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Abstract—Traditional page recommendation models are en-
dangered by stricter privacy regulations, such as the General
Data Protection Regulation (GDPR). The performance of these
models suffer when only a part of the users share their personal
data, such as cookies, with web servers, while the rest of the users
choose to opt-out from sharing these data. Furthermore, these
models are not designed to provide recommendations for users
who do not share their data. This paper addresses the question
of how to provide good page recommendations to all users,
independent of their privacy attitudes. We propose Fed4Rec, a
privacy-preserving framework for page recommendation based
on federated learning (FL) and model-agnostic meta-learning
(MAML), which allows machine learning models to train on data
collected from both public users, who share data with the server,
and private users, who do not share data with the server. Fed4Rec
enables recommendations for both public users, computed at the
server, and private users, computed at their local devices. Private
users’ data are stored only on user devices and never shared with
the server. FL is used to train on local data, and Fed4Rec shares
with the server only partial model parameters, computed on
local devices. MAML is used to jointly train on the public data
and the model parameters from the private users. We compare
Fed4Rec against several baseline frameworks, using a publicly
available dataset from a large news portal. The results show that
Fed4Rec outperforms the baselines in terms of recommendation
accuracy. We also conduct one ablation study to examine the
impact of varying the ratio between the number of public and
private users. Fed4Rec performs better than the baselines for
all ratios, but it is especially beneficial when the percentage of
public users is low.

Index Terms—page recommendation, federated learning, meta-
learning, privacy regulation, deep learning

I. INTRODUCTION

Effective recommendation of relevant online articles is
widely used in industry and extensively studied by the research
community. Traditional page recommendation models rely on
centralized data repositories that store user visits and browsing
behaviors [1], [2]. A page recommendation model is trained
on these data to identify the users’ interests and make relevant
page recommendations. However, with the implementation of
privacy regulations around the world, such as the the General
Data Protection Regulation (GDPR) by the European Union
(EU) in 2018 [3] and the California Consumer Privacy Act
(CCPA) in 2020 [4], the performance of traditional page
recommendation models will start to suffer due to a lower
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Fig. 1. Example of cookie notice required by GDPR.

amount of data. Furthermore, these models are not designed
to work for users who do not share data with the web servers.
To be compliant with the new privacy regulations, a website
asks users whether they are willing to accept cookies and share
data with the publisher, as shown in Figure 1. Typically, some
users accept, while others reject sharing personal data with the
web servers.

In this research, we consider both types of users: users
who share personal data with the server, referred to as public
users, and users who refuse to share data with the server,
referred to as private users. A publisher stores and has access
to the data of public users. The data of the private users,
on the other hand, are stored on their local devices and are
not available to the publisher. Existing page recommendation
studies do not consider this type of user privacy preference;
they just use the data collected by the server (i.e., data from
public users in our case). A simple solution to provide page
recommendations for both types of users is to use multiple
instances of a traditional page recommendation model. One
instance is trained on the dataset of the public users at the
publishers, and then used to provide recommendations for
these users. The other instance can be trained at each device
of a private user, and then used to provide recommendations
for each such user. Unfortunately, training models separately
for all public users and each individual private user cannot
perform well because each model will under-learn.

The main challenge of our research is how to leverage
data from both types of users in order to provide good page
recommendations for all users, while respecting the privacy
preferences of the private users. To solve this challenge,
we propose Fed4Rec, a privacy-preserving framework for
page recommendation based on Federated Learning (FL) [5]
and model-agnostic meta-learning (MAML) [6], which allows
machine learning models to train on data collected from both
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Fig. 2. Main idea of the Fed4Rec framework.

public users and private users. FL helps Fed4Rec because
it can learn an algorithm across multiple decentralized edge
devices without exchanging their data samples. FL was proven
effective for applications such as keyboard predictions [7] and
self-driving cars [8§]. MAML helps Fed4Rec because it can
adapt quickly to new users in recommender systems [9], [10].
Furthermore, MAML is designed to improve classification or
regression performance by learning with only a small amount
of training data. This feature allows Fed4Rec to predict user’s
preferences based on only a limited number of visited pages.
The main idea of Fed4Rec is illustrated in Figure 2. FL
trains local models on the devices of private users and uploads
the model parameters to the cloud to create a global cloud
model. MAML is used to build this model by jointly learning
from the FL model parameters and the public dataset. The
intuition behind MAML is that some internal representations
are more transferable than others, and the neural network may
learn internal features that are broadly applicable to all users.
Specifically, MAML in Fed4Rec allows private users to benefit
from the public users’ data. Fed4Rec is designed to work
with gradient-optimized models that have two layers: a base,
user-agnostic layer, and an adaptation, user-specific layer. The
base layer feeds into the adaptation layer. In this paper, we
design a model in which the base layer is a bi-directional
Gated Recurrent Unit (GRU) [11] layer to model the page visit
sequences, and the adaptation layer is an attention layer [12]
to model the contextual information for fast user adaptation.
We evaluate Fed4Rec using the Globo dataset [13], pro-
vided by the most popular news portal in Brazil [13]. In the
evaluation, we compare against three baseline frameworks: (i)
Arden [14], which trains the model on a public dataset and
applies it on private users, (ii) Transfer Learning (TL), which
trains the model on a public dataset and then re-trains it on
the private user data, and (iii) Federated Average (FA) [15],
which creates an FL global model based on local training at
private users and model parameter aggregation in the cloud.
The experimental results show that Fed4Rec outperforms
the baselines in terms of recommendation accuracy. We also

conduct an ablation study to examine the impact of varying
the ratio between the number of public and private users.
Fed4Rec performs better than the baselines for all ratios, but
it is especially beneficial when the percentage of public users
is low. The main contributions of this paper are summarized
as follows:

o We identify a new problem that will affect the effec-
tiveness of page recommendation models, caused by the
recent introduction of online privacy regulations around
the world. The problem consists in splitting the user
population into public users and private users. To the
best of our knowledge, we are the first to study page
recommendation models in this new setting.

« We propose a novel solution for this problem, Fed4Rec,
which uses FL and MAML to jointly learn a page
recommendation model from private and public user data.
We also propose a gradient-optimized, two-layer deep
learning model that works in conjunction with Fed4Rec.
This model learns the user-agnostic page visit sequence
and adapts quickly to user preferences. Fed4Rec is able
to protect user privacy, while integrating a large variety
of user behaviors.

e Our experiments demonstrate the effectiveness of
Fed4Rec on improving model accuracy. With more users
refusing to share their personal data with web servers, it is
important to notice that Fed4Rec performs best, compared
to the baselines, when the percentage of public users is
relatively low.

o The proposed framework can be leveraged for other
applications that may have both public and private user
data, such as video recommendation, e-commerce product
recommendation, or mobile user location prediction.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related work. Fed4Rec and its associ-
ated deep learning model are described in Section III. The
experimental evaluation is presented in Section IV. Section V
concludes the paper and discusses future work.

II. RELATED WORK
A. Page Recommendation

Collaborative filtering, content-based recommendation, and
matrix factorization are early techniques to achieve wide
success in the field of web page recommendation sys-
tems [16]. Recently, these methods have been replaced by
deep learning based models for higher performance, such as
Wide&Deep [17], DeepFM [18], and GRU4REC [11]. It is
intuitive to model page reading as a time series problem,
which is still the dominant modeling approach in session-based
recommendation [19]. For example, GRU4REC applies the
Gated Recurrent Units (GRU) method, a type of Recurrent
Neural Networks (RNN), to model sequences and obtains
promising results.

All of the above-mentioned page recommendation methods
rely on centrally-stored user behavior data for model training.
User behaviors on websites are privacy-sensitive, and not all



users are comfortable sharing their data with publishers. With
new privacy regulations being enacted around the world (e.g.,
GDPR [3], CCPA [4]), a large number of users are expected to
refuse sharing data with web servers. Fed4Rec gives users the
choice to keep their data private or to share it with the server
in exchange for a higher service quality. Notwithstanding
their privacy choices, both users types can benefit from high
accuracy page recommendations in Fed4Rec.

B. Federated Learning and Data Privacy

Our general approach belongs to the family of federated
learning (FL) techniques. FL is a decentralized learning ap-
proach in which a model is trained on every user device and,
then, its updated parameters are shared with the server to
build an aggregated, global model [5], [20]. FL has several
key properties or challenges, which do not exist in other
types of distributed learning: the training data on a given
client is not representative of the population distribution (Non-
IID); some users make much heavier use of the service or
app than others, leading to varying amounts of local training
data (Unbalanced); the number of clients are large (Massively
Distributed); the communication between clients and the cloud
server is expensive (Limited Communication). FL has been
successfully used in many types of applications, such as smart
phone keyboard prediction [21] and healthcare [22].

Most of the previous learning models train using either
only public users (i.e., traditional centralized models) or only
private users (i.e., FL. models). In contrast, Fed4Rec trains
jointly on public and private users. There is only one work that
considers the same setting, Arden [14], but this work does not
target page recommendation nor does it utilize FL. In Arden,
the server uses the public data to train models, and every client
(private device) sends their encrypted input data to the server
to make predictions. Arden has two limitations. First, it does
not utilize the private data in the training phase, which is
a waste. Second, there could be large communication costs
between a client and the server if the client’s input is large.
Comparatively, in our framework, private users re-train the
model using their data before making predictions; also, private
users only share model parameters instead of raw data with the
server, which reduces the communication cost substantially. In
Section IV, we experimentally compare Fed4Rec and Arden.

C. Meta-Learning

One of the main challenges of FL is the statistical het-
erogeneity of the data. Data residing in different devices are
not identically distributed [23]. Additionally, in the case of
online page recommendation, users’ interests in articles change
continuously over time, and models need to quickly adapt to
the changes based upon few available new data points [24].

Meta-learning, also called learning-to-learn, aims to train
a model that can rapidly adapt to a new task with a few
examples [6]. It can be classified into three types: metric-
based, memory-based, and optimization-based meta-learning.
The metric-based approach is usually based on the computa-
tion of similarity between different tasks [25]. However, this
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Fig. 3. Illustration of the optimization-based meta-learning algorithm.

only works in a centralized learning setting because it needs
to compare the similarity between users via their personal
information and recorded behavior. In our case, this is not
possible because the data of private users are not shared
with each other (or with the server). Memory-based learning
requires a specific order of tasks and utilizes reinforcement
learning to optimize the final goal. In our case, however, there
is no order among tasks or users. Recently the adaption of
meta-learning for recommendation systems mainly utilizes the
optimization-based meta-learning, and it regards each unique
user as a different task [9], [10].

Among the optimization-based meta-learning algorithms,
MAML [6] is the most popular. MAML learns the best
model initialization parameters 6 through the gradient descent
method, as shown in Figure 3. For new tasks 74,75,753, the
model can quickly adapt to the best model parameters, 67, 635,
and 0%, respectively. In order to achieve this goal, first, the
model is optimized separately for each task using gradient
descent. Then, in the meta-optimization phase, it aggregates
the different gradient directions of the learned models for each
task (VLq, VLo, VL3). After that, it minimizes the losses with
the learned models (learning-to-learn process). In the inference
period, the model only needs the limited data to quickly adapt
to a new task.

In Fed4Rec, we regard each task as estimating a user’s
article preferences and reading habits (such as short-term or
long-term influence on current reading interest) in the page
recommendation. Based on this idea, we propose a MAML-
based technique to learn a good model initialization based on
the public users and then share it with the private users. The
private users can then utilize the shared model to adapt quickly
based on their private data in order to increase personalization.

III. SYSTEM DESIGN

Given the historical page visit behaviors of private users U,
and public users Up, in which a publisher’s server can only
access the data from public users, our goal is to recommend
relevant pages to all users by jointly learning the behaviors of
the two types of users, private and public.

Fed4Rec learns from both types of users by combining FL
and MAML. At the private user side, it uses FL to train a
local model based on the user’s data and uploads the trained
model parameters to the server. At the server side, it uses
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Fig. 4. Page recommendation model.

MAML to jointly learn a global model from the local model
parameters uploaded by private users and the public users’ raw
data. This global model can then be downloaded by private
users to perform page recommendations on their devices or
can be used at the server for page recommendations for public
users.

We continue this section with a description of our page
recommendation model that works in conjunction with our
framework. Then, we describe the Fed4Rec framework and
how it uses this model.

A. Page Recommendation Model

Figure 4 shows our gradient-optimized, two-layer model.
The first layer is the user-agnostic RNN layer, and the second
one is the user-specific attention layer. The model assumes
that each user has a page visit sequence, stored at the server
for public users and at the user’s device for private users.
Following previous work [11], [26], we use a Recurrent Neu-
ral Network (RNN)-based model for page recommendation,
which has been shown to perform well in sequential data mod-
eling. Furthermore, we add the attention mechanism [12] to
model the contextual information that optimizes the attention
parameters of each “task” for fast adaptation. This alleviates
the need for different metric spaces across different users.

For the RNN layer, we choose a bi-directional Gated
Recurrent Unit (GRU) layer to model the page visit sequence.
GRU and LSTM [27] have comparable performance for many
applications [28], but we choose GRU because its network is
much simpler and therefore more efficient to train. Without
loss of generality, one could replace GRU with LSTM in
our proposed model. The key to GRU is the multiplicative
gates, which allow GRU memory cells to store and access
information over long periods of time, thereby avoiding the
vanishing and exploding gradient problems. GRU takes fixed-
length L page visit sequences as the input. We utilize bi-
directional GRU because it captures hidden dependencies
between the two directions and existing work demonstrates
that it performs better than uni-directional versions [29]. The
details of bi-directional GRU are defined as follows:
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In which h{ and h! are the forward and backward hid-
den states at timestamp ¢. The state at timestamp t is the
concatenated states of the two directions: s¢. htf_1 and h® 1
are the forward hidden outputs at time stamp ¢ — 1 and
backward hidden outputs at time stamp t + 1 respectively.
o is the 51gm01d fU.IlCthIl v, 1s the visited page at times-
tamp ¢. z{ , Ty ,ht 20t hb are the intermediate calculations.
01,05,07,0° 65 0° are the bi-directional GRU model layer
parameters. To simplify, we use 6 to refer to all the layer
parameters mentioned above. Therefore, bi-directional GRU
takes the L-sequence of page embedding v = [vy,va, ..., v]
as the input, and it outputs the corresponding sequences of
states.

st = f(u;0) 2

The representation learner f(-,6) in equation 2 encodes
the input sequence v to a corresponding sequence of states
[S1,82, ...,81], where f in our case is a recurrent bi-directional
GRU with parameter 6. The goal of learning 6 is to obtain
meta-learned task-agnostic parameters that can provide mean-
ingful encodings of the input page visit sequences.

For the attention layer, similar to sentiment analysis on
sentence text input [30]-[32], a content-based global attention
mechanism is added in order to enable the model to focus
on different aspects of pages [33], such as page topics. The
idea is to model the attention influence from different previous
states in different aspects. The specific attention mechanism is
defined as follows:

_ 4T
ay = Qarrst
s’y = OétSt

-1y

3)

h \

where ¢ 471 represents the attention parameter vector. For
each memory state s;, we calculate its inner product with the
attention parameter, resulting in a scalar ay. The scalar oy
rescales each state s; into s’;, which are averaged to obtain the
final representation c of a user. The attention retrieves relevant
information from a sequence and learns the importance of each
past page visit through attention weight «; that contributes to
the final prediction.



Once an input page visit sequence is encoded into the
vectorized representation c, we apply a softmax classifier
parameterized by ¢y to obtain the prediction g.

g = softmaz(c; pw) 4)

The parameters are learned using a categorical cross-entropy
loss function, which is commonly used in multi-class clas-
sification problems. Formally the loss function is defined as
follows:

1 N
L=-+ ;y +log() 5)

in which y is the ground-truth label and N is the number
of samples. For simplicity, we refer to ¢ = {parT, dw} as
the user-specific learned parameters.

B. Federated Page Recommendation Framework

The Fed4Rec framework works with gradient-optimized
models that have one user-agnostic and one user-specific
layers, such as the model we described above. Our next
problem is how to learn the model in a setting that includes
both public and private users. Figure 5 illustrates the learning
framework of Fed4Rec. Our framework has two components:
one server and multiple clients (e.g., laptops, smart phones).
Each client represents one private user and stores the data
for this user. The public users’ data are stored at the server.
Therefore, our problem can be further split into two sub-
problems:

o At the client side: Given the downloaded global model
from the server, how to update the local model using the
client private data?

« At the server side: Given the uploaded parameters of the
trained local models and the raw data of public users,
how to aggregate and update the global model?

The communication between the clients and the server
cannot be in the form of raw data. First, the private users,
by definition, do not want the server to have their raw
data. Second, while it is possible to transfer the raw data
of the public users to each client, it would take too much
bandwidth due to the large amount of public data, especially
because the data of public users are being generated in a
stream. Third, the public data may not even fit in the client
storage, especially on mobile devices. Given these reasons
and inspired by federated learning [15], the communication
between the clients and the server is in the form of model
parameters. In this way, Fed4Rec can protect user privacy
as well as decrease the bandwidth/storage requirements. In
order to further protect user privacy, Fed4Rec could add local
differential privacy (LDP) onto the model parameters in the
communication phase [34]. In order to achieve this goal, a
common method is to add Laplace noise to the data. In this
paper, we focus on the overall framework for model training
and leave LDP for future work.

The server starts with training the recommendation model
using the data shared by public users. The server uses model
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Fig. 5. Fed4Rec learning framework for page recommendation.

agnostic meta-learning (MAML) to perform this step. We use a
popular version of MAML that omits the second derivatives for
the meta-optimization, resulting in a simplified and faster im-
plementation, known as First-Order MAML (FOMAML) [6],
[35]. The updated gradient is calculated as follows:

$,0 = 0,0 — BV40L(p,0 — aVy0L(0,0))
=¢,0 — BV 0L(4,0)
= 0,0 — (Vo L(¢,0')-Vyo(¢',0))
~ ¢,0 — BV g 0 L(¢,0)

In which, ¢’ and ¢’ are the updated model parameters based
on the learning process. ¢ is learned from the attention layer in
the model, and 6 is learned from the RNN layer in the model.
The final “learning-to-learn” process, shown in Equation 6,
is equivalent to simply remembering the last gradient and
applying it to the initial parameters. Therefore, the data of
the public users can be utilized to update the whole model.

At the client device, similar to federated average [15] in
which not all private users join the training in each global
learning round, Fed4Rec uses a parameter r to control the
ratio of randomly selected private users in order to save the
communication cost. For each client participating in a learning
round, as shown in Figure 5, Fed4Rec replicates the model
parameters ¢, 6 from the server. Then, it adapts the model on
the data of each client participating in that round to learn their
personalized models by adapting the high-level attention layer.
Once the newly trained model is updated at a client device, its
parameters are uploaded to the server to be used in the next
learning round.

There are several advantages of our Fed4Rec solution. First,
since the number of data samples at each private user is
limited and the majority of users only have a few new data
samples, this approach can avoid overfitting the models at
clients. As mentioned earlier, each client only retrains the user-
specific parameters. Another advantage of partial retraining is
to save computation resources because clients, such as phone
or tablets, have limited battery and computing power. Third,
this approach saves network bandwidth from the clients to the

(6)



Algorithm 1: Fed4Rec

1 Require: 7;, 1, : step size hyperparameters

2 Require: U, U, : public users and private users

3 Require: randomly initialized model parameters 6y, ¢¢
4 Server executes:

5 for each global round t =1,2,...,G do

6 global update (First-Order MAML):
K
7 o+ > "—n’“qbf when t # 1, otherwise ¢
k=1
8 b1, 01 < 1,00 — mV g, 0, L(t,01)
9 Git1,0t41 < P, 00 — 2V g1 01 L(Dy, 01)
10 local update:
11 Ut « (randomly selected 7% of private users
in U,)
12 for each client k € U}, in parallel do
13 | ¢F, 1 + ClientUpdate(k, 0¢+1, pr+1)
14 end
15 end

16 ClientUpdate(k, 0.1, ¢111) // run on client k
17 B + split private data of client &k into batches

18 for each local epoch t from I to E do

19 for batch b € B do

20 | D1 = Grer = MV, L(Drs1,0141)
21 end

22 end

23 return ¢f, to the server

server in that only the user-specific parameters, instead of the
whole model parameters, are transferred to the server. Fourth,
this approach makes it harder to infer user private data from
model parameters from the high-level neural network layer
compared to model parameters from the low-level embedding
layer [36].

We present the pseudo-code of Fed4Rec in Algorithm 1. The
initial learning starts from the public users’ data because of the
requirement to update the whole model. The model parameters
¢ and 6 are randomly initialized. If it is not the first round,
the server aggregates the received model weights, i.e., taking
the weighted average of the received model weights from the
clients (line 7), in which ny, is the number of training samples
at client k£ and n is the total number of training samples from
selected clients. Then, the global model is updated through
FOMAML (lines 8-9). Afterward, the server sends the updated
global model to the clients (lines 12-13). On the client side,
after learning the models through several local epochs F, a
client sends the updated model parameters ¢ to the server
(lines 16-22). The learning process is alternatively conducted
at the server and the clients, and there are multiple rounds
of communications between the server and the clients. The
training phase ends when the model converges or reaches the
maximum number of global rounds G.

TABLE I
STATISTICS OF THE SAMPLED GLOBO DATASET
Period 16 days | # Users 167,863
#Articles 10,407 # Page views 1,691,996

IV. EVALUATION

This section presents the evaluation of Fed4Rec. The eval-
uation has three objectives: (1) assess Fed4Rec’s recommen-
dation accuracy compared to three baseline frameworks and a
centralized model that considers all data public; (2) measure
the impact of the ratio between public and private users on
recommendation accuracy. While it is expected to achieve
higher accuracy for larger ratios of public users, it is important
to know if the ratio has a different influence on different
frameworks; (3) compare the communication cost between the
clients and the server for training of Fed4Rec and the three
baselines; This is important especially when the clients are
mobile devices, which may have bandwidth limitations.

A. Dataset and Experimental Settings

We perform the evaluation on the Globo dataset, provided
by the most popular news portal in Brazil [13]. The statis-
tics of the datasets are shown in Table I. Since the page
views are time-ordered, usual cross-validation procedures with
randomized allocation of events across data splits cannot be
applied [37]. We therefore split the whole dataset into six non-
overlapping and continuous subsets, and the final performance
is based on the average of all six subsets. In order to fully train
the embedding for each page, we remove users and articles
with less than six page views iteratively, by following the same
setting in [11], [26]. The last 10% of data are hold for testing,
and the ratio between training, validation, and testing is 8:1:1
in temporal order. Since the page visit information of private
users can never be recorded in reality, here we randomly assign
all users into private users and public users to conduct our
experiments. 3 € [0,1] is the parameter to control the ratio
of public users among all users. The model performance is
measured on both public and private users.

As we discussed in III, Fed4Rec can work with different
models. In addition to the model described in Section 4, we
implemented one more model by replacing the bidirectional
GRU layer with a convolutional neural network (CNN) layer.
The models are implemented using Tensorflow. The dimension
of page embedding is set to 250. The page embedding was
initialized by the embeddings learned from the article metadata
attributes, in which a separate model is trained to classify
article categories (editorial subsection in the news portal)
based on its textual content and metadata. The details of
learning the initial page embeddings through page content
are described in [38]. The rest of the model parameters are
initialized with the popular Xavier uniform method [39]. Since
RNN takes fixed-length input sequences, we pad and truncate
the length of an input sequence (L) to be 5. The batch size
and the maximum number of epochs are set to 32 and 30,
respectively. The maximum number of global rounds is set



to 40 (G = 40). The experiments are run on a Ubuntu
Linux cluster with 4 NVIDIA P100-SXM2 GPUs. The training
goal is to minimize our defined loss. We utilize the Adam
optimizer [40] to optimize the parameters because of its fast
convergence and set the learning rates 71,7 to 0.001 by
default. We use early stopping on the validation set with
patience = 2 to avoid overfitting.

B. Metrics

To quantify the accuracy of page recommendations [11],
[26], [41], [42], we selected the Mean Reciprocal Rank and
the Hit Rate to measure the top-20 recommended pages.

Mean Reciprocal Rank (MRR@20) is the average of re-
ciprocal ranks of the correctly-recommended items. The MRR
metric considers the order of recommendation ranking, where
a large MRR value indicates that correct recommendations are
in the top of the ranking list. It is formally defined as follows:

1N 1
RR N ~ rank; M

in which NV is the number of predictions, and rank; refers
to the rank position of the ground-truth page for the i,
prediction. The reciprocal rank is set to 0 when the rank of
the ground-truth page exceeds 20. The larger the MRR@20
is, the better the performance is.

Hit Rate (HR@20) is widely used as a measure of pre-
dictive accuracy, which checks whether or not the true next
item appears in the top ranked items. HR@20 represents the
proportion of correctly recommended items among the top-20
items. The larger the HR@20 is, the better the performance
is. Compared to MRR, HR does not consider the specific rank
information as long as the true next item appears in the top
ranked items.

To evaluate the communication cost of the training phase,
we split the communication into two components that are
examined separately: the communication cost per client for
each client-server interaction (measured in Number of Model
Parameters exchanged between the client and the server per
communication round), and the convergence speed (measured
in Number of Communication Rounds for training).

C. Comparison Systems

The aim of our evaluation is not to evaluate the page
recommendation model, but to evaluate the entire Fed4Rec
framework that holistically manages public and private users
in a mutually beneficial way. We compare Fed4Rec with the
following baseline frameworks. To have a fair comparison, all
frameworks use the same page recommendation model.

Arden [14] trains the model on public data and applies it
directly on private users’ data. The private users’ input data
are transferred to the server to make recommendations, in
which random Laplace noise perturbation is added in the com-
munication pipeline to protect user privacy. Arden sacrifices
performance to achieve privacy by adding noise. To make the
comparison with the other frameworks fair, we do not add the

TABLE II
RECOMMENDATION ACCURACY OF DIFFERENT FRAMEWORKS
FOR ALL USERS

BiGRU + Attention CNN + Attention

Method

HR@20(%) MRR@20(%) | HR@20(%) MRR@20(%)
Arden 26.46 8.20 24.94 8.30
TransLearn 26.44 8.19 24.92 8.27
FedAvg 18.45 6.79 16.57 5.78
Fed4Rec 35.35 11.05 30.27 9.47
CenModel 39.47 11.86 38.03 11.12

noise perturbation. Arden is originally developed for image
recognition, but we adapt it to use our page recommendation
model.

Transfer Learning (TL) utilizes the public data at the
server to learn a pre-trained model, similar to Arden. Then,
the server sends the pre-trained model to clients. Each client
re-trains (fine-tunes) the pre-trained model with their own
data and uses this re-trained model to make recommendations
afterward.

Federated Average (FA) [15] is a generalization of
FedSGD, which allows clients to perform more than one batch
update on local data and to exchange the updated weights with
the server, rather than the gradients. In FA, all local client
models must start from the same initialization, which produces
a significant reduction in training [15]. The rationale behind
this generalization is that with shared model initialization,
averaging the gradients is strictly equivalent to averaging the
weights themselves. Since FA only works in the case of all-
private users, we assume all users (including public users) are
private users. Thus, the public user ratio 3 is irrelevant to this
method.

CenModel is a centralized model that assumes all users are
public and applies our model on their data. CenModel acts as
an upper bound for the performance that can be achieved by
Fed4Rec.

D. Recommendation Accuracy

Table II shows the performance accuracy comparison be-
tween Fed4Rec and the baselines, with the ratio of public
users S = 0.5. The results are averaged over all users,
public and private. We observe that Fed4Rec outperforms the
three baseline frameworks for both models (BiGRU+Attention
and CNN+Attention). Furthermore, Fed4Rec’s performance
is close to the upper bound performance provided by the
CenModel.

We notice that FA is the worst method. The main reason
is that it considers all users private and there is a large
variability in the user behavior. A deep learning model has a
powerful ability of representation, but each client could only
learn the biased partial gradients. Simply averaging the model
parameters cannot effectively learn the aggregated data.

Also, TL does not work well compared to Arden. This is
because each local client has limited data to effectively re-train
the server model locally, and it is prone to overfitting.

Across all frameworks, the BiIGRU+Attention model works
better than the CNN+Attention model. This demonstrates the



advantage of BiGRU on modeling sequential data. We also
notice that Fed4Rec with CNN+Attention is still better than the
baselines using BiGRU+Attention. This proves the significant
benefits of Fed4Rec, compared with the baselines.

0.4

HR@20

Fig. 6. Recommendation accuracy of different frameworks for public users
only: Arden/TL (left bars), and Fed4Rec (right bars).
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Fig. 7. Recommendation accuracy of different frameworks for private users
only.

Next, we zoom into the recommendation accuracy com-
parison for public users only (Figure 6) and private users
only (Figure 7), respectively. Let us notice that FA does not
work for public users only; in fact, it considers all users
private. Also, Arden and TL obtain the same performance
when applied to public users only.

The results show that Fed4Rec achieves the best perfor-
mance in both cases, and the performance improvement is
similar. These results further validate the effectiveness of our
joint alternative-learning framework.

E. Impact of the Public User Ratio (§)

Figures 8 and 9 show how the recommendation accuracy
of the four frameworks vary with g, the ratio of public users
among all users. We observe that the larger beta is, the better
the performance a framework achieves. The exception is FA,
which assumes all public users work as private users, and
therefore it is not impacted by /.

Fed4Rec performs the best for all ratios. This result shows
its effectiveness across many potential real-life settings. Let
us also emphasize that Fed4Rec’s performance is substantially
better than the performance of the baselines for lower values
of (. This shows that clients are able to learn effectively
on their own data and transfer the learned knowledge to the
global model at the server. This result validates the advantage
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of Fed4Rec in learning from private users’ model parameters
and the effectiveness of updating the user-specific parameters.
The results also show that the performance of Arden and
TL remains similar with each other across all ratios. Our
conjecture is that this is due to the fact that each user in the
dataset has limited history and their consecutive behavior vary
with time. Thus, TL is not able to effectively learn private
user’s behavior, even though it fine tunes the model using
private user data. Comparatively, Fed4Rec can effectively
learn the behavior of private users from their limited and
heterogeneous data. It does so because of MAML, which
considers each user as a task and works well for few shot
learning.

F. Client-Level Communication Cost Analysis

The communication between clients and the server can oc-
cur in two phases: training phase and recommendation phase.
Arden is different from the other three frameworks in the sense
that it does not require communication between the clients
and the server in the training phase. It needs communication
only in the recommendation phase, where clients send the
transformation of the raw data to the server, which then makes
the predictions. It is difficult to measure the communication for
each client in Arden because the communication depends on
the amount of recommendations needed by each client. Unlike
Arden, the other frameworks use communication in training,
but perform recommendations locally. Therefore, there is no
communication cost for these methods in the recommendation
phase.
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In the following experiment, we compare the communi-
cation cost in the training phase for Fed4Rec, TA, and FA.
We also split each client-server interaction into downlink and
uplink communication.

Figure 10 shows the communication cost per training round.
We observe that Fed4Rec performs better that FA, but worse
than TL. Compared to FA, our model saves 60% of the uplink
communication from the client to the sever. This is because
Fed4Rec requires to train and update only a part of the model
structures and uploads only the local model parameters to
the server. TL performs best because it does not need to
upload anything to the server. A client downloads the global
model from the server and then retrains with the local data.
We conclude that the extra-communication cost of Fed4Rec
vs. TL is the price paid by Fed4Rec for significantly higher
recommendation accuracy.

G. Convergence Analysis

Next we explore the convergence of Fed4Rec compared to
FA. Since TL and Arden do not have multiple communication
rounds between the server and clients, we exclude them in
the convergence analysis. Figure 11 shows the convergence
of FA, and Figure 12 shows the convergence of Fed4Rec.
The parameter r stands for the selection ratio of private
users in each communication round. Overall, we observe
that Fed4Rec converges significantly faster than FA. In FA,
there is a relatively long “flat” period, and then the model
converges quickly. The reason for the “flat” period is because
of the variability in user behavior, which makes the gradient
directions from individual clients to counteract/neutralize each
other. This phenomenon is especially obvious when there is a
small fraction of sampled users per training round. In Fed4Rec,
on the other hand, there is no such “flat” period, and the
model starts to converge immediately. This is because Fed4Rec
uses the public user data in MAML, and therefore the learned
model can adapt quickly to learn at the clients.

We observe that higher r values result in faster convergence
for FA. However, the convergence speed of Fed4Rec does not
depend on r. This is because of the usage of both public and
private users in its training process, and it demonstrates that
Fed4Rec can minimize the communication cost by selecting
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Fig. 11. Training convergence of Federated Average.
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Fig. 12. Training convergence of Fed4Rec.

fewer clients per round and obtaining the same level of
convergence.

V. CONCLUSIONS AND FUTURE WORK

This paper explores a new problem with real-life impli-
cations: privacy-preserving online page recommendation with
joint-learning from public users’ data and private users’ data.
To the best of our knowledge, we are the first to study and pro-
pose a solution for this problem. Our solution, Fed4Rec, com-
bines federated learning with model-agnostic meta-learning to
outperform several baseline frameworks. Fed4Rec performs
especially well for lower ratios of public users, which is
expected to be seen in real-life due to privacy regulations.
‘We also demonstrate that Fed4Rec is flexible, as it works well
with two page recommendation models, BIGRU+Attention and
CNN+Attention.

There are two directions that we plan to investigate as future
work. First, due to the limitation of the dataset used in our
experiments, we assumed there is no significant behavioral
pattern gaps between public users and private users. We will
look for other datasets to test this hypothesis and relax it if
otherwise. Second, since Fed4Rec is a general framework, not
restricted to the application domain of page recommendation,
future work could extend it to other domains such as video
recommendation or e-commerce product recommendation.
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