SGFusion: Stochastic Geographic Gradient Fusion
in Federated Learning

Khoa N guyen§*, Khang Tran®*, NhatHai Phan®, Cristian Borcea$, Ruoming JinY, Issa Khalil®
$New Jersey Institute of Technology, Newark, NJ, USA, YKent State University, Kent, OH, USA
SQatar Computing Research Institute, HBKU, Doha, Qatar
E-mail: {nk569, kt36, phan, borcea} @njit.edu, rjinl @kent.edu, ikhalil@hbku.edu.qa
*Co-first authors.

Abstract—This paper proposes Stochastic Geographic Gradi-
ent Fusion (SGFusion), a novel training algorithm to leverage the
geographic information of mobile users in Federated Learning
(FL). SGFusion maps the data collected by mobile devices onto
geographical zones and trains one FL. model per zone, which
adapts well to the data and behaviors of users in that zone.
SGFusion models the local data-based correlation among geo-
graphical zones as a hierarchical random graph (HRG) optimized
by Markov Chain Monte Carlo sampling. At each training step,
every zone fuses its local gradient with gradients derived from a
small set of other zones sampled from the HRG. This approach
enables knowledge fusion and sharing among geographical zones
in a probabilistic and stochastic gradient fusion process with self-
attention weights, such that “more similar” zones have “higher
probabilities” of sharing gradients with “larger attention weights.”
SGFusion remarkably improves model utility without introducing
undue computational cost. Extensive theoretical and empirical
results using a heart-rate prediction dataset collected across 6
countries show that models trained with SGFusion converge with
upper-bounded expected errors and significantly improve utility
in all countries compared to existing approaches without notable
cost in system scalability.

Index Terms—Geographical FL, Differential Privacy

I. INTRODUCTION

Although Federated learning (FL) [1] has many applica-
tions for mobile users [2], we still need to find a practical
solution that obtains good model accuracy while adapting to
user mobility behavior, scales well as the number of users
increases, and protects user data privacy, which is especially
important for mobile sensing applications (e.g., mobile health).
A common approach toward this goal is to group users into
different clusters, each of which is trained in an FL manner to
achieve better model performance [3]—[5]]. There are different
clustering criteria, such as using the objective function on the
users’ local data distribution [3]], [6]], the gradient similarity
[4], [5] or the users’ geographical location [7] to reduce the
discrepancy of model utility among users and clusters. Among
these approaches, leveraging users’ geographical information
is the most suitable approach to divide the physical space
into geographical zones of users mapped to a mobile-edge-
cloud FL architecture [7] since it scales well with the in-
creasing number of users in real-world settings. By enabling
geographical zones of (mobile) users to share gradients with
their geographical neighboring (adjacent) zones, FL has shown
outstanding performance in model utility and server scalability
in real-world deployments of mobile sensing applications, e.g.,
heart rate prediction and human activity recognition.

Challenges. Although leveraging users’ geographical infor-
mation is promising for real-life FL. deployments on mobile
devices, the trade-off between model utility and system scala-
bility has yet to be addressed in a systematic way. Specifically,
there is a lack of optimized geographical training algorithms.
As a result, geographical zones without sufficient training data
or appropriate geographical correlations with other zones often
have poor model utility.

Addressing this problem is challenging, given the complex
and dynamic correlation among geographical zones. In fact, a
specific zone can obtain shared gradients from all other zones.
However, it will significantly increase computational com-
plexity on all users and edge devices managing geographical
zones while offering negligible model utility improvements.
The trade-off between model utility and system scalability
raises a fundamental question: “How to share gradients among
geographical zones to optimize model utility without affecting
system scalability?”

Contributions. To systematically answer this question, we
propose Stochastic Geographic Gradient Fusion (SGFusion),
a novel FL training algorithm for mobile users. SGFusion
models the local data-based correlation among geographical
zones of users as a hierarchical random graph (HRG) [8]],
optimized by Markov Chain Monte Carlo sampling. HRG
represents the probability for one zone to share its gradi-
ent with another zone. At a training step, every zone can
fuse its local gradients with gradients derived from a set of
other zones sampled from the HRG. This approach enables
knowledge fusion and sharing among geographical zones in
a probabilistic and stochastic gradient fusion process with
dynamic attention weights, such that “more similar” zones
have “higher probabilities” of sharing gradients with “larger
attention weights.” In fact, using HRG reduces and structures
the search space, allowing us to identify similar zones better.
Zone sampling enables us to reduce the computational cost
further. As a result, SGFusion can remarkably improve model
utility without introducing undue computational cost.

Extensive theoretical and empirical results show that models
trained with SGFusion converge with upper-bounded expected
errors. SGFusion significantly improves model utility without
notable cost in system scalability compared with existing
approaches. The experiments [1_-] on heart rate prediction demon-

IThe code for SGFusion is publicly available here: https:/github.com/
knguyen2410/SGFusion.
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strate that, among the total of 115 zones across 6 countries,
more than double the number of zones benefit from
SGFusion compared with the state-of-the-art clustering-based
FL approaches and their variants [7], [9], without slowing
the convergence process. SGFusion improves the aggregated
model utility across six countries by 3.23% compared with
existing approaches.

II. BACKGROUND AND RELATED WORK

In FL, a coordination server and a set of N users jointly
train a model hy, where 6 is a vector of model weights [1].

Clustering-based FL. Instead of training one global model
[1]], the service provider in clustering-based FL divides the
users into clusters and trains an FL model for each cluster
to enhance the model’s performance under non-independent
and identically distributed (non-I1ID) data distribution across
users [10]-[14]]. The challenges of non-IID data could also
be mitigated through new aggregation methods [15]-[17]. A
pioneering work in this setting [|10] leverages the hierarchical
clustering method to cluster the clients based on their updat-
ing gradients. Similarly, Ghosh et al. [11] proposed sending
multiple models associated with different data distributions to
the clients and letting them choose the model that minimizes
their data loss. Although these works mitigate the non-IID
problems, they incur high computation overhead on the users’
devices proportional to the number of clusters, hence limiting
the scalability of the existing systems.

Decentralized FL. To improve scalability, decentralized FL
replaces the single central server with multiple coordinating
servers, each managing a cluster of users [5]], [18]-[21]]. For
example, Long et al. [5]] propose a multi-center FL. framework
that personalizes models to diverse user data distributions
while reducing computation overhead. Also, Zhang et al. [[19]]
design a three-layer collaborative architecture with multiple
edge servers to support IoT devices. However, decentralized
FL methods overlook users’ geographical locations, resulting
in higher communication overhead and limited adaptability to
user mobility in practical mobile—edge—cloud FL architecture.

Zone FL is a recent framework designed to enhance
the practicality of FL in real-world mobile environments by
maintaining high model utility, adapting to user mobility, and
scaling efficiently with the number of users [7]. Zone FL
partitions the physical space into non-overlapping geograph-
ical zones and aligns users, zones, and FL. models within a
mobile—edge—cloud architecture.

In this setting, an edge-device manages a zone-FL model
trained for users whose local data is collected in that zone
on their mobile devices. The cloud manages the general zone
structure, such as zone granularity. Given a specific zone z,
the goal is to train an FL model for the zone, 6., minimizing
an objective function F, = w% > ues U0z, Dy), where £(-,-)
is a loss function (e.g., cross-entropy function) and m, is the
number of users in z, using data D,, collected by users u in
the zone z: 07 = argming_ F,. Given a set of zones z € Z
where |Z| denotes the number of zones, the goal of Zone FL is

to find a set of {0%}.c that minimizes the average objective
function of all the zones, as follows:

1
0r}.ez =arg min — F,. (D
{ } €7 g{gz}zEZ |Z‘ EZZ

To enhance model utility by fostering knowledge fusion
among zone models in Eq. [I] the current training algorithm
in Zone FL, called Zone Gradient Diffusion (ZGD), enables
every zone to fuse its local gradient with gradients derived
from its geographical neighboring/adjacent zones. At round
t, the zone z sends its model weights #¢ to its neighboring
zones, denoted as N (z). Then, the neighboring zones derive
their local gradients by using the shared model weight 6¢ and
their local data, as follows:

V2 € N(z): Vo Fur = Z Vo b(0L,Dy),  (2)
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where Vg £(6%, D,,) is the gradient derived by the user u using
the model weight 6% and their local data D,,.

After receiving all the gradients {V: F.s } from neighboring
zones z' € N(z), the zone z will fuse the self-attention
coefficients {\, ./} of these gradients with its local gradient
to update its zone model, as follows:

O =0 [V ot D NwVorFul, 0

z/ EN zt
where 7, is the learning rate at round ¢, and the self-attention
coefficients capture the normalized similarities between the
local gradient of z and the shared gradients from its neigh-

. exp (e, ,7)
boring zones, as follows: A\, ,, = —— 22—
g 5 z,2 ZzeN(z)eXp (ez,z)’

ez =0((Vot F.; Vot Fur)), o(+) is the sigmoid function and
(+;+) is the inner product.

The key idea of Eq. 3] is that the “more similar” the
gradients of a neighboring zone 2’ are with those of zone z,
the “higher the coefficient” ), .. is; thus, resulting in a larger
influence of zone 2’ on the model training of zone z.

where

III. STOCHASTIC GEOGRAPHIC GRADIENT FUSION

Although Zone FL is better at addressing the trade-off
between model utility and system scalability compared with
classical FL, there is still a fundamental question that it
did not address: “With which zones should a zone z fuse
its local gradients at a given training round to achieve
high model utility without undue computational cost, and
how?” Answering this question is non-trivial. First, fusing
knowledge via shared gradients from neighboring zones does
not necessarily improve the model utility of a specific zone,
given diverse local data distributions among these zones. It
is well-known that diverse local data distributions can cause
scattered gradients, thus degenerating the FL model utility
[22]. Second, a deterministic gradient descent (GD) fusion
approach, which uses fixed neighboring zones across training
rounds, is not well-optimized since it does not consider the
correlation between zone z and all the other zones. A naive
solution to this problem is to fuse a zone z’s local gradients
with the gradients from all geographical zones at each training
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Fig. 1: SGFusion with geographical zones.

round. However, applying this (deterministic) GD significantly
increases the overall training cost: The complexity of training
|Z| zone-FL models after T' training rounds now scales as
O(]Z|? x N)), which is significantly larger than in both classical
FL training [1] and ZGD [7]], where N is the total number of
users in all the zones. Therefore, existing training algorithms
either degrade the model utility or affect the system scalability.
SGFusion Overview. To address these problems, we pro-
pose stochastic geographic gradient fusion (SGFusion), a novel
FL training algorithm for mobile users. SGFusion uses a
hierarchical random graph (HRG) [8] to model the correlations
among zones as sampling probabilities based on the distances
between their local data distributions. HRG is scalable due
to its ability to efficiently represent statistical correlations
among zones when the number of zones increases, making
it efficient for settings with large numbers of users. Then,
SGFusion optimizes the HRG by Markov Chain Monte Carlo
(MCMC) sampling [23]]. At each training round, each zone z
samples a small set of zones given the HRG to fuse its local
gradient with local gradients derived from these zones. This
method enables knowledge fusion and sharing among zones,
such that “more similar” zones have “higher probabilities”
of sharing gradients with “larger attention weights” at each
training round of each zone-FL model. As a result, SGFusion
reduces the data diversity and scattered shared gradients while
providing sufficient knowledge fused from other zones to
improve zone models {0%}.c~ in Eq.
A. Geographic HRG & Probabilistic Dendrograms

Figure [I] illustrates the general framework of SGFusion.
Given a set of users u € z, each user u collects data D, =
{(z,y)} in the zone z, where z and y are the input and label of
a data sample (z,y), respectively. To build the HRG, each user
u independently sends their data label distributiorﬂ denoted

2The distribution can have different forms, such as histograms or class
distributions, depending on the downstream learning tasks. Sending a data
label histogram to the edge-device can incur a privacy risk, which can be
effectively addressed by using the Laplace mechanism to preserve differential
privacy [24], as in our extended version [25]], without affecting model utility
notably.

Algorithm 1 Geographic HRG

Input: Fully connected graph G
Output: Probabilistic dendrograms
1: Dendrogram Sampling and Optimizing Process:
2: Randomly initialize the dendrogram 7~
3: while not convergence of 7 do
4:  Randomly select an internal node r € T
5 Uniformly select either o or S-transition given r to create the
new dendrogram candidate 7
6:  Sample the transition 7 — 7 using Eq.
7: Construct the Probabilistic Dendograms:
8: Retrieve a set of internal ancestor nodes of z, denoted as S,
given T
9: Initialize 7. given T
10: Compute sampling probabilities Vr € S, : p, = %

TES,
11: Update the probability value of internal node 7 in 7. with p,
12: Return: 7

as ), aggregated from all labels {y} to their corresponding
edge-device managing the zone z. The edge device of zone z
averages these local data label distributions to create a zone-
level data label distribution )., as follows:
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All the edge devices send their zone-level data label distri-
butions {),}.cz to the cloud independently. Now, the cloud
can construct a fully connected graph G in a centralized
manner, in which a node represents a zone and an edge
represents the distance, e.g., Euclidean distance [26]], between
two zones z and 2’ using their zone-level data label distribu-
tions d(),,Y./). Other distance functions such as Manhattan
distance [27]] and Minkowski distance [28]] could be used to
calculate the distance between two zones z and 2’

Given the graph G, Alg. [T] (Lines 1-6) describes how to
construct the Geographic HRG and the dendrograms. The
cloud randomly samples a hierarchical structure of the zones
as a tree dendrogram 7 ({r,d,.}), consisting of |Z| zones as
leaf nodes and a set of internal nodes r associated with average
distance scores d, between their left and right sub-trees, L,
and R,, as follows:

VreT d, = ZzeL,,.,z’eR,,. d()iz,j}z/)7 )

nL,.NR,

where ny_and ng,_ are the numbers of zones in the left and
the right sub-trees of the internal node 7.

Figure 2] illustrates an example of a dendrogram 7 with 16
zones as leaf and internal nodes, each of which is associated
with a value quantifying the average Euclidean distance be-
tween zones from its left and right sub-trees. For example, in
the Heart Rate Prediction dataset (HRP) [29] that we use in
our experiments, ), is the average histogram distribution of
the heart rate of all users in the zone z.

To optimize the dendrogram 7, SGFusion applies the
MCMC sampling to minimize the total average distances in all
the internal nodes, indicating that 7 can be used to reconstruct
the original graph G with minimized loss. In other words,
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Fig. 2: Dendrogram 7 with 16 zones in Poland (as shown in
Figure 1) using Euclidean distance.
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Fig. 3: Given a current state of an internal node r, there are
only two possible candidate states, which are the result of o-
transition and S-transition on the node 7.

the dendrogram 7 is optimized to represent the correlations
among zones based on their local data label distributions. The
optimization objective of 7 is as follows:

T" = arg mTin L(T), 6)

where the utility loss of 7 is computed by L(7) = > d,.
reT
At each state, the MCMC sampling picks a random internal

node r to re-arrange the structure of its three associated sub-
trees, consisting of its children subtrees, i.e., L,- and R,., and a
sibling subtree, i.e., R,, (Figure . In the a-transition, given
an internal node r, the order of the three subtrees associated
with r is rearranged while keeping the state of r. On the other
hand, in the [S-transition, the order of the three subtrees does
not change, but the state of r is changed compared with w.
SGFusion uniformly chooses either a-transition or S-transition
with an equal probability of 0.5 to create a new dendrogram
candidate 7'. Then, SGFusion updates 7 with a probability

p = min(1, %) as follows:
T {T’, w?th probab?l?ty p .

T, with probability 1 — p.

The key idea of updating the dendrogram using Eq. [/| is
that SGFusion always accepts the transition from 7 to 7’

Algorithm 2 SGFusion Training Algorithm
Input: Zone z and Probabilistic Dendrogram 7
Output: Zone-FL model 0,

1: Imitialize the zone’s model weight 62

2: fort=1,2,...,7 do

3:  Sample a set of zones N (z,t) given T,
vz e ./\[(Z,t) D€y O'(VQEFZ; V%Fz/)

4
' . exp(ezyzﬁ

500 V2 eN(z,t) i A,

6

7:

T . >zeN(z,t) eXP(ez,z)
92+ <_T02 - [VGE F, + Zz’EN(z,t) )\z,z’véi Fz']
Return: 60;
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Fig. 4: Probabilistic dendrogram of zone “West Pomeranian”
in Poland derived from Figure @

when it minimizes the utility loss £(7); otherwise, SGFusion
accepts the transition that increases the utility loss £(7) with
the probability of %. SGFusion executes the MCMC
sampling process until the convergence of 7. By doing so,
SGFusion optimizes the dendrogram to present the hierarchical
structure of all the geographical zones.

Probabilistic Dendrogram (Alg[T| Lines 7-12). After build-
ing the dendrogram 7, the cloud starts constructing a proba-
bilistic dendrogram, denoted as 7, for each zone z, in which
the value of an internal node r is the probability p, of zones
in either the left sub-tree or the right sub-tree of r to share
gradients with the zone z at a training round. To construct the
probabilistic dendrogram 7, for a zone z, the cloud creates 7,
as a copy of the dendrogram 7 with empty values for internal
nodes. Then, the cloud computes the probabilities {p,} for
ancestors of zone z, denoted as S, by normalizing distance
scores d, of these ancestors:

VresS, p.-= exp(fd,,)/( Z exp(fdr))7 (8)

res,

where p,. is the probability value of an internal node r in T,
and Vz : > s pr = 1. For instance, Figure |4| shows the
probabilities of zones sharing their local gradients with the
zone “West Pomeranian” at a training round. Based on the
heart rate dataset, zone “Lublin” has a probability of 0.293 to
share its local gradient with “West Pomeranian.”

B. SGFusion Training
After constructing all probabilistic dendrograms {7,}.cz,
the cloud sends them to the corresponding edge servers for
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training zone models. For brevity, let us describe SGFusion
training for a zone z, given its associated dendrogram 7, since
the training is done independently for each zone.

At each round ¢, we propose a bottom-up sampling algo-
rithm, as in Figure [5and Alg. 2] for zone z (a leaf node of the
probabilistic dendrogram 7) to sample a set of zones used for
its gradient fusion. From the leaf node represented by zone z,
our algorithm will travel to every (internal) ancestor node r of
z, from the closest ancestor node to the root node, and sample
zones in 7’s sub-trees with the probability p, associated with
the node r. Each zone is only sampled once in this process.
As a result, zone z identifies a set of zones N (z,t) at training
round ¢ to fuse its local gradients with these sampled zones’
local gradients in a self-attention mechanism and update the
zone model 6, as follows:

RN R S TS
2'eN(z,t)

SGFusion trains all zone-FL models {6.} using Eq. [9] inde-
pendently until the models converge after 1" training rounds.

IV. THEORETICAL GUARANTEES
A. Convergence Analysis

In this section, we analyze the convergence rate of SGFu-
sion. First, it is worth noting that the HRG is only sampled
once before the training process of SGFusion, which is a
preprocessing step. Since SGFusion computes the distance
between two zones based on the Euclidean metric, the com-
plete graph across the zones is an undirected graph, which
ensures the HRG sampling process is reversible and ergodic
(i.e., any pairs of dendograms can be transformed to each
other with finite sampling steps). Therefore, the HRG sampling
process has a unique stationary distribution after it converges
to equilibrium [{8]], which is reached in our experiments.

Given a converged HRG representing the relations across
the zones, we analyze SGFusion’s convergence rate when
optimizing a strongly convex and Lipschtiz continuous loss
function F,,Vz € Z, to provide guidelines for practitioners to
employ SGFusion in real-world applications. The key result is
that for a particular zone z, with a carefully-selected learning
rate decaying process, SGFusion converges to the global
minima of zone z with the rate of O(log(T)/T), where T
is the number of updating steps. Furthermore, our analysis
highlights the impact of the non-IID data property among the

zones on the convergence of SGFusion and how SGFusion
remedies this impact to enhance the model’s utility. To do so,
firstly, we consider the following assumptions:

Assumption 1. F,,Vz € Z, is u-strongly convex, we have
F.(0)>F.(0)+ (0 —0) Vg F.(0") + gle" — 0] 2.v0',0.

Assumption 2. F, Vz € Z, is G-Lipschitz, such that
IVoF-(6)[l2 < G.

Assumption 3. There exists a constant T such that ||0% —
0% |l2 < 7,Vz,2' € Z, where 0% is the parameter at the global
minimum for zone Z.

These assumptions are typical in providing convergence
analysis for FL algorithms in previous works [30]—[32]. More-
over, they are practically common for many ML models, such
as linear regression, logistic regression, and simple neural
networks [33]]. Given these assumptions, we can establish the
convergence rate of 6, through T updating steps, learned by
SGFusion, as follows:

Theorem 1. Let 01 be the output of Alg. |2 If learning rate
N = ﬁ and Assumption |l|- 3| are satisfied, then the excessive
risk E[F,(07)] — F.(0}) is bounded by:

16G° T

T + T (1+log(§))

G 1+1og(T) | 3Gt
T T g ;p (10)

B[00 - p(02) <

where G = G*[1 + 2 Doerpe Paet T2 P (1= paer) +
(ZZ/# pz,z’)2], Dz, is the probability to sample zone 2’ for
the updating process of zone z given the dendrogram T, and
the expectation is over the randomness of SGFusion.

The proof of Theorem [I] is in our extended paper [25].
As T — oo, we can induce from Eq. (I0) that SGFusion
converges to the global minima of each zone z € Z with
the rate of O(log(7T")/T). From the last term of Eq. (I0), we
can see that even if 7' — oo, the performance of SGFusion is
limited by the non-IID property among the zones quantified by
T, since 7 — oo will enlarge the expected excessive risk. This
impact of 7 is consistent with the theoretical and empirical
results of previous works [30]. However, focusing on the last
term of Eq. (T0), it also highlights how SGFusion remedies
the non-IID problem from the theoretical viewpoint. Also, as
7 — 00, which means we have more diverse data distributions
among different zones, the p, ./,Vz, 2/ € Z will decrease
due to the normalization in Line 10, Alg. So, SGFusion
decreases the value of the last term in a heavily non-IID
setting, resulting in a better model utility for each zone.

B. Complexity Analysis

This section analyzes the complexity of SGFusion in HRG
sampling and SGFusion’s training processes. For the HRG
sampling, given Z zones, there are |Z|(|Z]| — 1)/2 pairs of
zones for the fully connected graph G. Thus, the computation
complexity to construct the HRG is O(]Z|?) because we need
to compute the distance of each pairs. Then, given |ny,. | and



TABLE I: Breakdown of the HRP dataset for top six countries:
Norway, Spain, US, Thailand, France, and Poland.

# users  # samples # zones  avg # samples/zone
Norway 48 5,902 13 454.00
Spain 110 9,609 13 739.15
us 99 14,774 32 461.69
Thailand 105 10,970 23 476.96
France 67 8,094 18 449.67
Poland 205 16,907 16 461.69

|n g, | are the numbers of zones in the left and the right subtrees
of the dendrogram 7T, it takes O(nr, * ng,) to compute
the utility loss £(7) for one MCMC step. By applying the
Cauchy-Schwarz inequality, we have:

(nz, +ng,)? _ |27
np,nR, < 1 < 1
Therefore, it requires O(M|Z|?) in the worst case for
the dendrogram 7 to converge, where M is the number of
MCMC steps until the convergence of 7. Then, to construct
the probabilistic (binary) dendrograms, it takes O(log|Z|) to
traverse through the depth of the dendrogram. Hence, it takes
O(|Z|log|Z|) to get the p, for all the zones. Therefore, the
computation complexity of the HRG sampling process scales
by O(|Z|?+M|Z|?>+|Z|1log |Z|) =~ O(M|Z|?). However, this
process is only executed once before the SGFusion training.
Furthermore, the number of zones |Z| is generally small (less
than 40 in our experiments), resulting in low computation cost.
Regarding the SGFusion training process, we can compute
the gradient update for each zone in parallel. Therefore, we
consider the computational complexity of a single zone z as
follows. In a training round ¢, the computational complexity
to compute the gradient update for the zone’s model 6,
is O(N(z,t)) ~ O(|Z]), where N (z,t) is the number of
neighboring zones which share the gradients with the zone z.
Furthermore, the training process is executed with 7" updating
steps. Thus, the computational complexity of the training
process is scaled by O(T'|Z|), which is linear to the number
of zones |Z|. As a result, SGFusion remains computationally
scalable in real-world scenarios.

(1)

V. EXPERIMENTS AND EVALUATION

We conduct extensive experiments using a real-world
dataset collected across six countries to evaluate the per-
formance of SGFusion in comparison with state-of-the-art
baselines, focusing on the following aspects: (1) Assessing
zone-FL. model utility enhanced by SGFusion; (2) Evaluating
system scalability of SGFusion through its convergence rate;
and (3) Understanding the contribution of each component in
SGFusion to the overall utility.

Dataset. We use the heart rate prediction (HRP) dataset
[29], consisting of approximately 168, 000 workout records of
956 users collected from 33 countries to evaluate SGFusion.
Similar to [7]], we select the top 6 countries with more than 10
zones having good numbers of data samples, i.e., more than
450 data samples per zone on average, in our experiment. HRP

TABLE II: SGFusion vs. D-ZGD and DELTA-Z regarding the
number of zones with higher model utility.

D-ZGD  SGFusion (%) Gain  DELTA-Z  SGFusion (%) Gain

Norway 5 8 60.00% 4 9 125.00%

Spain 5 8 60.00% 4 9 125.00%

Us 10 22 120.00% 8 24 200.00%
Thailand 8 15 87.50% 11 12 9.09%
France 6 12 100% 7 11 57.14%

Poland 4 12 200% 4 12 200.00%

is an outstanding dataset for our study, and it has sufficient
users and geographical information across multiple countries.
The availability of such datasets is limited in real world.

Models and Metrics. We leverage a Long Short-Term
Memory (LSTM) model [29] to forecast the heart rate from the
input features, such as workout altitude, distance, and elapsed
time (or speed). We use the Root Mean Square Error (RMSE)
as the main metric to evaluate the model utility. The lower the
value of RMSE, the better the model utility.

Established Baselines. We consider a variety of baselines:
(1) The classical FedAvg [1]]; (2) Geographical FL approaches,
including Static Geographical FL. (SGeoFL) and Deterministic
Zone Gradient Diffusion (D-ZGD) [7]; (3) IFCA, an iterative
federated clustering algorithm [3]; (4) A multi-center FL
approach Stochastic Expectation Maximization FL (FedSEM)
[5]]; and (5) A sampling FL. mechanism FedDELTA [9]] and its
variant DELTA-Z proposed to adapt DELTA to geographical
zones. FedAvg is the traditional FL setting, where all users
jointly train a global FL. model. In SGeoFL, users are geo-
graphically separated into zones, and every zone trains its own
zone-FLL. model independently without gradient fusing with
other zones. D-ZGD is the state-of-the-art training algorithm
with self-attention following Eq. [3| given geographical zones.
IFCA is a clustering-based FL in which cluster identities
of user and model parameters are optimized via a gradient
descent process. We apply IFCA on top of each country, where
users are distributed and partitioned into clusters without
considering any geographical location. FedSEM utilizes an
expectation-maximization framework to optimize the client
clusters during the FL process. We also adapt FedSEM to the
countries’ models. DELTA is an FL sampling mechanism in
which users are selected at each training round to reduce the
diversity of their local gradients and variance, improving the
learning process. FedDELTA is an FL approach that utilizes
DELTA to boost the model performance. Also, since DELTA
is not originally designed for geographical zones, we adapt it
to DELTA-Z by letting DELTA treat the zone z’s model as a
central model jointly trained by all users from sampled zones
and the zone z. For a fair comparison, we assign a similar
number of zones with D-ZGD for the zone sampling process
of DELTA-Z.

Variants of SGFusion. We consider a variant of SGFusion,
called x-SGFusion, in which every zone z € Z samples
the same number of zones x in their gradient fusion across
training rounds. Also, we include top-k-SGFusion, in which
every zone z uses top-k most similar zones {z'}, i.e., smallest
distance d().,Y.’), in its gradient fusion across training



TABLE III: x-SGFusion vs. D-ZGD and DELTA-Z regarding
the number of zones with higher model utility.

D-ZGD  x-SGFusion (%) Gain DELTA-Z  x-SGFusion (%) Gain
Norway 6 7 16.67% 4 9 125.00%
Spain 5 8 60.00% 3 10 233.33%
UsS 11 21 90.91% 7 11 57.14%
Thailand 10 13 30.00% 10 13 30.00%
France 4 14 250.00% 7 11 57.14%
Poland 7 9 28.57% 8 8 0.00%
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Fig. 6: Model utility across countries (smaller, the better).

rounds. The goals of considering these variants of SGFusion
are: (1) For a fair comparison with D-ZGD, we set x for every
zone z to be the same with the number of neighboring zones
of the zone z used in D-ZGD; and (2) Evaluating the effect
of stochastic gradient fusion compared with deterministic
gradient fusion using either a fixed number of sampled zones
or top-k most similar zones with different values of k.

A. Utility and Convergence Speed

Zone and Country Level Utility. Among all the baselines,
D-ZGD and DELTA-Z achieve the best performance (Figure
[6). Tables [Mand [T present the utility of SGFusion compared
with these best baselines at the zone-level FL. model. SGFusion
and x-SGFusion achieve significantly better model utility on
most zone-FL. models than D-ZGD and DELTA-Z across all
countries. For instance, in Poland, SGFusion achieves better
model utility in 12 zones compared with 4 zones of D-ZGD,
performing better in twice the number of zones. Similar results
are observed from other countries and with other baselines,
indicating the sharp enhancement of the model utility by the
SGFusion at the level of zone-FL models. Across 115 zones,
more than double the number of zones benefit from SGFusion
than the best baselines, 77 zones and 38 zones respectively.

Although the improvement at the country level (Figure [6)
is not as clear as the zone level since each country uses an
aggregated model from its zone models, the model utility at
the country level can strengthen our observation. SGFusion
improves the aggregated model utility across six countries
by 3.23% on average compared with existing approaches.
Note that y-SGFusion, which uses the same numbers of
sampled zones with D-ZGD, also outperforms D-ZGD across
six countries and outperforms DELTA-Z in five countries with
a comparable result in Norway.

Convergence Speed. As shown in Figure SGFusion and
x-SGFusion have a similar convergence speed compared with
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Fig. 8: Learning curves of the country-level FL models using
data collected from Norway (best view in color).

D-ZGD. Importantly, this convergence behavior is maintained
even as the number of zones and participating clients increases,
indicating that both methods scale well with the size of
the system. The key reason for this result is that SGFusion
utilizes relatively small numbers of sampled zones to train a
specific zone-FL model on average compared with D-ZGD and
DELTA-Z (Figure |8b). In fact, at a training round, the average
numbers of sampled zones in SGFusion are smaller than the
ones in D-ZGD and DELTA-Z across 4 out of 6 countries
and are comparable in the remaining countries. This reduction
in the number of sampled zones directly translates into lower
per-round communication and computation overhead, which is
crucial for maintaining scalability in large-scale deployments.
To shed light on why using smaller numbers of sampled zones
for gradient fusion in SGFusion enables us to avoid negative
impacts on convergence speed and system scalability, while
still resulting in better model utility, we conduct a homophily
data analysis on these sampled zones. This experiment studies
the average homophily [34] across the zones z € Z and across
T updating steps, quantified as:

lz e (o X a-0)] a2

t=1 z€Z 2/ eN(z,t)

where d(-,-) is the metric measuring the data label distri-
butions between zones z and z’, e.g., Euclidean distance.
Intuitively, the lower the aver-
age homophily, the more sim-
ilar the label distribution of a
zone z and the label distribu-
tion of its sampled zones. SG-
Fusion achieves a lower value
of average homophily across
six countries compared with
DELTA-Z and D-ZGD (Fig-
ure [7). The results highlight
that SGFusion achieves a better set of sampled zones for
gradient fusion, enhancing model utility without compromising
scalability, as shown by its faster convergence.

Average Homophily

D-ZGD DELTA-Z SGFusion

Fig. 7: Average homophily of
ZONes across six countries.

B. Stochastic vs. Deterministic

In this experiment, we investigate the benefit of stochas-
tic gradient fusion by comparing SGFusion with the top-k-
SGFusion where k varies from 1 to 7, and with y-SGFusion.
The top-k-SGFusion is a deterministic gradient fusion ap-
proach using the top-k most similar zones to fuse gradients.
Meanwhile, x-SGFusion is a partially stochastic gradient
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Fig. 9: Deterministic vs. stochastic gradient fusion.

fusion algorithm, in which the number of sampled zones for
every zone z is deterministic while the sampled zones can
change across training rounds. Therefore, using the top-k-
SGFusion and x-SGFusion offers a comprehensive evaluation
of the stochastic gradient fusion effect in SGFusion.

In Figure [9] representing three countries for figure visibility
purposes, SGFusion notably outperforms the top-k-SGFusion
with & € [1,7] and x-SGFusion. The reason is that using
either deterministic values of top-k or deterministic numbers
of sampled zones does not offer a good balance between
obtaining sufficient knowledge fused from sampled zones and
mitigating the increase of discrepancy among fused gradients
when the number of sampled zones increases. The stochastic
zone sampling approach remedies this problem by enabling
knowledge fusion and sharing among zones, such that “more
similar” zones have “higher probabilities” of sharing gra-
dients with “larger attention weights” at a training round
of a zone-FL model. Hence, SGFusion reduces better the
discrepancy among fused gradients while providing sufficient
knowledge from sampled zones to improve zone-FL models.

VI. CONCLUSIONS

This paper presented SGFusion, a novel FL training al-
gorithm for geographical zones, that models local data label
distribution-based correlations among geographical zones as
hierarchical and probabilistic random graphs, optimized by
MCMC sampling. At each step, every zone samples a set of
zones from its associated probabilistic dendrogram to fuse its
local gradient with shared gradients from these zones. SGFu-
sion enables knowledge fusion and sharing among zones in a
probabilistic and stochastic gradient fusion process with self-
attention weights. Theoretical and empirical results show that
models trained with SGFusion converge with upper-bounded
expected errors and remarkable better model utility without
notable cost in system scalability compared with baselines.

ACKNOWLEDGMENT

This research was supported by the National Science Foundation
(NSF) under Grants No. CNS 2237328 and DGE 2043104, and
partially by the Qatar National Research Fund (QNRF) under Grant
No. ARG01-0531-230438.

REFERENCES

[1] B. McMahan and et al., “Communication-efficient learning of deep
networks from decentralized data,” in AISTATS. PMLR, 2017.

[2] T. Zhang and et al., “Federated learning for the internet of things:
Applications, challenges, and opportunities,” /o7, vol. 5, no. 1, 2022.

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(11]
[12]

[13]
[14]

[15]

[16]

(17]

(18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]
[27]
(28]
[29]

(30]
[31]

(32]
[33]

[34]

A. Ghosh and et al., “An efficient framework for clustered federated
learning,” in NeurIPS, vol. 33. Curran Associates, Inc., 2020.

Y. Ruan and C. Joe-Wong, “Fedsoft: Soft clustered federated learning
with proximal local updating,” in AAAI, vol. 36, no. 7, 2022.

G. Long and et al., “Multi-center federated learning: clients clustering
for better personalization,” WWW, vol. 26, no. 1, 2023.

Z. Qu and et al., “On the convergence of multi-server federated learning
with overlapping area,” TMC, vol. 22, no. 11, 2022.

X. Jiang and et al., “Zone-based federated learning for mobile sensing
data,” in PerCom. IEEE, 2023.

A. Clauset and et al., “Structural inference of hierarchies in networks,”
in ICML workshop on statistical network analysis, 2006.

L. Wang and et al., “DELTA: Diverse client sampling for fasting
federated learning,” in NeurIPS, 2023.

C. Briggs and et al., “Federated learning with hierarchical clustering of
local updates to improve training on non-iid data,” in ZJJCNN, 2020.

A. Ghosh and et al., “An efficient framework for clustered federated
learning,” NeurIPS, vol. 33, 2020.

Y. Li, X. Wang, and L. An, “Hierarchical clustering-based personalized
federated learning for robust and fair human activity recognition,”
IMWUT, vol. 7, no. 1, 2023.

M. Morafah and et al., “Flis: Clustered federated learning via inference
similarity for non-iid data distribution,” OJCS, vol. 4, 2023.

C. Li, G. Li, and P. K. Varshney, “Federated learning with soft cluster-
ing,” IoT, vol. 9, no. 10, 2022.

S. P. Karimireddy and et al., “Scaffold: Stochastic controlled
averaging for federated learning,” 2021. [Online]. Available: https:
/larxiv.org/abs/1910.06378

T. Li and et al., “Federated optimization in heterogeneous networks,”
2020. [Online]. Available: https://arxiv.org/abs/1812.06127

X. Li and et al, “Fedbn: Federated learning on non-iid features
via local batch normalization,” 2021. [Online]. Available: https:
/larxiv.org/abs/2102.07623

X. Ouyang and et al., “Clusterfl: A clustering-based federated learning
system for human activity recognition,” ACM Trans. Sen. Netw., 2022.

W. Zhang and et al., “Optimizing federated learning in distributed
industrial iot: A multi-agent approach,” JSAC, vol. 39, no. 12, 2021.

J. Wu and et al., “Topology-aware federated learning in edge computing:
A comprehensive survey,” CSUR, 2023.

Beltran and et al., “Decentralized federated learning: Fundamentals, state
of the art, frameworks, trends, and challenges,” COMST, 2023.

T. Li and et al., “Federated learning: Challenges, methods, and future
directions,” SPM, vol. 37, no. 3, 2020.

M. E. Newman and G. T. Barkema, Monte Carlo methods in statistical
physics. Clarendon Press, 1999.

C. Dwork and et al, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., 2014.

K. Nguyen and et al, “Sgfusion: Stochastic geographic gradient
fusion in federated learning,” 2025. [Online]. Available: https:
/larxiv.org/abs/2510.23455

B. O’Neill, “Chapter 2 - frame fields,” in Elementary Differential
Geometry (Second Edition), second edition ed. Academic Press, 2006.
E. F. Krause, “Taxicab geometry,” The Mathematics Teacher, 1973.

S. Theodoridis and K. Koutroumbas, “Chapter 14 - clustering algorithms
iii: Schemes based on function optimization,” in Pattern Recognition
(Fourth Edition), fourth edition ed. Academic Press, 2009.

J. Ni, L. Muhlstein, and J. McAuley, “Modeling heart rate and activity
data for personalized fitness recommendation,” in WWW, 2019.

X. Li and et al., “On the convergence of fedavg on non-iid data,” 2020.
H. Xing and et al., “Federated learning over wireless device-to-device
networks: Algorithms and convergence analysis,” JSAC, 2021.

X. Wu and et al., “Faster adaptive federated learning,” in AAAI, 2023.

M. Pilanci and T. Ergen, “Neural networks are convex regularizers:
Exact polynomial-time convex optimization formulations for two-layer
networks,” in ICML, 2020.

K. Z. Khanam and et al., “The homophily principle in social network
analysis: A survey,” MTAP, 2023.


https://arxiv.org/abs/1910.06378
https://arxiv.org/abs/1910.06378
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/2102.07623
https://arxiv.org/abs/2102.07623
https://arxiv.org/abs/2510.23455
https://arxiv.org/abs/2510.23455

	Introduction
	Background and Related Work
	Stochastic Geographic Gradient Fusion
	Geographic HRG & Probabilistic Dendrograms
	SGFusion Training

	Theoretical Guarantees
	Convergence Analysis
	Complexity Analysis

	Experiments and Evaluation
	Utility and Convergence Speed
	Stochastic vs. Deterministic

	Conclusions
	References

