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Abstract—Federated Learning (FL) enables privacy preserving
training across devices, including PCs, smartphones, and IoT
devices. However, when heterogeneous devices collaborate to train
a model, devices with the lowest resources throttle the model size
and complexity, as FL communicates and trains the same global
model across all devices. To address this limitation and train a
large model while utilizing all computational power in a system
with heterogeneous devices, we propose Federated Knowledge
Expansion (FedKE). In FedKE, devices with similar resources
form FL groups, which gradually expand a small model with
additional computational layers or blocks, progressing toward a
large model. Each group trains a model suitable for its resources
and then passes the model to a higher-resource group for further
expansion and training. FedKE uses a novel training mechanism
that allows these groups to train in parallel. Inspired by parallel
pipelining in distributed computing, this parallelism leverages the
iterative aggregation of FL and allows higher-resource groups
to start training as soon as the smaller model of the previous
group is aggregated, rather than waiting for it to fully converge.
Furthermore, each higher-resource group performs Adaptive
Sparse Updating on the weights of the smaller model from the
previous group to reduce computation overhead. The large model
produced with FedKE theoretically approximates those trained
under the ideal condition where all devices have the full capabil-
ities to train this large model. The FedKE prototype is evaluated
with two datasets and four model expansion configurations across
three groups of real heterogeneous devices. The results show
that it outperforms state-of-the-art solutions in terms of model
accuracy, reduces the amount of model weights transferred and
the total operation time compared to vanilla FL, and achieves
good fault-tolerance and scalability.

Index Terms—Federated Learning, Heterogeneous Computing

I. INTRODUCTION

Federated Learning (FL) [20] naturally aligns with appli-
cations on personal devices, such as PCs, smartphones, and
IoT devices, due to its privacy-preserving capabilities. This
training scenario is referred to as cross-device FL [15]. For
example, in a photo management system, smartphones, PCs,
and IoT cameras from various users collaborate to improve a
global model for automatic image classification and tagging.
However, personal devices are equipped with varying levels
of computing resources, all of which are limited. Because
conventional FL aims to train a universal global model, the
devices with the lowest computing resources become the
bottleneck for the size of the model that can be trained in
cross-device FL. Therefore, training large FL models over
collections of heterogeneous devices becomes challenging,

even though some devices in the system may be capable
of handling it. To balance FL performance with resource
heterogeneity, it is imperative to have an FL mechanism for
training large models while utilizing all the devices with
heterogeneous resources.

While large models have demonstrated superior perfor-
mance across various tasks such as Natural Language Process-
ing and Computer Vision, some devices may only be capable
of training smaller models. There exists, however, a significant
performance gap between small models and large models. For
instance, on ImageNet, ResNet50 with 192 million parameters
achieves 84.4% accuracy [2], whereas ResNet18 with 11.7 mil-
lion parameters only achieves 72.05% accuracy [18]. In cross-
device FL, a considerable number of devices may have the
capability to train ResNet18 but lack the resources necessary
to practically train the larger model - ResNet50. It would be
advantageous if the training process in cross-device FL could
also leverage all devices with different levels of computing
resources to expand the model. During inference, each device
utilizes the fully expanded model, as inference demands fewer
resources compared to training. Recent works [1], [7], [9]
in heterogeneous FL adopt the concept of partial training,
leveraging devices with heterogeneous computing resources
to train corresponding sub-models derived from a large global
model, which are then aggregated into the final global model.
However, these approaches only decompose the large global
model into sub-models with fewer hidden channels, making
them unsuitable for large models with deeper layers or multi-
ple input heads. Additionally, the aggregation of heterogeneous
models faces suboptimal convergence due to uneven training
of weights across the final global model.

The goal of this study is to design an efficient cross-device
FL framework to enable devices to train the largest possible
model for their resources. This framework shall meet the
following requirements: R1) utilize all available devices in the
system regardless of their computing resources; R2) train a
large model with diverse architectures, such as deeper layers
and multiple input heads, which exceed the capabilities of
some devices; R3) achieve high inference performance for the
amount of resources available at each type of device; R4) be
efficient in terms of communication, computation overhead,
and overall training time. All these requirements shall be met
under the FL assumption that the aggregation server does not
have access to the raw data. To the best of our knowledge,



there is no existing work satisfying all the requirements.
This paper proposes Federated Knowledge Expansion

(FedKE), satisfying all the aforementioned requirements.
First, we treat the devices with the same level of computing
resources as an FL group. Thus, the FedKE system consists
of multiple FL groups with different levels of computing
resources. Second, each group of devices (from low resources
to high resources) is assigned a model that is gradually
expanded toward a larger model for the next group. Third, the
devices within each group perform FL training, and the server
expands the aggregated model for the next group to fine-tune.
In this way, the models are iteratively trained and expanded
toward the targeted largest model for inference. Furthermore,
we introduce a novel Parallel Training Mechanism for
FedKE, enabling simultaneous training across different groups
and reducing the overall training time. This parallelism takes
advantage of the iterative aggregation in FL. It enables higher-
resource groups to begin training the expanded model as soon
as the smaller model from the previous group is aggregated,
without waiting for full convergence. Additionally, because
the smaller model has been fine-tuned by the previous group,
to improve training efficiency, we propose Adaptive Sparse
Updating (ASU). FedKE sparsely updates the smaller model
within the newly expanded model adaptively over the local
training epochs to reduce the computation overhead.

To showcase the effectiveness of FedKE, we prove the large
model produced with FedKE theoretically approximates those
trained under the ideal condition that all devices are fully
capable of handling the large model. We experiment with four
model expansion configurations and two datasets, varying in
architecture and complexity. The results demonstrates FedKE
improves model accuracy by up to 20.4% compared with state-
of-the-art (SOTA) solutions, and achieves good fault tolerance
and scalability. We also benchmark FedKE prototype on three
different groups of heterogeneous devices, including Nvidia
Jetson nano, Raspberry Pi 5, and Raspberry Pi 3B+. The
on-device results show FedKE reduces the amount of model
weights transferred up to 23.43%, reduces the total operation
time up to 84.01% compared with vanilla FL.

II. RELATED WORK

The heterogeneous nature of FL manifests in data distri-
butions, network environments, and hardware among partici-
pating devices. Among these types of heterogeneity, the most
studied is data heterogeneity, also known as non independent
and identically distributed (non-IID) data. Several works [8],
[12]–[14], [25], [26], [28] have been proposed to mitigate
the non-IID issue. In FedProx [25], a regularization term
is introduced to reduce gradient distortion across devices.
Sarkar et al. [26] propose a cross-entropy loss function that
downweights easy-to-classify examples and emphasizes train-
ing on harder-to-classify ones. Verma et al. [28] propose
estimating the global objective function by averaging different
local objective functions within a shared feature region, while
maintaining distinct objective functions in other regions of
the feature space based on local users’ data. Favor [29]

is an experience-driven control framework that intelligently
selects client devices for each round of FL, aiming to coun-
terbalance the bias introduced by non-IID data and accelerate
convergence. However, these works do not address device
heterogeneity, whereas FedKE specifically tackles this issue.

For device heterogeneity in FL, Wang et al. [30] propose
selecting the optimal combination of sampled nodes and data
offloading configurations to maximize FL training accuracy
while adhering to realistic constraints related to network
topology and device capabilities. Xu et al. [32] assess the
importance of heterogeneous devices and proposed algorithms
that select only the fast devices, which may lead to de-
viations in the convergence direction of the global model.
In Hermes [17], each device identifies a small subnetwork
through structured pruning, allowing only the updates from
these subnetworks to be communicated between the server
and the devices. Instead of averaging all parameters from
all devices, the server averages only the overlapping parame-
ters across each subnetwork. Similarly, Yu and Li [33] use
different sub-models for heterogeneous devices in FL, and
consider computation, computation, and power budget for
the sub-models. FLAME [4] is a user-centered FL approach
designed to counter statistical and system heterogeneity in
mobile device environments, featuring user-aligned training,
accuracy- and efficiency-aware device selection, and model
personalization. EDDNN [10] horizontally partitions both the
data and the DL model, allowing inference to be executed
across multiple devices. In SplitFed [27], the DL model is
split between clients and the server, and trained in an FL
manner. However, these works utilize a single global model
among devices and have not been demonstrated to be effective
in scenarios where only high-resource devices can handle the
global model.

Adapted from partial training, some approaches vary the
width of hidden channels across devices with different com-
puting power. As an early attempt, HectroFL [7] incorporates
static batch normalization and a scaling module to enable the
aggregation of heterogeneous small sub-models into a larger
global model. Split-Mix [9] enables in-situ customization of
model sizes and improves robustness for heterogeneous par-
ticipants. FedRolex [1] adopts a rolling sub-model extraction
strategy that ensures all components of the global server
model are evenly trained, thereby alleviating client drift caused
by mismatches between client models and the server model
architecture. TAKFL [21] handles knowledge transfer from
each device prototype’s ensemble as a distinct task, inde-
pendently distilling them to retain unique contributions and
avoid dilution. FedX [16] introduces a novel adaptive model
decomposition and quantization FL system for mobile/IoT
devices. However, unlike FedKE, these methods are ineffective
for Deep Learning (DL) models with diverse architectures,
especially when training larger models with deeper layers or
multiple input heads. In addition, these works are evaluated
only in simulations using relatively simple datasets (e.g.,
no more complex than CIFAR-100), which constrains their
applicability to real-world scenarios



Beyond FL, many generic distributed DL systems [5], [6],
[19], [22], [31] utilize the parallel nature of DL to train large
models. Most of these works focus on high-end GPU or CPU
clusters rather than consumer electronics, such as mobile and
IoT devices, and these works do not address privacy or device
heterogeneity. For example, Ryabinin and Gusev [24] use
decentralized mixture-of-experts and distributed hash tables
toward crowdsourced training of Large Neural Networks.
However, the experts have the same architecture, so the
method does not work for heterogeneous devices. In addition,
compared with a large global model, the inference has to
be a distributed process with higher communication cost.
Yuan et al [34] propose a scheduling algorithm that allocates
different computational tasklets, but device heterogeneity is
not considered. FedKE adapts some concepts from generic
distributed DL systems, is specifically designed for consumer
electronics, utilizes all the computational resources in the
system, and targets training a large model collaboratively.

III. FEDKE FRAMEWORK

A. Problem Definition

FedKE is designed to train the largest feasible model that
is suitable for inference across all devices. This model can
be trained by at least the group of high-resource devices.
Despite the heterogeneous resource constraints across devices,
FedKE leverages the contributions of all devices in the system.
Formally, let G = {G1, G2, . . . , GM} be the set of M groups
of devices in the order of their resources. Each group Gm has
Nm devices with resources Cm. Due to limited resources,
the device dmn in group Gm can only train networks wm

with size(wm) ≤ Cm. Each device dmn keeps their raw data
Dm

n local to ensure privacy and avoid data transfer costs. We
aim to train a neural network F with parameters Θ using
all computing power in the system, but the training of F can
only be handled by the group GM with highest resources (i.e.,
F /∈ wm where m < M and F ∈ wM ). The problem can be
formulated as minimizing the overall training loss, where L is
the loss function:

argmin
Θ

M∑
m=1

N∑
n=1

L(F (Θ), Dm
n )

The weights Θ ensures that F generalizes well across all local
datasets Dm

n .

B. FedKE Framework

Figure 1 illustrates the FedKE training framework. To
initialize the process, the system administrator groups the
devices in the system in the order of their computing resources,
such as computation, memory, and storage capacity. Each
group of devices is assigned to train a model that this group
can handle with their resources. The models assigned to
these groups are statically defined by the system administrator
based on whether a test training process can be completed
within a specified time frame. The model for a high-resource
group is expanded from a smaller model for a low-resource
group by adding computational layers or blocks. Section III-C

Fig. 1: FedKE training framework

describes more details. The intra-group training is carried out
in conventional FL fashion. FedKE is a process in which
the models are gradually expanded from groups with low
resources to groups with high resources.

The FedKE training starts with G1. The server firstly sends
the small base model to the devices in G1. These devices
perform training with their local data to update all the model
weights, and send back the trained models to the server. After
receiving the models from the devices, the server aggregates
them, expands the aggregated model to the pre-defined ar-
chitecture with partial untrained weights initialized randomly,
and sends the expanded model to G2. After the next group
of devices receives the model, because some weights have
already been trained by the previous group, we apply a novel
Adaptive Sparse Updating (ASU) with the local data of the
devices to reduce the computation overhead. ASU is described
in section III-D. Then, the process repeats iteratively until the
model is fully expanded and produced by GM : devices send
the models to the server; the server aggregates the models and
expands the aggregated model for the next group; and the next
group of devices performs ASU. The fully expanded model is
sent to all groups of devices for inference.

Alg. 1 shows the pseudo-code of the FedKE framework.
Devices with similar resources form FL groups (line 2). For
each group in the order of resource amount (line 3), FedKE
executes as a multi-round, iterative FL cycle until convergence
(lines 4-12). For each devices in a group (line 6), it performs
conventional local updating if it is in the first group with lowest
resources (lines 7-8), and performs ASU otherwise (line 9-10).
After updating the local model on-device, the server aggregates
the models received from the devices (line 11) and expands
the aggregated model for the next group (line 12).

C. Knowledge Expansion

Neural networks inherently feature a modular structure that
supports extensibility and reuse. A representative example
is the ResNet architecture, where models are composed of
residual blocks—each consisting of convolutional layers and
shortcut connections. Variants like ResNet-18 and ResNet-
50 differ mainly in the number of such blocks, providing



Algorithm 1 FedKE Framework Pseudo-code

1: procedure SERVEREXECUTE:
2: require grouping devices into M groups in the order

of their resources, and defining the model architecture
w1, w2, ..., wM for each group based on their computa-
tional capacity (wm+1 is expanded from wm)

3: for group = 1 to M do
4: while wm not converged do
5: // Update On-device and Returned to Server
6: for each devices n do // In Parallel
7: if group == 1 then
8: θn ← n.CLIENTUPDATE(wm)
9: else

10: θn←n.SPARSEUPDATE(wm, wm−1)

11: wm ← Aggregate({θmn }Nn=1)

12: wm+1 ← Expand(wm)

scalable depth while maintaining a consistent design. Mean-
while, transfer learning has proven effective by fine-tuning
pre-trained models on new datasets, significantly improving
efficiency and performance. It benefits from the modularity
of neural networks by reusing earlier layers that capture
generalizable features. Knowledge Expansion (KE) builds on
these principles by integrating a smaller, pre-trained model into
a larger one, allowing higher-resource devices to expand their
capabilities without retraining from scratch. This approach not
only transfers knowledge but also extends the model struc-
turally, enabling efficient training of more powerful models.

In FedKE, a small base model is defined for low-resource
devices. For devices with greater capacity, extended models
are constructed by adding layers or blocks. When hidden state
dimensions do not align, projection layers such as linear or
1×1 convolutional layers are inserted to match dimensions be-
tween components. FedKE leverages device heterogeneity by
adapting model complexity to local capabilities. It reuses pre-
trained weights with structured expansion, offering a practical
path to build larger and more accurate models collaboratively
across a federated network without excluding weaker devices.

KE Theoretical Analysis. In the following, we first analyze
KE as a two-step model training and expansion process and
prove that the parameter difference between a large model
trained with KE and one trained conventionally under the ideal
conditions (i.e., all devices have full capabilities to train the
large model) is bounded and approaches zero. Secondly, we
use induction to prove that KE, as an n-step model training
and expansion process, can also train the large model that
approximates the one trained conventionally.

Theorem 1 (two-step KE bound over D1, D2). Let L(w,D)
be a twice-differentiable loss function, where D = D1 ∪ D2

and D1 ∩D2 = ∅. Given that

• wideal
l minimizes L(w,D) over the full dataset D.

• ws is trained on D1 and wtwo-step
l is obtained by expanding

the model from ws and fine-tuning on D2.

Then, the parameter difference ∥wtwo-step
l −wideal

l ∥ is bounded
as ∥wtwo-step

l − wideal
l ∥ ≤ ∥H−1∥ · ∥∇L(wtwo-step

l , D1)∥, where
H = ∇2L(wideal

l , D) is the Hessian of the loss function at
wideal

l .

Proof. Using the Taylor expansion for the gradient at wtwo-step
l

around wideal
l , we have ∇L(wtwo-step

l , D) ≈ ∇L(wideal
l , D) +

H(wtwo-step
l −wideal

l ), where H = ∇2L(wideal
l , D) is the Hessian

of the loss function at wideal
l .

From the ideal training, wideal
l minimizes L(w,D), so

∇L(wideal
l , D) = 0. Since ∇L(wideal

l , D) = 0, the expansion
simplifies to ∇L(wtwo-step

l , D) ≈ H(wtwo-step
l − wideal

l ).

Rewriting the above equation, we get wtwo-step
l − wideal

l ≈
H−1∇L(wtwo-step

l , D). Taking the norm, we have ∥wtwo-step
l −

wideal
l ∥ ≤ ∥H−1∥ · ∥∇L(wtwo-step

l , D)∥. The total gradi-
ent at wtwo-step

l is ∇L(wtwo-step
l , D) = ∇L(wtwo-step

l , D1) +
∇L(wtwo-step

l , D2). From the two-step training, wtwo-step
l

minimizes L(w,D2), so ∇L(wtwo-step
l , D2) = 0. Thus,

∇L(wtwo-step
l , D) = ∇L(wtwo-step

l , D1). Combining the above
results, the parameter difference is bounded as ∥wtwo-step

l −
wideal

l ∥ ≤ ∥H−1∥ · ∥∇L(wtwo-step
l , D1)∥.

If D1 is a representative subset of D, ∇L(wtwo-step
l , D1) is

close to zero. Because H = ∇2L(wideal
l , D) is the Hessian of

the loss function at wideal
l , it does not depends on wtwo-step

l .
Given the equality above, ∥wtwo-step

l − wideal
l ∥ ≤ ∥H−1∥ ·

∥∇L(wtwo-step
l , D1)∥ is also close to zero. Next, we generalize

the two-step expansion to a general case of n-step expansion,
and prove it through induction.

Theorem 2 (general KE bound over D1, . . . , Dn). Let
L(w,D) be twice differentiable, with D =

⊔n
k=1 Dk (disjoint

union). Let wideal minimize L(w,D) over the full dataset, and
let H = ∇2L(wideal, D).

Consider the KE training schedule that finishes by fine-
tuning on the last sub-dataset Dn. Then, ∥w(n) − wideal∥ ≤
∥H−1∥ ·

∥∥∥∑n
1 ∇L(w(n), D1)

∥∥∥.

Proof. Define w(k) as the parameter obtained after finishing
stage k (i.e., the last stage is optimized with sub-dataset Dk).

For k = 2 (the two-step case), according to Theorem 1, the
bound is ∥w(2)−wideal∥ ≤ ∥H−1∥ · |∇L(w(2), D1)∥. Because
∇L(w(1), D1) = 0, ∥H−1∥ · ∥∇L(w(2), D1)∥ = ∥H−1∥ ·
∥0+∇L(w(2), D1)∥ = ∥H−1∥ · ∥

∑2
1∇L(w(n), D1)∥, which

confirms Theorem 2 holds.
We assume for some k ≥ 2 that ∥w(k)−wideal∥ ≤ ∥H−1∥ ·
∥
∑k

1 ∇L(w(n), D1)∥.
Advancing one stage and finishing on Dk+1, we have

∥w(k+1) − wideal∥
≤ ∥w(k+1) − wideal∥
= ∥w(k+1) − w(k) + w(k) − wideal∥
≤ ∥w(k+1) − w(k)∥+ ∥w(k) − wideal∥

≤ ∥w(k+1) − w(k)∥+ ∥H−1∥ ·
∥∥∥ k∑

1

∇L(w(n), D1)
∥∥∥



= ∇L(w(k+1), Dk+1) + ∥H−1∥ ·
∥∥∥ k∑

1

∇L(w(n), D1)
∥∥∥

≤ ∇L(w(k+1), D1) + ∥H−1∥ ·
∥∥∥ k∑

1

∇L(w(n), D1)
∥∥∥

≤ ∥H−1∥ · ∇L(w(k+1), D1) + ∥H−1∥ ·
∥∥∥ k∑

1

∇L(w(n), D1)
∥∥∥

= ∥H−1∥ ·
∥∥∥ k+1∑

1

∇L(w(n), D1)
∥∥∥

This is exactly the statement with k+1. Hence, by induction,
Theorem 2 holds for all n.

Similar as in Theorem 1, ∥w(n) − wideal∥ ≤ ∥H−1∥ ·
∥
∑n

1 ∇L(w(n), D1)∥ is close to zero. This phenomenon is
further supported by our experimental results. The accuracy
difference between FedKE and vanilla FL (under the assump-
tion that all devices train the expanded model) ranges from
1.8% higher to 1.0% lower.

D. Adaptive Sparse Updating (ASU)

When updating a model that has been expanded from a
previous device group, it is inefficient to fine-tune all of the
model’s weights, especially given that the smaller base model
has already captured useful representations from previous
group’s local data. To improve efficiency without sacrificing
performance, we propose Adaptive Sparse Update (ASU),
which updates only a subset of weights—specifically, those
with relatively low magnitudes. The rationale is that low-
magnitude weights have not yet learned enough from the data
and thus require further optimization [11], [35]. ASU begins
with a full model update and then progressively reduces the
proportion of weights updated in each local training epoch.
This reduction is adaptive and controlled by a model sparsity
threshold that balances the computational capabilities of the
device with the need to maintain high model accuracy. High-
magnitude weights are increasingly excluded from updates,
under the assumption that they have already learned signif-
icant patterns, and thus do not require further fine-tuning.
This approach also reduces redundancy in computation as
training progresses and model convergence slows down. By
prioritizing updates on the less-converged, lower-magnitude
weights, ASU makes the training process more resource-
efficient while preserving model quality. These design choices
contribute directly to the overall effectiveness and scalability
of the FedKE framework.

Alg. 2 shows the pseudo-code of ASU. It linearly decreases
the percentile used as sparsity threshold of the model weights
(lines 3-7), and does not update the weights of the previous
smaller model which are high in magnitude (lines 8-17). We
determine the sparsity threshold by evaluating the trade-off
between training efficiency and model accuracy. Empirically,
we observe the threshold to be as low as 50% to maintain the
model accuracy, as discussed in Section IV-F.

Algorithm 2 Adaptive Sparse Updating Pseudo-code

1: procedure SPARSEUPDATE:(wm, wm−1)
2: // Executed at Devices
3: require step size hyperparameter η, local dataset of

current round D, model sparsity p%, number of epochs E
4: unit← (100− p)/E
5: xn ← D divided into minibatches
6: for epoch = 1 to E do
7: threshold ← (100 − unit ∗ epoch) percentile in

wm−1

8: mask ← wm

9: for each element e ∈ mask do
10: if e > threshold and e ∈ wm−1 then
11: e← 0
12: else
13: e← 1
14: for each batch b ∈ xn do
15: θn ← wm − η∇L(wm, b)⊙mask

16: // Results Returned to Server
17: return θn

Alg. 3 shows the pseudo-code of the conventional client
update which updates the model with the gradients calculated
through batches of data (lines 3-8). As described in Alg. 1, the
lowest-resource group (the first group) performs conventional
client update, because the devices in it train the small base
model from scratch. The other groups perform ASU, since
their model is build upon a pre-trained smaller model from
previous group.

Algorithm 3 Conventional Client Update Pseudo-code

1: procedure CLIENTUPDATE:(wm)
2: // Executed at Clients
3: require step size hyperparameter η, local dataset of

current round D
4: xn ← D divided into minibatches
5: for each batch b ∈ xn do
6: θn ← wm − η∇L(wm, b)

7: // Results Returned to Server
8: return θn

E. Inter-Group Parallel Training

We propose a novel parallel training mechanism in FedKE
that enables different groups of devices to train concurrently.
This design is inspired by data parallelism and pipeline
parallelism in distributed systems, and it effectively exploits
the key characteristics of FedKE (i.e., the progressive model
expansion across device groups and the iterative aggregation
of models in rounds). Importantly, this approach relaxes the
need for full model convergence before moving to the next
group, thus accelerating the overall training process. In each
communication round, a group of devices performs local



Algorithm 4 FedKE Inter-group Parallel Training Pseudo-
code

1: procedure SERVEREXECUTE:
2: require grouping devices into M groups in the or-

der of their resources, defining the model architecture
w1, w2, ..., wM for each group based on their computa-
tional capacity (wm+1 is expanded from wm), and the
total number of training rounds R

3: for r = 1 to R do
4: for group = 1 to M do // In Parallel
5: if group == 1 then
6: for each devices n do // In Parallel
7: θn ← n.CLIENTUPDATE(w1

r−1)

8: else
9: if wm

r−1 exists then
10: wm

r ← Aggregate(wm
r−1, w

m
r )

11: for each devices n do // In Parallel
12: θn←n.SPARSEUPDATE(wm, wm−1)

13: wm
r ← Aggregate({θmn }Nn=1)

14: wm+1
r ← Expand(wm

r )

training and sends their updated models to the server. Upon
receiving and aggregating these models, the server expands
the model by adding new layers or blocks and immediately
forwards the expanded model to the next group. Crucially,
this next group can begin fine-tuning the expanded model
while the previous group continues with its next round of
training on a fresh version of the base model. This results
in inter-group parallelism, where multiple groups are engaged
in different phases of the training pipeline simultaneously.
Once both groups complete their respective operations (fine-
tuning and further training), FedKE aggregates the resulting
models using standard techniques from generic FL, such as
FedAvg. The aggregated model is then expanded again for the
subsequent group, continuing the pipeline. This parallelized
mechanism substantially increases system throughput and re-
duces total training time compared to traditional sequential
inter-group updates. It maximizes resource utilization across
heterogeneous devices and contributes to the scalability and
efficiency of FedKE in practical deployments.

Alg. 4 shows the pseudo-code of FedKE Inter-group Parallel
Training. For each round of training (line 3), in the order of
the resources of the groups running in parallel (line 4), the
first group performs conventional client update (lines 5-7).The
server aggregates the devices model (line 14), and expands
it before convergence (line 15). Starting from group 2, each
group starts to train as soon as an expanded model from the
previous group was generated (line 8), instead of waiting for
the model full convergence of previous group. If there has been
a model aggregated in previous round (line 9), the server shall
aggregate the model of the previous round with the newly
expanded model of the previous group (line 10). Then, the
devices in the group perform ASU (line 11-12). In this way,
the server aggregates the devices models for each group in

every round (line 13) and expands the aggregated model for
the next group (line 14).

IV. EVALUATION

The evaluation has six goals: (i) Compare FedKE with
vanilla FL; (ii) Compare FedKE with state-of-the-art (SOTA)
solutions; (iii) Investigate the effectiveness of ASU; (iv)
Quantify FedKE end-to-end operation time; (v) Quantify the
communication and computation savings; (vi) Investigate the
fault tolerance and scalability of FedKE.

A. Datasets

We utilize two popular image datasets: Cifar-100 and Tiny-
ImageNet. Cifar-100 consists of 60,000 32x32 color images
spread across 100 classes, with each class containing 600
images, offering a diverse set of categories ranging from
animals to vehicles. TinyImageNet, a scaled-down version of
the ImageNet dataset, includes a total of 120,000 images, with
100,000 training images, 10,000 validation images, and 10,000
test images across 200 classes, with images resized to 64x64
pixels. Both datasets present significant challenges for image
classification models due to their diverse and complex image
content across numerous categories.

B. Models and Expansion Configurations

We evaluate FedKE with four different DL model setups
varying in both complexity and expansion configurations.
These configurations involve 2 (configuration 1-3) or 3 (con-
figuration 4) groups of devices, and incorporate diverse model
expansion scenarios, such as deeper layers or multiple input
heads. Instead of maximizing the model accuracy, the expan-
sion configurations are designed so that the group of lower-
resource devices is capable to train a small base model, but
cannot efficiently handle training the fully expanded model,
due to issues such as running out of memory and thermal
throttling.

Configuration 1. We expand a CNN model for the Cifar100
dataset. The base model includes two convolutional layers with
32 and 64 filters (3x3), followed by max pooling, flattening,
and a fully connected classifier with dropout for regularization.
The classifier consists of a linear layer reducing the features
to 512 dimensions, a ReLU activation, and a final linear layer
for class output. The expanded model adds two convolutional
layers with 128 and 256 filters, followed by a max pooling
layer and a matching dropout and fully connected layer to
match the base model’s output dimensions. All CNN layers
are followed by ReLU activation.

Configuration 2. We expand ResNet6 to ResNet18 for the
more challenging TinyImageNet dataset. The base ResNet6
model includes four CNN layers with 64 filters, followed
by adaptive average pooling, and a fully connected layer to
produce class predictions. The expanded ResNet18 adds 4
more CNN layers with 128, 256, and 512 filters. The output
layer is adjusted to match the feature size.

Configuration 3. We fuse two feature extractors and concate-
nate their outputs for a multi-branch network. The base model



is a Vision Transformer (ViT) [23], which processes input
images into patches, adds positional encoding, and passes them
through a transformer encoder with multi-head self-attention
and dropout for regularization. After global average pooling,
the output is passed through a linear classifier. The second
model is a simple CNN, which consists of two convolutional
layers with 16 filters, ReLU activation, and max pooling. The
outputs from both the ViT and CNN are concatenated, passed
through a fully connected layer, and classified using the base
model’s classifier.

Configuration 4. To demonstrate FedKE’s performance with
multi-step expansion, we expand a CNN model in three
stages with three device groups. The base model starts with
a 2D convolutional layer (32 filters, 3x3), followed by a
max pooling layer. The output is then passed through a fully
connected layer with 1024 neurons and ReLU activation. The
medium model adds two CNN blocks with 64 and 128 filters,
followed by max pooling. The large model adds two more
blocks with 256 and 512 filters, using batch normalization and
ReLU activation throughout. The classifier for both models
consists of fully connected layers. Both Configurations 3 and
4 are evaluated using Cifar100.

C. Prototypes and Devices

We evaluate FedKE through simulations and an on-device
prototype, implemented using Pytorch and Flower [3]. For the
model performance in FedKE, we run the simulation on a
GPU station with 4 NVIDIA GeForce Titan Xp GPUs (12G
each), Intel Xeon E5-2637 v4 CPU (3.50GHz), Linux (Ubuntu
16.04), and CUDA 11.3. The FedKE on-device prototype,
implemented in Python on Linux, is tested on three diverse
IoT devices with heterogeneous resources to benchmark com-
munication and computation overhead.

Nvidia Jetson Nano (Jetson). This device is an entry-level
edge computing platform, featuring a quad-core ARM Cortex-
A57 CPU with a clock speed of 1.43 GHz and 4 GB RAM.

Raspberry Pi 5 (Pi5). Launched in 2024, Pi5 features
a quad-core ARM Cortex-A72 CPU with clock speeds of
2.4GHz, and 4GB RAM.

Raspberry Pi 3B+ (Pi3B+). Launched in 2018, Pi3B+
features a quad-core ARM Cortex-A53 CPU with clock speeds
of 1.4GHz, and 1GB RAM.

D. Experimental Setup

The datasets are randomly split according to the number of
device groups. We set the number of devices per group as 10.
The group data is further distributed to each device in a non-
IID manner under a Dirichlet distribution. Each device applies
the Adam optimizer with learning rate of 0.001, batch size of
64, and performs 10 epochs of local update in each training
round. Unless otherwise specified, each device performs a full
model update, and the system performs parallel FedKE from
one group to another. ASU starts with a full model update
and linearly decreases the update ratio of high-magnitude
weights over 10 local epochs. We performed experiments
across different sparsity levels, ensuring that each device

updated a minimum of 50%, 30%, and 10% of the model
weights, respectively. The devices and the server are connected
via a WiFi network with a speed of 300 Mbps. The system
runs 100 rounds of training for each experiment with FedAvg
aggregation algorithm. We apply the same experimental setup
for both simulation and on-device benchmarks. For model
performance, we report the best results, while for computation
time, we provide the average from 10 experiments.

E. Ablation and Comparison Study

To evaluate FedKE, we first run FL under the unrealistic
assumption that all devices in the system are capable of
training the fully expanded model. Although this assumption
may not hold in the real world, it provides an upper bound
on the FL model’s performance given the data setup. Next,
we run FL under more realistic scenarios where the groups
perform FL on a model suitable for their resources, which
also functions as the ablation study of FedKE. We compare
the learning curves of the above scenarios with FedKE learning
curves to demonstrate the effectiveness of FedKE.

Meanwhile, we compare FedKE with FedRolex [1] and
SplitFed [27] as they are the influential solutions capable
of functioning effectively when the model is expanded with
deeper layers. FedRolex adapts partial training similar to
FedKE, and uses a rolling sub-model extraction scheme that
allows different parts of the global server model to be evenly
trained. In SplitFed, the DL model is split between devices
and the server. Similar to FedKE, this split model architecture
makes SplitFed an option for resource-constrained environ-
ments. We considered several other SOTA baselines, such as
HeteroFL [7], FedX [16], and Split-Mix [9], but these methods
are limited to model expansion through increasing the number
of channels or neurons per layer, and are incompatible with
our configuration, which involves vertical expansion by adding
layers and horizontal expansion by increasing the number of
computational blocks.

F. Results

Ablation Study. Figure 2 show FedKE superior learning
process over the four different configurations. FedKE can
sucessfully expand a small base model to the fully expanded
model, and increase the model accuracy by 11.1%, 8.9%,
5.6%, and 14.3%, respectively. Without FedKE, when only the
group with high resources is used to train the expanded model,
FedKE outperforms it by 10.7%, 4.8%, 3.1%, and 1.7%,
respectively. To further showcase the superiority of FedKE, we
compare it with an unrealistic assumption that all devices train
the expanded model. Superisingly, FedKE achieves higher
model accuracy by 1.8% and 5.0% in Configurations 1 and
3, respectively. For Configurations 2 and 4, although full-
participation FL outperforms FedKE, but its assumption that
low-resource groups can handle the fully expanded model is
unrealistic in real-world scenarios.

Comparison Study. Figure 3 shows FedKE outperforms
FedRolex and SplitFed by 3.1% and 20.4% for Configuration
1, and by 4.0% and 12.0% for Configuration 2, respectively.
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Fig. 2: Ablation study of FedKE
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Fig. 3: Comparison study of FedKE

SplitFed splits the training process between the server and
clients, and does not work well in expanding the models.
FedRolex performs reasonably well, though it still falls short
of FedKE. However, FedRolex and SplitFed cannot handle
diverse expansion configurations as FedKE. Because SplitFed
and FedRolex do not work under Configuration 3 and 4, we
can not include their learning curves in the comparison study.

Effectiveness of ASU. Figure 4 compares the learning
curves between FedKE full update and ASU over different
sparsities. Starting from a full update, we linearly reduce
the update ratio to the 50th, 30th, and 10th percentiles of
the weights in magnitude over 10 local epochs, respectively,
to balance the computational load across devices while pre-
serving model accuracy. The results show that they achieve
comparable model performance. When the update ratio is
gradually reduced to 50%, the model’s accuracy differs by less
than 1.2% compared to the full update. As we decrease the
update ratio to 30% or 10%, the model accuracy decreases,
as expected, reflecting the trade-off between model perfor-
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Fig. 4: FedKE full update vs. ASU

mance and computational load. Nevertheless, the reduction in
performance is limited to less than 4.5%. This suggests that
ASU maintains performance comparable to the full update,
indicating that a 50% update ratio is a safe choice without
sacrificing accuracy. Furthermore, computation costs can be
reduced even more by gradually decreasing the update ratio to
as low as 10% of the model weights over the training epochs.

End-to-end Operation Time. Tables I shows the break-
down of one round end-to-end operation time on-device.
We observe the computation capability of the devices has a
significant impact on the operation time. Among Jetson, Pi5,
and Pi3B+, Jetson is the most powerful for training, as it
can utilize its GPU for DL tasks. The Pi5 is next in line,
while the Pi3B+ is the weakest. For training, Pi5 takes 2.1×
longer than Jetson to train the expanded model in horizontal
expansion, while Pi3B+ takes 20.6× longer than Jetson to
train the expanded model in 3-step expansion. The time for
sending and receiving model is calculated by transferring the
models through a 300 Mbps WiFi network. We also measure
the latency of the aggregation at the server. Transferring the
models and aggregations consume a negligible portion of the
overall operation time, accounting for less than 1.3%. Overall,
training the expanded model on the Pi3B+ is far less feasible
compared to Jetson, taking 60 minutes vs. 3 minutes. This
demonstrates why FedKE is important in practice.

On-device Inference Time. We also benchmark the infer-
ence time for the three devices. For example, it takes Jetson,
Pi5, and Pi3B+ 0.14 ±0.01(one standard deviation), 0.16
±0.02, and 0.53 ±0.06 seconds respectively to perform one
inference with the fully expanded model in 3-step expansion.
The difference is minimal, allowing all groups to use the fully
expanded model during inference.



TABLE I: Operation time (s) details on Cifar100 in one round

Receiving
model Training

Sending
model Aggregation Total

ViT and CNN
horizontal
expansion

Pi5 base 0.12 95.61 0.12 0.03 95.88
Pi5 expanded 0.22 125.65 0.22 0.05 126.14

Jetson expanded 0.22 60.65 0.22 0.05 61.14

CNN
3-step

expansion

Pi3B+ expnded 1.02 3600.24 1.02 0.23 3602.52
Pi3B+ base 0.86 570.37 0.86 0.20 572.29

Pi5 intermediate 0.87 213.58 0.87 0.23 215.56
Jetson expanded 1.02 174.82 1.02 0.23 177.10

TABLE II: Total operation time (h) and model weights transfer
amount (GB) compared with vanilla FL over 100 rounds

Total
time (h)

Model weights
transferred (GB)

ViT and CNN
horizontal
expansion

Vanilla FL 3.50 32.27
FedKE 2.65 24.71

Saving (%) 24.27 23.43
CNN
3-step

expansion

Vanilla FL 100.07 225.00
FedKE 16.01 202.34

Saving (%) 84.01 10.07

Computation and communication savings. Tables II quan-
tifies computation and communication savings of FedKE in
terms of the total operation time and the amount of model
weights transferred. Compared to vanilla FL, FedKE saves up
to 84% in total operation time, and 23.43% in the amount of
model weights transferred. In vanilla FL, the devices with high
resources wait for the devices with low resources to complete
the training, before the server performs aggregation. Because
all the devices train the same model in vanilla FL, the time is
significantly higher compared to FedKE, where low-resource
devices only train a smaller model. Even though the high-
resource group in FedKE has to wait for the expanded model
from the low-resource group as shown in Alg. 4, its total
operation time is still significantly lower than that of vanilla
FL. In terms of the amount of model weights transferred,
because the devices with low resources in FedKE only transfer
a smaller model, the overall model weights transferred can be
significantly reduced. This is beneficial for mobile and IoT
devices, as their data usage is usually metered.
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Fig. 5: FedKE fault tolerance and scalability in terms of the number
of participating devices

FedKE Fault Tolerance and Scalability. In the original
setup, all 10 users in each group participate in every training
round. To simulate device fault, only 50% of devices (5/10
participation) are randomly selected to participate in each
round. To demonstrate scalability, the number of devices is
doubled (20/20 participation) by splitting the data from each
device into two parts of equal size.

Figure 5 compares the learning curves of FedKE in Con-
figuration 1 under the three scenarios above. We observe
that the model performance consistently improves in both
additional scenarios, indicating that FedKE is resilient to faults
and can scale effectively. The final model accuracy shows
a minor decrease compared to the original setup due to the
halved number of participating devices or the reduced data
per device.

V. CONCLUSION

We present FedKE, a method that incrementally enhances
a small model by adding computational layers or blocks,
ultimately evolving into a larger model. FedKE is designed
to balance between model accuracy/size and device resources
in systems of heterogeneous devices. Devices with similar
resources are organized into FL groups, where knowledge
is expanded. Each group trains a model that matches its
resources, expands it, and subsequently transfers this model
to a higher-resource group. FedKE employs an innovative
parallelism that enables these groups to train concurrently.
Additionally, each higher-resource group applies ASU to the
weights of the smaller model from the prior group, effectively
reducing computational overhead. The model generated by
FedKE theoretically approaches the performance of models
trained under ideal conditions, where all devices possess the
full capability to handle training the model. Our evaluation
demonstrates that FedKE surpasses SOTA solutions in model
accuracy while also decreasing the volume of model weights
transferred and the total operational time.
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