide
variety of applications, ranging from data collection
and dissemination to content-based routing and object
tracking.

To validate the Cooperative Computing model we
have developed a simulator that executes Smart Mes-
sages and allows us to evaluate both the execution and
the communication time. In this simulator, we have

implemented two previously proposed applications for
data collection and data dissemination in sensor net-
works [7, 5]. The simulation results show that our
model is able to provide high flexibility for user-defined
distributed applications while limiting the increase in
the response time to at most 15% over the traditional
non-active communication implementations. We also
present preliminary results for a Smart Messages proto-
type implementation on Compaq iPAQs over Wavelan
and Bluetooth wireless networks.

The rest of this paper is organized as follows. The
next section describes Cooperative Computing. Sec-
tion 3 presents the system architecture that supports
the model. In Section 4, we discuss the details of Smart
Messages, and Sections 5 presents the SM API. Sec-
tion 6 shows preliminary results for our prototype im-
plementation. Section 7 describes the applications im-
plemented using SMs and their simulation results are
presented in Section 8. Section 9 discusses related work
and Section 10 concludes the paper.

2. The Cooperative Computing Model

We propose a distributed computing model for large
scale, ad hoc NES, called Cooperative Computing. In
this model, distributed applications are defined as dy-
namic collections of Smart Messages (SM) that coop-
erate in achieving a common goal. The SM execution
is described in terms of computation and migration
phases. The execution performed at each step may
differ based on particular properties of that node. On
nodes that present interest to the current computation,
the SM may read and process data. On intermedi-
ate nodes the SM executes only its routing algorithm.
During migration, an SM carries its mobile data, the
mobile code (when it is missing at destination), and a
lightweight execution state.

Nodes in the network cooperate by providing archi-
tecturally independent programming environments for
the receipt and execution of SMs (Virtual Machine)
as well as a name-based memory (Tag Space). SMs
along with the system support provided by nodes form
the Cooperative Computing infrastructure which al-
lows programming distributed tasks over NES.

Our model allows to program a new distributed ap-
plication without a priori knowledge about the scale
and the topology of the network, or the specific func-
tionality of nodes, by injecting SMs into the network.
Placing intelligence in SMs provides flexibility and ob-
viates the issue of implementing a new application or
protocol in NES, which is difficult or even impossible
using current approaches [8].

SMs are resilient to network volatility. In time, cer-



tain nodes may become unavailable due to mobility or
energy depletion, but SMs are able to adapt by allow-
ing the application to control the routing. The model
does not have end-to-end requirements, and therefore
an SM may try to find a new route to its destination,
or to discover other nodes of interest.

Moving the execution to the source of data improves
the performance for certain classes of applications that
need to process big amounts of data. For example, us-
ing an SM for object tracking can reduce bandwidth,
energy consumption, and response time if the image
analysis is performed at the node that acquired the
image of the desired object instead of transferring the
entire image through the network. The impact on per-
formance of transferring code can be limited by caching
code at the nodes visited by SMs during their execu-
tion.

An important issue in Cooperative Computing is se-
curity. To solve it, individual nodes should be pro-
tected against SMs, groups of nodes should be pro-
tected against malicious SMs that might consume ex-
cessive resources in the network, and SMs should be
protected against nodes. Although defining a compre-
hensive security architecture is important, we limit the
current solutions to a simple admission control and an
authentication mechanism involving digital signatures.

Figure 1. Cooperative Computing Example

Figure 1 shows an application that illustrates the
novel aspects of computation and communication in
Cooperative Computing. The application tracks ob-
ject motion over a large area (e.g, a campus, airport,
or urban highway system) using a network of mobile
robots with attached cameras. In the figure, the cir-
cular nodes are robots with cameras and the square is
the object of interest for an SM injected in the network
to perform object tracking. The network maintains no
routing infrastructure, and the SM is responsible for
determining its path to the target nodes. The SM can
use the direction of movement and geographical infor-
mation to chase the objects. Once the SM arrives at a
node that has a picture of a desired object (the marked
circles in the figure), it generates a task to further an-

alyze the object and its motion. The SM may migrate
to neighboring nodes to obtain pictures of the object
from a different angle and/or lighting condition, or to
continue the tracking if the object is moving. In case of
a positive identification, the SM generates a new SM
that will transport the gathered information back to
the node that issued the tracking request.

3. System Architecture

The goal of the system architecture is to keep the
support required from nodes in the network to the min-
imum, placing intelligence in SMs rather than in indi-
vidual nodes.

Admission
 Manager

Tag
Space

incoming SM outgoing SM

Virtual
Machine

Queue
Message

Network

Smart

Figure 2. System Architecture

Figure 2 shows the common system support for Co-
operative Computing provided by nodes. The Tag
Space is a name-based memory region that stores
data objects persistent across SM executions. The
Admission Manager receives incoming messages, de-
cides whether or not to accept them, and stores these
messages into the SM Queue. The Virtual Machine
(VM) acts as a hardware abstraction layer for loading,
scheduling, and executing tasks generated by incoming
SMs.

3.1. Tag Space

Each node that supports SMs manages a name-
based memory region, called the Tag Space, consisting
of a limited number of tags that are persistent across
SM executions. The Tag Space contains two types of
tags: application and I/O tags. The I/O tags define
the basic hardware of the device and provide SMs with
a unique interface to the local OS and I/O system. SMs
are allowed to read and write both types of tags, but
they can create or delete only application tags.

Figure 3 illustrates the structure of a tag. It con-
sists of an identifier, a digital signature, lifetime infor-
mation, and data. The identifier is the name of the
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Figure 3. Tag Structure

tag, and it is similar to a file name in a file system.
Each SM is identified by a digital signature (more de-
tails are given in Section 4). When a tag is created,
the VM associates the digital signature of the current
SM to this tag. The access of SMs to tags is restricted
based on the digital signature. The tag lifetime speci-
fies the time at which the tag will be reclaimed by the
node from the Tag Space. The tags can be used for:

• Naming: SMs name the nodes of interest using tag
identifiers.

• Data Storage: An SM can store data in the net-
work by creating its own tags.

• Data Exchange or Data Sharing: The only way
of communication among multiple SMs is by ex-
changing data through the Tag Space.

• Routing: SMs may create routing tags at visited
nodes in the network, caching discovered route in-
formation in the data portion of these tags.

• Synchronization: An SM can block on a specific
tag pending a write of the tag by another SM.
Once this tag is written, all SMs blocked on it will
be woken up and made ready for execution.

• Interaction with the Host System: An SM can in-
teract with the host OS and I/O system using I/O
tags.

3.2. Admission Manager

To prevent excessive use of its resources (energy,
memory, bandwidth), a node needs to perform admis-
sion control. Each SM presents its resource require-
ments within a resource table. The Admission Man-
ager is responsible for receiving incoming messages,
and storing them into the SM Queue, subject to ad-
mission restrictions such as resource constraints and
access rights to tags.

3.3. Virtual Machine

The hardware abstraction layer for the execution of
SMs across different hardware platforms takes the form
of a virtual machine (VM). Our current implementa-
tion uses a version of the Java virtual machine, Sun
Microsystem’s KVM, modified to provide the necessary

functionality. An important aspect of KVM is that it
was designed for constrained mobile devices and its re-
duced size fits well embedded systems. Using KVM
allows SM programming to be done in Java, and thus
enables harnessing well developed and supported Java
application development tools and knowledge base.

4. Smart Messages

SMs are migratory execution units consisting of code
and data, which migrate through network, route them-
selves at each node in the path and execute on nodes
of interest. The SM computation is embodied in tasks.
During its execution, a task may modify the data sec-
tions of the SM as well as the local tags to which it has
access, may migrate, create new SMs, or may block on
tags of interest. A collection of SMs cooperating to-
wards a common goal forms a distributed application.

4.1. Smart Message Format

Figure 4 depicts the structure of a Smart Mes-
sage. SMs are comprised of code and data sections, a
lightweight execution state, and a resource table. The

Header Resource Table State Code Bricks Data Bricks

Figure 4. Smart Message Format

SM has also a fixed size header that contains informa-
tion about SM components as well as a digital signa-
ture. The digital signature identifies an SM, and it is
used by nodes to protect the access to tags. The code
and data sections are built from components referred
to as bricks. Each code brick is an independent pro-
gram that may be used together with the other code
and data bricks to dynamically generate a new, possi-
bly smaller SM. Code bricks are identified by statisti-
cally unique IDs computed off-line by applying a hash
function on the code itself. The data bricks contain mo-
bile data that an SM carries from node to node. The
state field contains the execution context necessary for
task resumption after a successful migration. The re-
source table consists of resource estimates: execution
time, tags to be accessed or created, memory require-
ments, and network traffic. The resource estimates set
a bound on the expected needs of the SM at a node.

4.2. Smart Message Life Cycle

Each SM has a well defined life cycle at a node: (1) it
is subject to admission control at the destination node,



Category Primitives
Tag Space Operations createTag(name, lifetime, data); deleteTag(name);

readTag(name); writeTag(name, value);
Creation create SM(code bricks, data bricks); spawn SM();
Synchronization block SM(tag name, timeout);
Migration migrate SM(tag names, timeout); sys migrate(next hop);

Table 1. Smart Messages API

(2) upon admission, a task is generated out of SM’s
code and data bricks and scheduled for execution, and
(3) after completion at a node, the SM may terminate
or may decide to migrate to other nodes of interest.

4.2.1. Admission

To avoid unnecessary resource consumption the Admis-
sion Manager executes a three-way handshake protocol
for transferring SMs between neighbor nodes. First,
only the small size header and the resource table are
sent to destination for admission control. If the SM
admission fails, the task will be informed and the ap-
plication can decide on subsequent actions.

If the SM is accepted, the Admission Manager
checks, using the code bricks’ IDs, whether the code
bricks belonging to this SM are already cached locally.
Then, it informs the source to transfer only the miss-
ing code bricks. We envision that the applications in
NES will have a localized behavior, exhibiting spatial
and temporal locality. Thus, in the common case, the
code bricks are cached in the network and the initial
transfer cost of the code is amortized over time.

4.2.2. Execution

Upon admission, an SM becomes a task which is sched-
uled for execution by the VM. The execution of an SM
is non-preemptive, but new SMs can be admitted dur-
ing execution. An executing SM can yield the VM
by blocking on a tag. The VM makes sure that a task
conforms to its declared resource estimates. Otherwise,
the task can be forcefully removed from the system.

4.2.3. Migration

If the current computation does not complete on the
local node, the task may continue its execution to an-
other node. The current execution state is captured
and migrated along with the code and data bricks.
Since a task accesses only mobile data and tags, we
have been able to implement an efficient migration,
where only a small part of the entire execution context
is saved into the SM’s state and transferred through
the network.

4.3. Smart Message Self-Routing

SMs are self-routing, i.e, they are responsible for de-
termining their own paths through the network. There
is no system support required by SMs for routing, with
the entire process taking place at application level. An
SM names its destinations in terms of tag IDs, and ex-
ecutes its routing algorithm at each node in the path.
SMs may create routing tags on intermediate nodes
in the network to store the discovered routing informa-
tion. If the routing tags are missing, an SM may spawn
another SM for route discovery and block on the rout-
ing tag. A write on this tag unblocks the SM, which
will resume its migration. Since tags are persistent for
their lifetime, routing information, once acquired, can
be used by subsequent SMs that belong to the same
application, thus amortizing the route discovery effort.
In this way, an SM may implement traditional routing
algorithms using tags to store routing tables.

5. Programming Interface

The API for the Cooperative Computing model,
given in Table 1, provides simple, but powerful prim-
itives in terms of expressibility. SMs are allowed to
access the Tag Space, to dynamically create new SMs,
to synchronize on tags and to migrate to nodes of in-
terest. Also, the SMs can use the uniform interface
provided by the Tag Space to execute system calls on
the local host (i.e, through I/O tags).

5.1. createTag, deleteTag, readTag, writeTag

The operations on Tag Space allow SMs to create,
delete, or access existing tags. As mentioned in Sec-
tion 3, the tags can be accessed subject to authentica-
tion based on digital signatures. The same interface is
used to access the I/O tags: SMs can issue commands
to I/O devices by writing into I/O tags, or can get I/O
data by reading I/O tags.



5.2. create SM and spawn SM

An SM may use create SM during the execution
to assemble a new SM from a subset of its code and
data bricks. An SM that needs to clone itself calls the
spawn SM function. Similarly to the fork system call,
spawn SM returns null in the clone, and non-null in the
parent.

A new SM created by spawn SM or create SM is
inserted into the SM Queue and will be scheduled for
execution. Typically, spawn SM is called when the cur-
rent computation needs to migrate a copy of itself to
nodes of interest while continuing the execution on the
local node. A create SM call is commonly used to build
a new SM, for instance an SM for route discovery as a
part of a routing algorithm.

5.3. block SM

The update-based synchronization mechanism is im-
plemented by the block SM primitive. An SM blocks
on a tag waiting for a write. If nobody writes the tag
in the timeout interval, the VM returns the control to
the SM. A typical example is a migrating application
that creates an SM for route discovery, and blocks on
a routing tag until a route is acquired.

5.4. migrate SM and sys migrate

The migrate SM primitive implements a high level
content-based migration, provided usually as a library
function. It allows applications to name the nodes of
interest by tag names and to bound the migration time.
When migrate SM returns normally (no timeout), the
application SM reached the destination. In case of
timeout, the application regains the control at one of
the intermediate nodes in the path. Figure 5 presents a
typical example of using migrate SM. For instance, this
SM can be used in the object tracking application de-
scribed in Section 2. The SM migrates to nodes hosting
the tag of interest and executes on these nodes until a
certain quality of result is achieved. When this is done,
the SM migrates back to the node that injected it in
the network.

The migrate SM function implements routing using
routing tags, the low level primitive called sys migrate,
and possibly other SMs for route discovery. An
SM can choose among multiple migrate SM functions
which correspond to different routing algorithms. The
sys migrate primitive is used to migrate SMs between
neighbor nodes. The entire migration protocol of cap-
turing the execution state and sending the SM to the
next hop is implemented in sys migrate.

1 Application_SM(tag){

2 do

3 migrate_SM(tag, timeout);

4 < do computation >

5 until(<quality of result>);

6 migrate_SM(back, timeout);

7 }

Figure 5. Smart Message Example

6 Prototype Implementation

This section presents very preliminary results for
our SM prototype. We have implemented the SM
model by modifying Sun’s KVM on Compaq iPAQs
running Linux. KVM is a virtual machine designed
for mobile devices with resource constraints, suitable
for devices with 16/32-bit RISC/CISC microproces-
sors/controllers, and with as little as 160 KB of total
memory available. We use Compaq iPAQ H3700 series,
206-MHz Intel StrongARM SA-1110 32-bit RISC Pro-
cessor, 64-MB SDRAM. For wireless communication,
we use Lucent Orinoco 802.11b (11 Mbs) and BrainBox
BL-500 Bluetooth (1 Mbs) PCMCIA cards for commu-
nication.

Table 2 gives the time taken for Tag Space opera-
tions. createTag is the most expensive operation, as
it involves adding a tag to the Tag Space and regis-
tering a timeout for the tag. readTag and writeTag
primitives involve checking for tag expiration and ac-
cessing the tag. Their costs will affect the execution
time to a greater extent, since they will be called more
frequently than createTag or deleteTag. The time mea-
sured for block SM is the time taken by the VM to block
the SM.

Tag Space Operation Time (µs)
createTag 55.8
deleteTag 30.8
readTag 25.0
writeTag 28.0
block SM 24.6

Table 2. Time for Tag Space operations

Figure 6 gives an example of a benchmark SM which
creates a tag, waitTag, another SM, rttSM, and then
blocks itself on this tag. The rttSM migrates to a neigh-
bor, and then migrates back to the source and writes
waitTag, which results in waking up the original SM.
The rttSM has one code brick of 731 bytes, one data



1 mobileData{

2 netAddress srcAddr;

3 }

4 simpleSM(){

5 createTag(waitTag, 100, null);

6 create_SM(rttSM, mobileData);

7 block_SM(waitTag, 100);

8 }

9 rttSM(){

10 srcAddr = getAddress();

11 sys_migrate(any_neighbor);

12 sys_migrate(srcAddr);

13 writeTag(waitTag, null);

14 }

Figure 6. Smart Message Benchmark

brick of 20 bytes and a stack of 78 bytes. We measured
the average time required for a round-trip communica-
tion and execution by estimating the time elapsed be-
tween the original SM’s block SM call and its resump-
tion of execution. This is 55.2 ms using Wavelan, and
452.8 ms using Bluetooth.

7. Applications

To prove that virtually any protocol or applica-
tion can be written using SMs, we have implemented
two previously proposed applications: Directed Diffu-
sion [7] and SPIN [5]. They present different paradigms
for content-based communication and computation in
sensor networks: Directed Diffusion implements data
collection, and SPIN is a protocol for data dissemina-
tion.

7.1. Directed Diffusion using SMs

In Directed Diffusion a sink node requests data by
sending ”interests” for named data. Data matching an
interest is then ”drawn” from source nodes towards the
sink node. Intermediate nodes can cache or transform
data, and may direct interests based on previous cached
data. At the beginning the node may receive data from
multiple paths, but after a while it will reinforce the
path providing the best data rate. All future data will
arrive on the reinforced path only.

For the implementation of Directed Diffusion using
SMs, the Tag Space of each node will host three tags:
the first stores the most recent data value (tag data),
the second stores the best data rate available at that
node (tag data rate), and the third stores the best next
hop towards the source (tag best route). Directed Dif-
fusion is initiated by injecting the SM at the sink, and it

has two main phases: (1) exploration starts at the sink
and floods the network to find data of interest, and (2)
reinforcement chooses the best path and brings data
from source to sink.

If the information of interest is not locally available
(no tag data rate value), the explore SM spawns itself,
and the ”child” SM migrates to all neighbors, while
the ”parent” SM blocks on the tag data rate. This op-
eration is performed recursively at every node until an
SM reaches a node containing the tag data rate tag.
At this point, the ”child” SM migrates back to its par-
ent carrying the discovered data rate. If the new data
rate is better than the value stored in tag data rate, the
SM will update tag data rate with the new value and
tag best route with its source as the best node in the
path to the source of data. This update unblocks the
”parent” SM which, at its turn, carries the data rate
one hop back. Eventually, the sink node is reached and
the reinforcement phase begins.

During the reinforcement phase, a collect SM mi-
grates to the best next hop starting from the sink. At
each intermediate node, this SM spawns, the ”child”
SM migrates to the best next hop, while the ”parent”
SM blocks waiting for data. When the SM reaches the
source, it spawns new SMs to carry the data one hop
back, at the promised data rate. Recursively, a blocked
SM will be awaken by the data arrival and, at its turn,
will carry the data back until it reaches the sink.

7.2. SPIN using SMs

SPIN is a family of adaptive protocols that dissem-
inates information among nodes in a sensor network.
We present an implementation of SPIN-1 which is a
three-stage handshake protocol for data dissemination.
Whenever a node obtains new data, it disseminates
this data in the network by sending an advertisement
to its neighbors. The node receiving the advertisement
checks to see if it has already received or requested
that data. If not, it sends a request message back to
the sender, asking for the advertised data. The initia-
tor sends the requested data and then the process is
executed recursively for the entire network.

For the implementation of SPIN using SMs, the Tag
Space will host two tags: the value of the most recent
data received (tag data), and the timestamp associated
with this data (tag timestamp).

The protocol is initiated by injecting a disseminate
SM into a node that produces the data. This SM blocks
on tag data waiting for new data (to be locally pro-
duced or to arrive). After an update is performed,
the task spawns itself and the ”child” migrates to the
neighbors to advertise the new data. If the SM ad-



vertises new data at the arrival node, it creates a new
SM to fetch the data, updates the tag timestamp, and
blocks on tag data waiting for this data. Upon data ar-
rival, the ”parent” SM is woken up, recursively spawns
itself, and the ”child” SM migrates to its neighbors 1.

8. Simulation Results

For experiments we use an event-driven simulator,
similar to ns-2 [11], extended with support for SM ex-
ecution. To get accurate results, both the communica-
tion and the execution time have to be accounted for.
The simulator is written in Java to allow rapid proto-
typing of applications. The simulator provides accurate
measurements of the execution time by counting, at the
VM level, the number of cycles per VM instruction. To
correctly account for the execution time, we have simu-
lated each node with a Java thread, and we have imple-
mented a new mechanism for scheduling these threads
inside JVM.

The communication model used in our simulator is
”generic wireless”, with contention solved at the mes-
sage level. The nodes can communicate within an area
limited by their transmission range. Before any trans-
mission, a node ”senses” the medium and backs-off if
somebody else is sending.

We use the same network configuration for all ex-
periments. The network has 256 nodes distributed uni-
formly over a square area, and each node has the same
transmission range. The average number of neighbors
per node is 4. We define the data convergence time as
the time when a certain percentage of the nodes have
received the data (SPIN), or the data rate (Directed
Diffusion). In both cases, due to flooding, all nodes
will end up receiving the data, respectively the data
rate. SPIN completes after all nodes have received the
data, while Directed Diffusion will start the reinforce-
ment phase.

Figure 7 presents the data convergence time for a
single Directed Diffusion SM, with the sink and source
located at the diagonal corners of the square region.
We plot the data convergence time for 3 different cases
of the same SM plus a base case for the same appli-
cation using passive communication (no SM). The top
curve shows the time when code caching is not used. In
the second curve, we can see an improvement of more
than 4 times in performance when code caching is used
during the first execution of the SM in the network.
The code is cached when an SM visits a node for the
first time, and it will be used by subsequent SMs during

1The SM code for Directed Diffusion and SPIN is provided in
the companion Rutgers University Technical Report DCS-TR-
464

the same execution. The effects of caching are signif-
icant because the SMs visit a node multiple times in
Directed Diffusion: they travel the network both for-
ward (looking for the source) and backward (diffusion
of data rate). In the third curve we can observe a 30%
decrease of the completion time when the code is al-
ready cached at all nodes. The fourth curve shows data
convergence time for the traditional implementation:
the protocol is implemented at each node, only data
is transferred through the network and the execution
time is not counted. The degradation of performance is
only 5%. We believe that this is a reasonable price for
the flexibility to program any user-defined distributed
application in NES.
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Figure 7. Directed Diffusion using SM
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Figure 8. SPIN using SM

Figure 8 plots the same curves for a single SPIN
SM launched in the network at a node located in a
corner of the square area. During the first execution,
flooding and the three-stage design of the protocol lead
to a 3 times improvement in performance when code
caching is used. The third curve shows a 30% decrease
of the completion time (similar to Directed Diffusion)



when the code is already cached at all nodes. The
completion time increases from 10% to 15% compared
to the traditional implementation.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

D
at

a 
C

on
ve

rg
en

ce
 T

im
e 

(s
ec

)

Percentage of Nodes

8 SMs
4 SMs
2 SMs
1 SM  

Figure 9. Directed Diffusion - Multiple SMs
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Figure 10. SPIN - Multiple SMs

Figures 9 and 10 show the data convergence time
for both Directed Diffusion and SPIN, when multiple
SMs run simultaneously through the network and the
code is already cached at nodes. For these experiments
data convergence time is the time when a certain per-
centage of nodes have received the data or the data
rate for all the SMs running in parallel. The nodes at
which the SMs start are distributed uniformly in the
network. In all cases SPIN completes faster (i.e, 2.3s
compared to 3.4s for the top curves in the figures) be-
cause it floods only the neighbors and then brings the
data to them, while Directed Diffusion needs to flood
the entire network until it finds the source and then
the diffusion brings the data rate back to all nodes.
In the initial phase Directed Diffusion generates more
messages in the network leading to a higher contention,
but its performance will increase as soon as the rein-
forcement phase begins.

9. Related Work

Smart Messages bear some similarity to Active Mes-
sages [15], active networks [3, 14, 13], and mobile
agents [4, 12]. Although SMs borrow implementation
solutions from all of them, the concept is significantly
different in its goal (to support distributed computing
in NES).

Like Active Messages [15], the arrival of an SM at
a node leads to the execution of a task on the node.
However, while Active Messages point to a handler at
the destination, SMs carry code with them. Beyond
the superficial similarity between the Smart Messages
and Active Messages, the two models address two com-
pletely different problems. Active Messages target fast
communication in system-area networks and therefore,
the handler execution is short and triggered as soon as
the active message arrives. On the other hand, SMs
target remote programmability of massive networks of
embedded devices.

The ANTS [3] capsule model of programmability
allows forwarding code to be carried and safely exe-
cuted inside the network by a Java VM. A first differ-
ence is that this model does not migrate the execution
state from node to node. It just caches and trans-
fers code that always starts and finishes on the same
node. A second difference is that ANTS targets IP
networks, while SMs does not require any routing sup-
port. The main difference in terms of programmability
is that, unlike ANTS, SMs define a distributed com-
puting model where applications cooperate and syn-
chronize each other.

The Smart Packets [14] architecture provides a flex-
ible means of network management through the use of
mobile code. Smart Packets are implemented over IP,
using the IP options header. They are routed just like
other data traffic in the network and only execute on
arrival at a specific location. Unlike Smart Packets,
SMs are executed at each hop in the network and their
execution determines the next hop in the route. Also,
SMs migrate the execution context.

Programmable Packets [13] are centered around a
low-level packet language that adds flexibility over IP.
We share some of the design goals, like safety and flex-
ibility, that allow for in-network processing of applica-
tion specific code, but SMs define a general distributed
computing model that provides more expressibility for
user-defined applications.

Smart Messages are similar to mobile agents, which
also use migration of code in the network. A mobile
agent may be viewed as a task that explicitly migrates
from node to node assuming that the underlying net-
work assures its transport between them. Unlike mo-



bile agents, SMs are defined to be responsible for their
own routing in a network. The SM architecture further
defines the infrastructure that nodes in a network sup-
porting SMs must implement, which makes self-routing
of SMs possible.

Research in mobile ad hoc networking [9, 2, 10] has
resulted in numerous routing protocols for peer-to-peer
multi-hop networking in infrastructures without base
stations. These protocols have generally been designed
for IP-based networks, and have primarily targeted tra-
ditional mobile computing applications such as mobile
personal computers and PDAs. These protocols can be
leveraged and implemented over the SM architecture.

Recent work on large networks of embedded sys-
tems has focused on network protocols for sensor net-
works [7, 5], and system architectures for fixed-function
sensor networks [6]. This research is complementary to
the SM architecture. We prove in this paper that our
model provides enough flexibility to enable the imple-
mentation of these models over the SM architecture.

10. Conclusions

This paper has described a programming model for
large scale distributed embedded systems, in which dis-
tributed applications are implemented as collections of
Smart Messages. The model overcomes the scale, het-
erogeneity, and connectivity issues by placing the in-
telligence in migratory execution units. The nodes in
the network cooperate by providing a common mini-
mal system support for the receipt and execution of
Smart Messages. The implementation of two applica-
tions for sensor networks shows that Cooperative Com-
puting represents a flexible, yet simple solution for pro-
gramming large networks of embedded systems.
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