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Abstract—Federated Continual Learning (FCL) has emerged
as a promising paradigm that combines Federated Learning (FL)
and Continual Learning (CL) for Mobile/IoT devices. To achieve
good model accuracy, FCL shall tackle catastrophic forgetting due
to concept drift over time in CL, and overcome the interference
among clients in FL. We propose Concept Matching (CM), an
FCL framework to address these challenges. The CM framework
groups client models into model clusters, and then uses novel CM
algorithms to build different global models for different concepts
in FL over time. In each round, the server sends the global
concept models to the clients. To avoid catastrophic forgetting,
each client selects the concept model best-matching the implicit
concept of the current data for fine-tuning. To avoid interference
among client models with different concepts, the server clusters
the models representing the same concept, aggregates the model
weights in each cluster, and updates each global concept model
with a cluster model of the same concept. Since the server does
not know the concepts captured by the aggregated cluster models,
we propose a novel server CM algorithm that effectively updates
a global concept model with a matching cluster model. We
formulate and prove the theoretical grounds of the server CM
algorithm, which guarantees to update the concept models in the
right gradient descent direction. In addition, the CM framework
provides flexibility to use different clustering, aggregation, and
concept matching algorithms. The evaluation over several datasets
demonstrates that CM outperforms state-of-the-art systems, and
scales well with the number of clients and the model size.

Index Terms—Federated Learning, Continual Learning, Mobile
and IoT Devices

I. INTRODUCTION

Most of the current Federated Learning (FL) research
assumes the data have been collected before training, and
the data at clients do not change over the training rounds.
However, this is not the case for many applications on
mobile/IoT devices, as data accumulate over time and change
its distribution. Context changes in the physical world lead to
shifts in data distribution, known as concept drift, which can
render prediction models obsolete over time. For example, a
user sleep quality prediction model trained on data collected
during routine life will not work well when the users experience
changes in their sleep patterns due to stress, illness, or travel. In
addition, on mobile/IoT devices such as such as smart watches
and smart cameras, it is difficult to train with the entire dataset
on-device at every round due to their resource constraints.
This effect of dynamic data is being actively studied by the
Continual Learning (CL) community in centralized settings.
However, CL research in FL settings is still in its infancy.

Federated Continual Learning (FCL) performs FL under the
CL dynamic data scenarios. There are two main challenges in
FCL. One, inherited from CL, is catastrophic forgetting [8].
Due to concept drift, the model forgets previously learned
knowledge as it learns new information over time. A concept
infers a function from training examples of its inputs and
outputs [24]. For example, in human activity recognition
(HAR) [16], concepts can include subsets of activities, activity
locations, or the user’s health status. FCL imposes privacy
constraints on the top of CL, which escalates this challenge.
Even if the clients are aware of the concept drift (e.g., sedentary
vs. active lifestyle in HAR), they may not want to reveal
it to the FL server. The second challenge is that the FL
clients with different data concepts may interfere with each
other, because the data in FL is typically non independently
or identically distributed (non-iid). The interference will
sabotage the efforts of clients’ training during aggregation
and lead to underperforming global models. CL amplifies this
interference in FL, because the union of the clients’ data may
also be distributed differently over time. An efficient FCL
framework shall tackle these challenges to achieve good model
performance. While several works [7], [20], [26], [33], [36],
[37] have recently targeted FCL, their applicability is limited
due to interference among the clients or relaxed assumptions
(e.g., the server knows the concept drift from the clients or the
classes to learn do not change over time).

This paper proposes Concept Matching (CM) for FCL to
alleviate the two challenges and achieve good model perfor-
mance. Intuitively, if we can separate the client models based
on the data concepts and train different models specifically
to learn each concept iteratively, catastrophic forgetting and
the interference among clients can be greatly diminished. This
process has to be performed under the FL assumption that
the server cannot access any raw data. The CM framework
achieves these goals through clustering and concept matching
in FL. At every training round, to avoid interference among the
clients, the server clusters the client models representing the
same concept and aggregates them. To mitigate catastrophic
forgetting, different global concept models are trained for each
concept through concept matching, which operates differently
at the server and the clients. The server uses a novel distance-
based concept matching algorithm to match the global concept
model of the previous round with a cluster model. Then, it
aligns these models to update the global concept model in



the appropriate gradient descent direction. The client concept
matching tests the aggregated global concept models received
from the server on the current local data, and selects the one
with the lowest loss as the best match.

The CM framework does not require clients to have any
knowledge of the concepts, nor does it require the server
to have any additional information compared to vanilla FL
(i.e., it only requires the model weights from the clients). The
CM framework provides flexibility to use different clustering,
aggregation, and concept matching algorithms. Our server
concept matching algorithm achieves up to 100% effectiveness
to update each concept model with a matching cluster model.
This result is grounded in a theorem, which proves that the
distance between the current model and the previous one
decreases with each iteration of gradient descent. Furthermore,
the evaluation over several datasets demonstrates that CM
outperforms state-of-the-art systems, and scales well with the
number of clients and the model size.

II. RELATED WORK

Most FL research focuses on sytem design [4], [16], [31],
model performance [9], [13], [17], [38], privacy [10], [34],
and communication and computation overhead [15], [18], [35].
Several studies [11], [19], [25], [28], [39] apply clustering
in FL, grouping client models to enhance learning. However,
all the aforementioned works assume static training data for
clients, limiting their applicability in FCL. In contrast, our work
provides an FL framework that effectively handles dynamic
concept changes in data, which are common for mobile and IoT
devices, addressing the needs of many real-world applications.

CL, also known as lifelong learning or incremental learning,
allows learning continuously over time from a stream of data,
while avoiding catastrophic forgetting. Recent works addressing
CL can be categorized into three families [6]: replay [14],
[27], regularization [1], [2] and parameter isolation [23], [29].
These techniques do not address additional challenges from
FL. In addition to its distributed nature, FL also introduces
privacy restrictions. For example, FL clients shall not share
their concept IDs with the server. In addition, even if the clients
can learn new concepts well without forgetting the previous
ones, the aggregation may sabotage the efforts of the clients
when their learning paths diverge due to non-iid data [36].
Expanding CL to FL, our work adheres to the FL requirement
that the server only accesses the client model weights, and it
handles the interference among the clients in FL.

FCL is a newly introduced research area that combines
FL and CL. FedWeIT [36] breaks down network weights into
global federated parameters and sparse task-specific parameters.
CFeD [20] employs knowledge distillation at both the clients
and the server, where each party independently holds an
unlabeled surrogate dataset to mitigate forgetting. However,
these techniques only work in the task-incremental scenario,
and they require the server to know the task IDs from the clients.
CDA-FedAvg [5] uses concept drift detection and adaptation for
FCL. However, this work only considers the context information
(i.e., the positions of sensors in HAR) as the concept, and it is

not proven to work with concept drift caused by different sets
of classes. TARGET [37] proposes exemplar-free distillation
to transfer knowledge of old tasks to the current task, but it
is under an impractical assumption that all clients train the
same set of classes incrementally over time. Guo et al. [12]
propose a replay buffer to approximate historical objectives on
each client in FCL. However, similar to other works [3], [7],
[26], [33], this work does not address the potential interference
among the clients. Unlike these works, CM tackles catastrophic
forgetting and the interference among the clients under more
stringent assumptions, such as the clients do not share any
additional privacy-sensitive information with the server beyond
the model weights, and the classes can change arbitrarily over
time.

III. CM FRAMEWORK

This section outlines motivating scenarios, formally defines
the problem, and explains the CM workflow and design choices.

A. Motivating Application Scenarios

CM is an effective learning framework for FCL, where each
mobile/IoT device encounters a stream of data with different
concepts over time. As shown in Fig. 1a, for the photos taken
by a mobile user in daily life, the concepts can be different
types of places of interest visited (e.g., museum vs. national
park), or different types of meals (i.e., breakfast, lunch, dinner).
The mobile device may or may not be aware of the concepts of
the data. In FCL, the streaming data are inherently infinite in
nature, and it is infeasible for devices to store all the data. In
addition, for mobile apps, the developer cannot afford to wait
a long time to train an inference model after extensive data
collection, as this delay risks losing users who expect timely
and useful services powered by the model. The system has to
consume the data promptly to train one or multiple models
working well for every concept.

B. Problem Definition

For each client n ∈ {1, 2, ..., N}, the data arrives in a
streaming fashion as a (possible infinite) sequence of learning
experiences Sn = e1n, e

2
n, ..., e

t
n. Without loss of generality,

each experience etn consists a batch of samples Dt
n, where the

i-th sample is a tuple 〈xi, yi〉tn of input and target respectively.
Let C = {C1, C2, ..., Ck} be the set of K concepts hidden
in entire dataset D. Each concept Ck is associated with a
probability distribution Pk(X,Y ), where X denotes the input
space and Y denotes the label space. A batch of client samples
follows one of the distributions Dt

n ∼ Pk(X,Y ), which may
or may not be explicitly known by the client.

The goal is to learn a set of models {wk}Kk=1 such that each
model wk can perform well for its corresponding concept Ck.
The problem can be formulated as the Eq. 1, where L is the
loss function, and Dn is the entire stream of data on client n.

arg min
{wk}K

k=1

K∑
k=1

N∑
n=1

L(wk,Dn) (1)



(a) FCL motivating example (b) CM workflow overview

Fig. 1: FCL using CM

C. CM Workflow

Fig. 1b shows the CM training in an FCL round. To initialize
the learning process, the system administrator at the server side
determines the number of concepts K and designs the model.
In the initialization phase (orange box) of every round, the
server sends the weights of K global concept models to the
clients. In the first round (i.e., Round 0), the K global concept
models are initialized with random weights. In subsequent
rounds, each of the K global concept models contains the
latest updated weights corresponding to each concept.

The number of concepts K is typically a small constant
estimated from the semantics of the mobile/IoT application. In
the CM framework, the system administrator can select its value
using domain knowledge. For example, a HAR model running
on smartphones can use the locations of the user activities as
different concepts, such as home, workplace, park, etc. Image
data, on the other hand, can use the number of categories as the
number of concepts. Let us note that K is a flexible parameter,
allowing for a balance between model accuracy and system
overhead. Our evaluation demonstrates the resilience of CM,
when configured with numbers of concepts that are different
from the artificial ground truth.

In the client operation phase (green box) of every round,
each client n receives the weights of the global concept models
W t−1 = (w1, w2, ..., wK)t−1 from the server. According to
our problem definition, the client encounters one concept per
training round, with the data representing different concept dis-
tributions over time. Each client encounters multiple concepts
across the training rounds. To avoid catastrophic forgetting
caused by training a model with the data of different concepts,
the clients perform concept matching with the local data of
current round to select the best-matching global concept (k∗n)
model as Eq. 2. Next, similar to vanilla FL training of a single
global model, the client fine-tunes the best-matching global
concept model weights wk∗ with the local data, produces a
new local model with weights θtn, and sends it to the server.

k∗n = ClientConceptMatch(W t−1,Dt
n) (2)

In the server operation phase (blue box), the server receives
the client models with weights {θtn}Nn=1. To avoid interference
among client models with different concepts, the server clusters
the client models into a set of clusters of size J , denoted as
Ωt (Eq. 3). Since the union of clients’ data per round may
not cover all concepts, J and K are usually different. Then,
the server produces aggregated cluster models with weights
W ′t = (w′

1, w
′
2, ..., w

′
J)

t (Eq. 4). The server does not know
the concept in an aggregated cluster model or which global
concept model to update. Therefore, it needs to match the
aggregated cluster models Θt with the global concept models
W t−1, and only update the global concept models with data
encountered in this round as Eq. 5.

Ωt = Cluster({θtn}Nn=1) (3)
W ′t = Aggregate(Ωt) (4)

W t = ServerConceptMatch(W ′t,W t−1) (5)

D. Design Discussion

Flexibility. The CM system offers flexibility in selecting
clustering, aggregation, and CM algorithms, making it adaptable
as new algorithms are introduced for different applications and
models. The aggregation algorithms are orthogonal to the CM
framework, and any SOTA algorithm can be employed to
further mitigate the challenges of non-iid data. For CM, we
propose a novel server-side concept matching algorithm, which
can employ different proximity metrics.

Parallel execution. CM’s on-device client training runs in
parallel in the same way as in FL. In addition, other components
of CM are designed to optimize parallel execution. At the
server, clustering can be configured with a number of parallel
jobs to perform clustering in parallel, and parallel aggregation
can be performed for different clusters as well. At the client,
client concept matching can work in parallel (the algorithm



is described in Section IV). Such a parallel execution can
reduce the operation time at the clients, and reduce the battery
consumption on mobile/IoT devices.

Privacy and overhead. Regarding privacy, the CM system
is the same as vanilla FL (i.e., clients send only their model
weights to server). Regarding communication, the clients send
a single model trained with the local data in the same way as
vanilla FL, but the server sends multiple concept models to
the clients. The number of concepts is usually a small constant
under the control of the system admin, and the concept models
designed in CM can be smaller than the single model in vanilla
FL, because each model only learns a single concept.

IV. CONCEPT MATCHING ALGORITHMS

The concept matching algorithms at the client and server
collaboratively and iteratively update global concept models
with information learned from the data of the matching
concept, and achieve up to 100% effectiveness to match each
aggregated model with a concept model of previous round. The
two algorithms are connected through client training, server
clustering and aggregation. The main novelty of this distributed
approach lies in the server concept matching algorithm, which
ensures the model updates in the correct gradient descent
direction.

Algorithm 1 Server Concept Matching Pseudo-code

1: procedure SERVERCONCEPTMATCH(W ′,W )
2: // Executed at server
3: require distRecord of size K as the global record

of distance between each global concept model and the
corresponding previous global concept model

4: for each aggregated cluster model w′
j ∈W ′ do

5: candidate← null
6: candidateDist←∞
7: for each global concept model wk ∈W do
8: tmpDist← Distance(w′

j , wk)
9: if tmpDist <

min(distRecord[k], candidateDist) then
10: candidate← k
11: candidateDist← tmpDist

12: W [candidate]← w′
j

13: distRecord[candidate]← candidateDist

14: return W

Server Concept Matching. After clustering, the clusters of
the client models fine-tuned with the data of different concepts
are unordered, and the number of clusters may not be the
same as the total number of concepts because the clients’ data
union in the current round may not cover all concepts. The
server does not know how to update the global concept models
without the matching between the aggregated cluster models
and the global concept models from the previous round.

To resolve this challenge, we propose a novel distance-based
server concept matching algorithm. This algorithm not only
updates a global concept model with a cluster model close in

distance, but also ensures the update is done in the correct
gradient descent direction. Our algorithm can use different
distance metrics. For a small size neural network such as
LeNet, Manhattan or Euclidean distance can be used for their
low computational complexity. For larger neural networks,
dimension reduction techniques can be incorporated to mitigate
the curse of dimensionality.

The pseudo-code of the server concept matching algorithm
is shown in Alg. 1. The algorithm requires a global record
of the distances between each global concept model and the
corresponding previous global concept model (line 3). For
each aggregated cluster model (line 4), the algorithm tracks
its best-matching candidate (line 5) and its distance from
the best-matching candidate (line 6). Each aggregated cluster
model is compared with each global concept model (line 7) by
computing their distance (line 8). If their distance is smaller
than both the global distance record of the corresponding
concept k and the distance from the previous matching
candidate (line 9), we consider them a better match (line
10) and update the distance between the cluster model and
its matching candidate (line 11). After checking all the global
concept models, the algorithm updates the best-matching global
concept model with the aggregated cluster model (line 12),
and also updates the global distance record with the distance
between the best-matching pair (line 13).

This algorithm is theoretically grounded. Intuitively, in a
gradient descent learning algorithm, as the learning curve
becomes flatter over iterations, the learning slows down.
Therefore, the distance between the current model and the
model of the previous iteration becomes smaller. Theorem 1
formulates this intuition, and Alg. 1 utilizes this theorem. By
tracking the distance record, Alg. 1 updates each concept
model with a matching cluster model only when their distance
becomes smaller than the current distance. The proof of
Theorem 1 demonstrates that Alg. 1 updates the global concept
model with a matching cluster model in the correct gradient
descent direction. This allows the concept models to learn over
time without interference from other concepts.

Assumption 1. Differentiability: The loss function L(w), used
to optimize a neural network, is differentiable with respect to
the model parameters w.

Assumption 2. Lipschitz continuity: The gradient of the loss
function∇L(w) is Lipschitz continuous with a positive constant
L. By Lipschitz continuity definition, for any two points w1 and
w2, the following inequality holds ∥∇L(w1) − ∇L(w2)∥ ≤
L∥w1 − w2∥, where ∥.∥ denotes the norm.

Theorem 1. Given a loss function L(w) under assumptions 1
and 2 and w is updated with gradient descent wt+1 = wt −
η∇L(wt), where t is the iteration number, η is the learning rate,
and ∇L(wt) is the gradient of the loss function with respect to
wt. The following inequality holds ∥wt+1−wt∥ < ∥wt−wt−1∥.

Proof. From the inequality in lemma 1, ∥∇L(wt)∥ <
∥∇L(wt−1)∥, using the gradient descent update wt+1 =



wt − η∇L(wt), we write ∥wt+1 − wt∥ < ∥wt − wt−1∥. This
completes the proof.

Lemma 1. Given a loss function L(w) under assumptions 1
and 2 and w is updated with gradient descent wt+1 = wt −
η∇L(wt), where t is the iteration number, η is the learning rate,
and ∇L(wt) is the gradient of the loss function with respect to
wt. The following inequality holds ∥∇L(wt+1)∥ < ∥∇L(wt)∥.

Proof. To prove ∥∇L(wt+1)∥ < ∥∇L(wt)∥, we can use the
assumption 2. Let L be the Lipschitz constant. Then, we have
∥∇L(wt+1)−∇L(wt)∥ ≤ L∥wt+1 − wt∥.

Using the reverse triangle inequality, we can write
∥∇L(wt+1)∥ − ∥∇L(wt)∥ ≤ ∥∇L(wt+1) − ∇L(wt)∥. Sub-
stituting the previous inequality, we get ∥∇L(wt+1)∥ −
∥∇L(wt)∥ ≤ L∥wt+1 − wt∥.

Using the gradient descent update wt+1 = wt − η∇L(wt),
we can write ∥∇L(wt+1)∥−∥∇L(wt)∥ ≤ Lη∥∇L(wt)∥. Rear-
ranging the terms, we get ∥∇L(wt+1)∥ ≤ (1−Lη)∥∇L(wt)∥.

Since L and η are both positive, we have 1 − Lη < 1.
Therefore, we conclude that ∥∇L(wt+1)∥ < ∥∇L(wt)∥. This
completes the proof.

Without requiring strong assumptions, such as convexity,
Assumptions 1 and 2 can be applied to most loss functions for
neural networks. In the theorem, gradient descent is also the
prevalent algorithm to update neural networks. Therefore, this
theorem can be applied to the general optimization process of
most neural networks.

Client Concept Matching. The clients receive the global
concept models from the server every round, and each model
shall learn the data distribution of each concept. The clients
need to select one of the global concept models, and fine-tune
it with the data of the current round. Since the clients may or
may not be aware of the concepts, they shall perform client
concept matching to match the concept of the current data with
a global concept model.

At round t, a client n tests the global concept models of the
previous round {wt−1

k }K1 on a representative subset dtn of its
current local data Dt

n (dtn ⊆ Dt
n), and selects the k∗-th concept

model with the smallest loss for further fine-tuning as Eq. 6.
Since the data do not accumulate over rounds in FCL, testing
the models is an effective method to select the best-matching
global concept model without significant overhead.

k∗ = argmin
k

L(wt−1
k , dtn) (6)

V. EVALUATION

The evaluation has six main goals: (i) investigate CM
effectiveness; (ii) compare CM with SOTA solutions; (iii)
quantify clustering performance; (iv) measure CM algorithms’
effectiveness to match concepts of data to models; (v) un-
derstand CM resiliency when configured with numbers of
concepts that are different from ground truth; (vi) investigate
CM scalabilitiy in terms of number of clients and model size.

A. Experimental Setup

Datasets and models. We evaluate CM with two models
over two “super” datasets, each consisting of multiple datasets
(i.e., one model per “super” dataset). Similar to FedWeIT [36],
the “Super” Dataset I (292250 samples) has six frequently used
image datasets: SVHN, FaceScrub, MNIST, Fashion-MNIST,
Not-MNIST, and TrafficSigns. To simulate different concepts,

“Super” Dataset I is split into five concepts. We use the same
LeNet variant as FedWeIT [36] to train and test this “super”
dataset for fair comparison. The “Super” Dataset II (160000
samples) consists of Cifar100 and TinyImagenet, and it is more
challenging in terms of image size. We split it into six concepts.
It is evaluated with an EfficientNet [32] variant, which is a
resource-efficient neural network for these larger image datasets.
The two models use the Adam optimizer with learning rate of
0.001, weight initializer of HeUniform, and categorical cross-
entropy loss. As is common practice for efficiency in CL, the
models follow the single-head evaluation setup [21], [22], [30],
where it has one output head to classify all labels.

Data, algorithms and hyper-parameter settings. Non-
overlapping chunks from the concept datasets are further
distributed randomly to the clients. At every round, the local
data across clients are non-IID. Each client encounters one
of the local concept datasets randomly, and uses a cyclic
sliding window of 320 samples in the encountered concept
dataset. Unless otherwise specified, CM is evaluated with
20 clients (all clients participate in each training round),
kmean clustering algorithm, FedAvg aggregation algorithm, and
Manhattan distance for the server concept matching algorithm.
We test CM with different hyper-parameters, and only present
the results with the hyper-parameters that lead to the best results.
The system runs 100 rounds of training for each experiment.

Comparison solutions. We compare CM with vanilla FCL,
vanilla FL, and three SOTA FCL solutions. Served as an
ablation study, vanilla FCL follows the same dynamic data
scenario above. Vanilla FL represents the static FL scenario,
which is less challenging than FCL. In our case, the “super”
datasets are distributed to the clients without being split into
concepts. Every round, the clients train with the entire local
dataset containing all concepts. For the three state-of-the-
art FCL solutions, we select FedWeIT, TARGET, and EWC.
FedWeIT and TARGET represent parameter isolation and
replay approaches for FCL, respectively. EWC is a commonly
employed approach in CL, and we apply it for the clients’
training. For all comparisons, we test the models with the test
sets for model accuracy.

B. Results

Effectiveness of CM via ablation. Fig. 2 and 3 demonstrate
that CM effectively achieves better model accuracy than vanilla
FCL and vanilla FL. Compared with vanilla FCL, the concept
model accuracy improvement is up to 26.4%. The superior
performance of CM is more apparent for difficult concepts
(RGB images in Concepts 2 and 3 of Fig. 2 and all Concepts
of Fig. 3) than for easy concepts (BW images in Concept 4 of
Fig. 2). Specifically, the most significant difference is observed



0 20 40 60 80 100

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y
Concept 1

CM
Vanilla FL

Vanilla FCL
0 20 40 60 80 1000

0.2

0.4

0.6

0.8

Round

Concept 2

CM
Vanilla FL

Vanilla FCL
0 20 40 60 80 1000

0.2

0.4

0.6

0.8

Round

Concept 3

CM
Vanilla FL

Vanilla FCL
0 20 40 60 80 1000.5

0.6

0.7

0.8

0.9

Round

Concept 4

CM
Vanilla FL

Vanilla FCL
0 20 40 60 80 100

0.4

0.6

0.8

Round

Concept 5

CM
Vanilla FL

Vanilla FCL

Fig. 2: CM Effectiveness with “Super” Dataset I: test set accuracy over training rounds

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 1

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

Round

Concept 2

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

Round

Concept 3

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 1000

0.1

0.2

Round

Concept 4

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 1000

0.1

0.2

Round

Concept 5

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 1000

0.1

Round

Concept 6

CM
Vanilla FL

Vanilla FCL

Fig. 3: CM Effectiveness with “Super” Dataset II: test set accuracy over training rounds

in the concept 3 of Fig. 3, despite the observed fluctuations
caused by the challenging nature of the dataset. However,
CM exhibits a smoother learning progress than vanilla FCL
in Fig. 2 when the concepts are more distinct. The superior
model accuracy and smooth learning progress suggest that
CM effectively mitigates catastrophic forgetting and potential
interference among clients. This is further supported by the
forgetting rate comparison presented in this section. For vanilla
FL, the learning progress is smooth due to the unchanging
concepts. Surprisingly, CM also outperforms vanilla FL by
up to 13.5%. This is because CM employs different concept
models for each concept, which is better than a single global
model even under the static data distribution. Unless otherwise
specified, the rest of the results in this section are based on
the “Super” Dataset I.

Model accuracy comparison with FCL SOTA solutions.
Table I shows the model accuracy comparison. CM outperforms
the FCL SOTA solutions and achieves 90.3(±0.07)% accuracy
(weighted average over the number of samples per concept).
While EWC and TARGET perform reasonably well (86.7%
and 87.0% respectively), FedWeIT does not perform well in
this larger scale experiment than its original evaluation (i.e.,
5 clients per round, 5 classes to train per client, and non-
overlapping classes over clients). Since FedWeIT applies a
completely different design when learning information across
tasks or concepts, its inferior performance may be partially
due to the sparse parameters employed, which fail to separate
different concepts and fully capture the complex information
(i.e. up to 50 classes) in the concepts.

Performance of clustering algorithms. Table II shows the
metrics for the 5 clustering algorithms. A perfect clustering
can group all client models with the same concept correctly.
Adjusted Rand Index (ARI) is a commonly used metric
for clustering algorithms: 1.0 stands for perfect matching.
Table II also shows the minimum ARI, as the worst clustering

TABLE I: Model accuracy (%) comparison with SOTA

Concept 1 2 3 4 5 avg

FedWeIT 61.0 62.0 66.8 72.6 70.7 68.3(± 0.27)
EWC 82.3 74.5 72.3 92.1 85.9 86.7(± 0.11)

TARGET 82.2 72.4 73.0 92.0 87.3 87.0(± 0.09)
CM 85.4 85.2 86.5 93.3 92.4 90.3(± 0.07)

TABLE II: Clustering performance with 100 rounds training
for “Super” Dataset I

Kmean Agglomerative BIRCH DBSCAN OPTICS

Rounds with
perfect clustering 91 93 96 66 50

ARI (average) 0.988 0.989 0.994 0.972 0.888
ARI (minimum) 0.713 0.704 0.771 0.700 0.478
Model accuracy

% (average) 90.3 90.1 90.4 88.5 88.4

performance over 100 rounds. The results show that CM with
BIRCH performs best, as it achieves up to 96 rounds of perfect
clustering out of 100 and 0.994 average ARI. Furthermore, all
algorithms perform reasonably well and achieve over 88.4%
average model accuracy.

TABLE III: Matching effectiveness (%) with 100 rounds

Kmean Agglomerative BIRCH DBSCAN OPTICS

Manhattan 100 100 100 97.4 93.4
Euclidean 100 99.8 100 90.4 94.9
Chebyshev 98.6 99.9 100 97.7 93.6

CM algorithms effectiveness to match concepts of data to
models. The matching effectiveness is defined as the percentage
of correct concept matching over the entire training process (i.e.,
the collaborative client/server concept matching from the data
to the models). If a client’s matching global concept model with
its data is used to update the same global concept model after
the server concept matching, we consider it a correct concept
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Fig. 4: Model accuracy over communication rounds with different number of concepts configured for “Super” Dataset I

match. Table III shows the concept matching effectiveness with
a variety of clustering algorithms and distance metrics. The
results demonstrate that CM achieves up to 100% concept
matching effectiveness. Table II and Table III demonstrate
that CM provides the flexibility to use different clustering
algorithms and distance metrics, as it performs well with all
of them. As neural networks grow in size and complexity,
the curse of dimensionality may manifest itself and requires
advanced clustering algorithms and distance metrics.

Resilience to number of concepts configured differently
from ground truth. CM requires an estimated number of
concepts configured in the initialization phrase. To understand
its resiliency in case the system administrator fails to estimate
correctly, we vary the number of concepts from 3 to 7, with 5
being the ground truth. As shown in Fig. 4, when the configured
number of concepts is higher (6 and 7) than the ground truth, 5
concept models (out of 6 or 7) learn the corresponding concepts
smoothly. The extra concept models do not effect the smooth
learning progress, and the average model accuracy achieves
90.5% and 90.0% respectively. When the number of concepts is
smaller (4 and 3) than the ground truth, the system treats similar
concepts (e.g., two FaceScrub concepts) as one. Although the
model accuracy on the affected concepts (2, 3, and 5) exhibit
minor fluctuations, the smooth learning progress for the other
concepts (1 and 4) is not affected. Nevertheless, the average
model accuracy achieves 89.5% and 88.9% respectively, and
beats the SOTA solutions (87.0%). These results demonstrate
CM has good resilience in terms of the estimated number of
concepts configured. Moreover, the results suggest it is better
if system administrators over-estimate the number of concepts,
as performance remains strong in such instances.

TABLE IV: Performance vs.
number of clients

Matching
effectiveness

%

Model
accuracy

%

20 100 90.3
40 99.7 95.3
80 100 95.4

TABLE V: Performance vs.
model size

Matching
effectiveness

%

Model
accuracy

%

-20% 100 90.0
original 100 90.3
+20% 100 90.4

Scalability. Table IV shows CM performs well as the number
of clients increases. With 80 clients, both the clustering and the
CM algorithms perform perfectly. This is because the clustering
algorithms generally perform better with larger number of

samples. CM enjoys this benefit and achieves better model
performance (up to 95.4%) with a larger number of clients. We
further test CM with 20% increase or decrease in the size of
CNN layer channels and dense layer neurons. A larger model
can further stress-test CM, and a smaller model can reduce
the communication overhead for CM. To avoid overfitting the
model under the given dataset, we could not further downsize
the model or split the data into more clients. Table V show the
performance metrics of CM, and there is a small improvement
(90.4%) in model accuracy when using a larger model. These
results demonstrate that CM scales well and both the clustering
and the concept matching achieve near flawless performance
as the number of clients or the model size increase.

VI. CONCLUSION

Concept Matching (CM) is a novel FCL framework to allevi-
ate catastrophic forgetting and interference among mobile/IoT
devices by training different models for different concepts
concealed in the data. To avoid interference among devices,
CM uses a clustering algorithm to group the client models
with the same concept. To mitigate catastrophic forgetting, the
server and the devices run concept matching algorithms that
collaboratively train and update each concept model with the
matching data of the same concept. Also, the server concept
matching algorithm ensures the updating of the concept model
in the correct gradient descent direction, and we prove that
the distance between the current model and the model from
the previous round gradually reduces through the iterations
of gradient descent. CM achieves higher model accuracy than
SOTA systems, and works regardless of whether the devices
are aware of the concepts or not. Our extensive evaluation
demonstrates that CM performs well with a variety of clustering
algorithms and distance metrics, and scales with the number
of devices and the model size.
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