Moitree: A Middleware for Cloud-Assisted Mobile
Distributed Apps

Mohammad A. Khan, Hillol Debnath, Nafize R. Paiker,
Narain Gehani, Xiaoning Ding, Reza Curtmola, Cristian Borcea
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
{mak43, hd43, nrp48, gehani, xiaoning.ding, reza.curtmola, borcea} @njit.edu

Abstract—This paper presents Moitree, the middleware of our
Avatar platform for mobile cloud computing. Avatar leverages
cloud resources to support fast, scalable, reliable, and energy
efficient distributed computing over mobile devices. Each mobile
device is augmented by an avatar, a per-user always-on software
entity that resides in the cloud and acts as the surrogate of the
mobile device, to the extent possible, thus reducing the workload
and the demand for storage, bandwidth, and energy on the
mobiles. Moitree provides: (1) a novel middleware which allows
unmodified apps to execute seamlessly over mobile/avatar pairs
with the provision of offloading computation and communication,
and (2) a new programming framework to simplify mobile
collaborative app development. The programming framework
has two key features: (1) user collaborations are modeled us-
ing natural group semantics - groups are created dynamically
based on context and are hierarchical. (2) data communication
is offloaded to the cloud through high-level communication
channels. A prototype of Moitree, along with several apps, has
been implemented and evaluated on Android devices and on an
OpenStack-based cloud running Android x86 avatars.

I. INTRODUCTION

Execution and communication offloading from mobile de-
vices to their software surrogates in the cloud has proven to
improve app response latency, reduce wireless communication
overhead and energy consumption at the mobiles, and improve
the availability of mobile apps [23], [9], [10], [16], [24]. These
surrogates can be instantiated as virtual machines (VMs),
containers, or even processes. Microprocessor manufacturers
have recently started providing shielded application execution
over untrusted cloud platforms [1], thus offering guarantees
that the surrogates are truly personal and protected from
the cloud providers [6]. Therefore, the converging model for
mobile cloud computing assumes that each mobile device of
a user is paired with a user-owned and controlled surrogate in
the cloud.

This scenario lends itself naturally to mobile distributed
computing executed over sets of mobile/surrogate pairs. People
collaborate within these apps by forming groups defined
by friendship, common interests, geography, etc. Examples
of distributed apps include discovering alternative routes to
avoid traffic jam/congestion, finding people of interest in a
crowd using face recognition techniques (e.g., a lost child),
monitoring and stopping the spread of epidemic diseases, and
mobile multi-player gaming.

This paper presents Moitree!, a middleware that facilitates
the execution of collaborative apps within groups of mobile
users, with each group being represented by a collection of
mobile device/surrogate pairs. In addition to runtime support,
Moitree provides an API and a set of libraries for developing
cloud-assisted mobile distributed apps. While the concepts of
Moitree are general and applicable to any distributed mobile
cloud platform, we have designed it and implemented it for
our Avatar platform [7]. An avatar is an instantiation of a
surrogate in the cloud for a mobile device.

Programming over mobile/avatar pairs is different from
traditional mobile distributed programming. First, the end
points in the computation are device/avatar pairs with different
capabilities - mobile devices have multiple types of sensors
and user interaction capabilities; avatars have more powerful
computation, storage, unlimited power, etc. Programmers need
an intuitive and common interface to transparently use these
computing end points. Apps need to read sensor/user inputs on
the mobiles, but should offload most of the communication/-
computation to the avatars, without affecting negatively the
user experience. Second, the apps require user collaboration
based on natural contexts, such as location, time, social
relationships, etc. Therefore, managing the collaboration in
real time is important.

The Moitree middleware provides a unified view of the
mobile/avatar pairs to the programmers, thus hiding the het-
erogeneity and complexity of the underlying system. Program-
mers can use the Moitree API to access resources, without
any assumption of where the code is running (mobile or
avatar). The Moitree communication API offloads the user-
to-user communication from mobile devices to avatars.

User collaboration in Moitree is modeled using group se-
mantics. Groups are formed based on factors such as location,
time, and social connections. The key features of the user
groups are: hierarchy, which allows programmers to naturally
organize users into groups/subgroups and manage their collab-
orations within different scopes; dynamic group membership,
which updates group membership based on the current context
of users (e.g., a group for “visitors of the Statue of Liberty”
changes dynamically over time); and communication channels,
which facilitate the communication among the members in a

IThe word “moitree” is taken from Bengali, which means alliance/collab-
oration.

group and offload the communication to the cloud.

We implemented a prototype of Moitree on Android devices
and an OpenStack-based cloud running Android x86 avatars.
To validate Moitree, we implemented two proof-of-concept
apps: one finds a lost child at a crowded event by performing
face recognition on the photos taken by people attending
the event; the other is a video-conferencing app that allows
users to create group hierarchies. The number of lines of
code of the app implementations based on Moitree is reduced
to less than half when compared to their implementations
done in JXTA [11], a platform for peer-to-peer programming,
and Android. We also performed experiments with micro-
benchmarks on top of our prototype to evaluate the scalability
and overhead of the middleware.

The rest of the paper is organized as follows. Section II
presents a brief overview of the Avatar system. The Moitree
programming model is detailed in Section III, and the de-
sign and implementation of the middleware is presented in
Section IV. Section V validates the programming model with
a proof-of-concept application and shows micro-benchmark
results for the middleware. Related work is discussed in
Section VI, and the paper concludes in Section VII.

II. AVATAR OVERVIEW

The Avatar system [7] is motivated by the strong demand
for fast, scalable, reliable, and energy efficient distributed
computing over mobile devices. A few research efforts have
investigated cloud support for mobile distributed comput-
ing [16], [14], [21]. These projects focus mostly on enabling
communication among mobile users. Other efforts have in-
vestigated offloading mobile code execution to the cloud in
the context of stand-alone apps [10], [22], [9], [15]. While
Avatar leverages high-level ideas from these efforts, its goal
is fundamentally different - integrating the benefits of modern
mobile devices and cloud computing, to provide a novel plat-
form for distributed collaborative apps (which are inherently
peer-to-peer).

In Avatar, a mobile user is represented by one mobile device
and its associated “avatar” hosted in the cloud. An avatar is
a per-user software entity which acts as a surrogate for the
user’s mobile device, to the extent possible, thus reducing the
workload and the demand for storage and bandwidth on the
mobiles. Each avatar is instantiated as a VM (Android x86) in
the cloud in order to provide resource isolation and to simplify
per-user resource management. Avatars run the same operating
system as the mobiles and can thus run unmodified apps or
app components (e.g., functions, threads, etc.). Implicitly, they
save energy on the mobiles and improve the response time
for many apps by executing certain tasks on behalf of the
mobiles. The avatars are always available, even when their
associated mobile devices are offline because of poor network
connectivity or simply turned off. Each avatar coordinates
with its mobile device to synchronize data and schedule the
computation of avatar apps on the avatar and/or mobile device.
A mobile device does not interact directly with the avatars of

other mobile users. User-to-user communication always goes
through the avatars.

While the avatars could be hosted by any cloud provider,
mobile network operators may be particularly willing to offer
the service. They have already started to offer cloud services to
back up data from mobile devices. At the same time, having
information about their customers and their mobile devices,
mobile network operators may be able to offer better services
with higher efficiency than other cloud providers.

The Avatar platform provides the architecture for cloud-
assisted mobile distributed computing, and Moitree offers the
required runtime system (i.e., middleware) as well as the API
to build mobile distributed apps over Avatar.

III. MOITREE PROGRAMMING MODEL

This section first describes the key ideas in Moitree and
the distributed app execution model. Then, we present an
example app, LostChild, to illustrate Moitree’s advantages in
developing distributed apps. Finally, we describe the complete
API provided by Moitree.

A. Key Ideas

1) Groups and Group Hierarchies: A group is a fundamen-
tal unit over which mobile distributed computation is done.
A group is a set of users selected and organized based on
properties, such as user locations, time, and social connections.
Each group is app-specific, and each app can create as many
groups as it needs. All members of a specific group, by default,
run the same app. A user can be part of multiple groups at
the same time.

Groups in the same app can form hierarchies with the
groups at lower levels being subgroups of the ones at upper
levels, and are maintained in a tree structure. This helps
programmers to structure the distributed computation for cer-
tain apps. For example, subgroups can be recursively created
to solve location-based computations using the divide-and-
conquer strategy (e.g., finding a free parking spot in a city).

2) Communication Channels: A communication channel
provides high level messaging support and makes it easy to
offload communication to the cloud. There are four types of
channels: (i) broadcast for sending messages to all members
of a group; (ii) anycast: for sending messages to a random
member of a group; (iii) point2point: for sending messages to a
specific member; and (iv) scatter-gather: for sending messages
to all members of a group and then receiving answers from
some group members as a function of their computation
results. The broadcast channel is unidirectional, while the
other three are bidirectional.

When a function invokes a communication channel on a
mobile, the call is intercepted in the middleware and always
forwarded to the cloud (avatars) to carry on. User-to-user
communication always occurs via the avatars.

While some messages (e.g., point2point and anycast com-
munication) are not persistent, the messages exchanged within
the whole group (e.g., broadcast and scatter-gather communi-
cation) can be designated as persistent by the programmers.

These messages are useful for forwarding data to new comers
to the group (e.g., a person who entered the region that defines
the group after the group was formed). Persistent messages are
stored in the group buffer in the cloud and distributed to new
members when they join a group.

3) Dynamic Group Membership: Since people move and
their context changes over time, group membership also
changes. The dynamic group membership in Moitree shields
the programmers from handling group dynamics. The mid-
dleware selects and maintains group members automatically
based on properties specified by the programmers. For ex-
ample, a group can be formed for a given geographic region
during a specific time interval. The middleware will add/re-
move group members based on who enters/leaves the region
during that interval.

B. App Execution

A distributed app is instantiated by all group members who
collaborate within the app. Thus, the distributed app consists of
app instances executed in parallel on the set of mobile/avatar
pairs belonging to the group members. The distributed app
runs in a single program, multiple data style. The app group
is formed when the first user (i.e., the initiator) starts its app
instance, which in turn invokes a group creation function. This
user becomes the owner of the group. Other group members
are selected and added to the group automatically by the
middleware based on their properties and permissions. The
permissions are defined in the users’ collaboration policies
and specify the conditions under which a user is willing to
participate in a group. The app instances at the other group
members are created in response to the request for group
creation. This is done through events delivered to the Moitree
components on the avatars/mobiles.

The app code is the same for each group member. However,
due to factors such as resource availability on mobiles and
privacy policies, the way in which the computation tasks are
partitioned between avatars and mobile devices may differ for
different users. Programmers do not have to worry about app
partitioning because Moitree hides it from them. Tasks in an
app may also differ with respect to different users based on
their roles in the distributed computation.

During the execution, instances can send messages using the
four communication channels already described. The commu-
nication is event-based. Messages are received asynchronously
(i.e., similar to the “select” system call in Unix), using callback
functions registered by the programmers with the Moitree
middleware.

The app instance at the initiator is responsible to delete
its groups before terminating. This operation triggers events
in Moitree that will terminate app instances at all the other
group members.

Let us finally note that Moitree apps invoke the Moitree
API for group operations and communication. For everything
else, it uses the local platform API (e.g., Android). Finally, it
is important to point out that Moitree apps co-exist with native
apps on mobile devices.

Code 1: Code running at the parent’s mobile/avatar

1 searchForLostChild () {

2 MembershipProperties prop = new MembershipProperties () ;

3 prop.setLocationBound (LOCATION, RADIUS) ;

4 prop .setTimeBound (TIME_FROM, TIME_TO) ;

5 Group group = Avatar.createGroup (null ,prop, false ,
LIFETIME) ;

ReadCallback callback = new ReadCallback (){

public void scatterGather (ChannellD cid,Message msg){

//msg contains results sent by participants

® 2 o

9 //add result to potential trajectories
10 //update user with latest trajectories
11 if (ChildFound){

12 DONE=true ;

13 }

14 }

15 [lother channel callbacks

16 }

17 group . setReadCallback (callback);
18 ChannellID cid = generateChannellD () ;

19 group.scatterGather (cid, childlmage);
20 while (!DONE){ //block }

21 group . deleteGroup (group.credential ());
2}

C. Code example: LostChild App

To illustrate the development of a Moitree app as well as the
main features of the middleware, let us consider a LostChild
app. A parent could use it to locate a child lost in a crowded
area using the child’s photo(s) to search for the child among
recent photos taken by nearby mobile users. Based on the
places where the photos that contain the child have been taken,
the app builds a real-time trajectory of the child’s movement
to aid the parent find her quickly.

Code 1 shows the code executed by the app instance running
at the parent’s mobile/avatar. Lines 2-4 specify the context
properties that must be satisfied by group members (i.e., region
and time interval), and the group is created in line 5. The
middleware is responsible for group formation and dynamic
maintenance. Alternatively, a group may also be created from
a specific list of users. Before adding a user to the group, the
middleware verifies that its app/group collaboration policies
allow it to become a group member (e.g., the user may refuse
to collaborate due to location privacy reasons).

Lines 6-16 show the callback function implementation for
Moitree message communication. In this example, we have
only one channel type, scatter-gather. The callback function
is registered with the middleware in line 17. Then, in line 19,
the app sends a photo of the child to all the group members
and then waits for responses until the child is found. When
responses are received from individual users, the scatter-gather
callback is invoked and the potential child trajectory is updated
and presented to the parent. When the parent confirms that
the child was found, the app deletes the group and terminates
(lines 11-12 and 20-21).

Code 2 shows the app processing done at the participating
users. The app is activated by the middleware at the participat-
ing users when they are added to the group (at group formation
time or later). The app starts with the onCreateGroup method
in line 1. A reference to the group is passed as a parameter

Code 2: Code running at the participants’ mobiles/avatars

onCreateGroup (Group group){
ReadCallback callback = new ReadCallback (){
public void scatterGather (ChanellD cid, Message msg){
Image image = msg.getData();
//run face recognition with image
//'if child image is recognized, set the location
and time associated with the matching photo in

A v oAE W —

result
7 group.scatterGather (cid, result);
8
9 [lother channel callbacks

10 }s
11 group . setReadCallback (callback);

Code 3: Creating hierarchical groups

1 // Top—Down Group Creation

2 Group newark = Avatar.createGroup (null,
membershipProperties , true , lifetime) ;

3 Group zip07102 = Avatar.createGroup (newark,
membershipProperties2 , true , lifetime) ;

5 //Bottom—up Group Creation

6 Group zip07102 = Avatar.createGroup(null,
membershipProperties , true ,LIFE_TIME) ;

7 Group zip07103 = Avatar.createGroup (zip07102. getParent ()
,membershipProperties , true ,LIFE_TIME) ;

8 Group newark = Avatar.createGroup (zip07102.getRoot(),

membershipProperties , true ,LIFE_TIME) ;
zip07102.changeParentGroup (newark) ;

in this method. A scatter-gather callback is implemented in
lines 2-10 and registered with the middleware in line 11. The
callback is invoked when the photo of the child is received
from the parent. Face recognition is performed for all the
photos of this user that satisfy the group location and time
criteria to see if they match the child image (line 5). If any of
them does (line 6), its associated location and time are sent to
the parent over the scatter-gather channel (line 7).

This example shows that Moitree makes mobile distributed
computing concise and easy to program and understand.

D. API Description

The Moitree API, presented in Table I, is divided into
three classes. The Avatar class provides methods for group
creation and joining. The Group class offers methods for group
management (e.g., leave/delete the group, create subgroups)
and group communication. The MembershipProperties class
is a utility class that has methods for specifying the group
properties. The same Moitree API is used independent of the
execution place (i.e., mobile or avatar).

1) Group Creation, Membership, and Deletion: In addition
to the prop parameter already discussed, createGroup takes
three other parameters: parent, enableLeader, and lifetime. The
parent parameter is used for group hierarchies. If it set to null,
it means the group is the potential root of a group hierarchy;
however, groups are not required to be part of hierarchies.
More details on group hierarchies are presented in III-D2.

Some groups may need leaders to implement functions
such as consensus or scheduling among their members. If the
enableLeader is set to true, then the user who creates the
group becomes the leader. If the leader leaves the group, the
middleware selects a new leader. Currently, Moitree selects a
random user as a new leader, but other leader selection policies
could be implemented. The method sendToLeader allows any
user to send messages to the leader, without the need to use the
ID of the leader, which improves fault-tolerance. The method
getLeader is normally used to determine if the local user is the
leader of the group; if yes, the app needs to run leader-specific
functionality.

The lifetime parameter specifies that a group has to be
deleted by the middleware in the absence of any group
communication for the lifetime duration. In this way, Moitree
deallocates the resources associated with a group when the
group is not active. The apps receive an exception and termi-
nate.

Groups are dynamic in that members can come and go.
Users can join a group using the joinGroup method. The
user invoking this method must know the group ID and have
the right credentials. For example, a new user is invited to
a multi-player mobile game and is provided the group ID
and the credentials. A user can leave a group by calling
removeFromGroup. Currently, this method is used only to
remove the user invoking it. However, we plan to explore if
this method should be allowed to remove other users; such
functionality could be useful for group creators and/or leaders.

2) Group Hierarchies: By default, if a user belongs to a
group, it is also a member of the parent group. For simplicity,
we do not allow overlapping sibling groups or overlapping
groups on different branches of the hierarchy tree.

A user in a subgroup can get a reference to the parent
group using the getParent method or to the root group using
getRoot. Similarly, a user in a group can get a references to
the child subgroups (i.e., one level down in the hierarchy)
using the getChildGroups method. Group hierarchies can be
created top-down or bottom-up as shown in Code 3. The top-
down approach is used when the hierarchy can be defined
before the app starts. The bottom-up approach allows for
dynamic creation of hierarchies at runtime. The example in
Code 3 illustrates the group hierarchy for an app that finds free
parking spots around a given destination. The region around
the destination can be divided in several levels of sub-regions,
with each sub-region associated to a group in the hierarchy.
The processing can be done in parallel for each subgroup, and
the results can be gathered at the initiator.

3) Group Communication: Apps may use any combination
of communication channels as needed. Each channel is instan-
tiated by the middleware upon its first invocation in the app.
Each app instance can use its own scatter-gather channel. To
distinguish these channels, they have unique ChannellDs.

The communication on all channels is asynchronous. Any-
one can send a message anytime and receive messages through
callback methods. Each sending communication channel is
paired with a receiving callback method.

Group-related API - Avatar Class

Method

Description

Group createGroup(Group parent, MembershipProperties
prop, Boolean enableLeader, Double groupLifetime)

Creates a group with members selected based on membership properties prop; if enable-
Leader is true, the group has a special member with leader role. groupLifetime specifies
how long the group should exist without receiving any messages from the members.

Boolean changeParentGroup(Group newParent)

This method is used to re-organize the group tree.

Boolean onCreateGroup(Group group)

Callback method executed by Moitree to start the app for a user when the user is made
member of the group. Parameter group is supplied by the middleware.

Boolean joinGroup(User user, Group group, Credential c)

Called to join a group after the group was created. The credential ensures that the user
has appropriate permissions to join the group. Credentials are generated when a group is
created and distributed to the members as part of group creation.

Group-related API - Group Class

Method

Description

void removeFromGroup(User usr)

Called to remove usr from a group.

void deleteGroup(Credential c)

Deletes an existing group. Credentials are used to ensure that the callee has permission to
delete the group.

List(User) getMembers()

Returns the list of group members.

User getLeader()

Returns the group leader.

Group getRoot()

Returns a reference to the root of the group.

Group getParent()

Returns a reference to the parent of the group.

List(Group) getChildGroups()

Returns the list of children groups of the group.

Group Membership API - MembershipProperties Class

Method

Description

void setTimeBound(Time from, Time to)

Used to set the time property for identifying users active in the given time interval (typically
used in conjunction with the location property).

void setLocationBound(Location center, Double radius)

Used to set the location where a user is/has been/will be (typically used in conjunction
with the time property).

void setSocialNetwork(SocialNetwork network, Activity a)

Used to identify group members who are part of the user’s social network based on activities
such as friendship, work, sports, etc.

void setList(List(Users) users)

Used to add specific users to a group.

Group

Communication API - Group Class

Method

Description

void setReadCallBack(ReadCallBack callBack)

Registers the read callback methods for incoming messages. ReadCallBack is an interface
with four callback methods corresponding to broadcast, anycast, scatter-gather, and
point2point.

void broadcast(Message msg)

This method is used to broadcast messages to a group.

void anycast(Message msg)

Used to send a message to a random member of the group.

void scatterGather(ChannellD cid, Message msg)

Used to broadcast messages to a group and get responses from group members back to the
broadcaster. An app can use as many scatterGather channels as required by using different
ChannellD to different channel

void point2point(Message msg, User to)

Used for user-to-user communication.

void sendToLeader(Message msg)

Used for sending a message to the group leader.

IV. MIDDLEWARE

The Moitree middleware is responsible for providing the A7 3
runtime support for the API discussed in Section III. The
overall structure of the middleware is shown in Figure 1. The
middleware is implemented in libraries, which process app
requests with the support of standard Android system services

and a few Avatar-specific services.

The middleware has the following components. System

TABLE 1: Moitree API

! i
| Avatar 1 | Mobile 1
! I m m
User Apps | Apps ! Apps Mobile 2 Mobile n
Application Framework } Application Framework | | | |
7M7d;\e;w;r; T System Event & T System Event & [i
Libraries '--+Consistency| Message - Consistency| Message Avatar 2 Avatar n
Support Services Support Services
T = o
i 0 2 g £
i [! I |
Private Virtual| | | - | -
Disk 1 i | |
,,,,,,,,,,, i I |
e T 1

Consistency Support (SCS) synchronizes data and system
states between a mobile device and its associated avatar to
create a consistent execution environment for apps. Event and
Message Services (EMS) manage and dispatch events and
messages to drive the app execution. Group Management Ser-
vice (GMS) manages groups and implements all group related
functionality. It also supports communication among group
members by managing communication channels. Directory
Service (DS) responds to queries requesting user information.
Storage Service (SS) facilitates shared storage space for the

Storage Service: Key- | [Discovery\ | __‘ Group ____|Global Event
Value Storage Service (M t] Broker

Group Management Service

Fig. 1: Moitree middleware architecture

middleware. SCS and EMS reside on both mobile devices
and avatars. The other components are provided as part of the
cloud infrastructure and run on dedicated servers. The number

of servers is dynamically adjusted based on the workload.

A. System Consistency Support (SCS)

The avatar and the mobile device of a user adopt the same
OS (Android in our current implementation). This allows
the same app code to run unmodified on both platforms.
SCS ensures a consistent system environment for the app
instances on the platforms. SCS synchronizes the necessary
data (e.g., photos, contacts, app-specific data) and system/app
state (e.g., current location of the mobile device). To achieve
low synchronization overhead, Moitree runs a daemon on
each mobile and its avatar. The daemons rely on each app
to define the data to be synchronized and specify when and
how frequently the data should be synchronized. The cost of
synchronization depends on user policies and the amount of
data to synchronize. A policy that requires to keep everything
always in sync will be costly in terms of energy and bandwidth
usage. The other extreme policy could be to synchronize only
using WiFi and while the phone is charging. Currently, we are
working on fine grained policies which will provide optimized
solutions in terms of usability and energy/bandwidth cost.

B. Event and Message Services (EMS)

Moitree API calls from an app are translated by the mid-
dleware as a set of events or messages. EMS forwards the
events and messages to the appropriate app instances in the
group with help from GMS. On each system (mobile device
or avatar), the EMS component is implemented as a set
of Android services, which are shared by all the apps on
that system. To handle events and messages, two queues are
established: an event queue (EQ) and a message queue (MQ).
Events generated from apps (e.g., group creation event in
LostChild) are posted to EQ. MQ is used to distribute data and
receive results (e.g., photos of the lost child, photos matching
the lost child and the related location/time information).

Moitree events and messages do not depend on network
addresses/names to reach their destinations. Instead, they rely
on the groups and channels established in each group. Specifi-
cally, events are defined as (app, group, type, and data) tuples;
messages are defined as (app, channel, group, type, and body)
tuples. The recipients of an event are the members in the group
of the app specified by the app and group fields. Within a
group, the channel types (i.e., type field) help demultiplexing
messages. GMS assists event/message forwarding with group
and channel information.

When an event or a message is generated on a mobile
device, it is first forwarded to its corresponding avatar before it
is delivered to each recipient of a group. Compared to directly
sending the event/message to every recipient, sending it only
once to the avatar can significantly reduce the mobile data
traffic and its potential monetary cost. When the event/message
arrives at the avatar, EMS forwards it to a GMS server, where
the recipient list can be determined. Then, the event/message
is dispatched by the GMS server to the recipient avatars, and
these avatars finally forward it to the corresponding apps.

Group Management
Service (GMS)

Global Event Queue _ Global Event

Broker

Event

" Broker Group

» Communication
Manager

» |Communication
Channel
{——_broadcast
{—_anycast
{—_scatter-gather
“point2point

Local Event Queue

Group
Manager

J Membership .
Manager

Message Queue

Group Management

)
Directory L.
Service |

Storage Service
(Key-Value Store)

Fig. 2: Group Management Service architecture

C. Group Management Service (GMS)

GMS is the core of the middleware. It is designed to handle
group operations, events, and communication. GMS runs on a
group of dedicated servers, and its internal modules are shown
in Figure 2.

For each group hierarchy, a group manager is used to
maintain its tree structure, and a membership manager is used
to maintain a list of the current members of each group or
subgroup. These two modules are also responsible for handling
requests, such as creating and managing groups, changing
membership, etc. To keep the data structures up-to-date, they
use keep-alive messages to find out failures of the members;
members are removed from groups when failures are detected.

For each group, there is an event broker in charge of
delivering events within the group, and a group communication
manager to maintain communication channels and to forward
messages to recipients. Thus, the handling of events and
messages is separated to prevent a large number of messages
to delay a few important events. The middleware gives higher
priority to event handling compared to message handling
because events are associated with important group/system
state changes that must be reflected in real-time in apps.

The forwarding workload of the GMS servers can be
offloaded to group leader avatars. However, this requires that
group and channel information is duplicated to these avatars.
This may lead to privacy concerns and additional overhead
to maintain the information consistent. Another optimization
aiming to reduce the load on GMS servers is to save large
messages into a shared key-value store. Instead of forwarding
complete messages, the GMS servers just forward the keys of
the messages. When an avatar receives a message key, it reads
out the message from the shared storage. However, this method
increases the workload of the storage service. Thus, we have
not included these optimizations in our current implementation
because they need additional experimental evaluation.

D. Storage Service (SS)

SS provides a shared and permanent storage space for
the middleware and is implemented as a key-value store.
Specifically, this service uses the Redis [5] key-value database

Application | Moitree | JXTA
Lost Child 85 178
Video Conferencing 100 219

TABLE II: Number of lines of code for our apps using
Moitree and JXTA

because it is fast, reliable, and can work on both a single node
and a multi-node configuration.

SS maintains an app registry, which serves the purpose of
finding which app is installed on which user’s device and
avatar. An entry in the app registry is created when an Avatar
app is installed on a user’s mobile device and avatar. The
registry entry contains the avatar ID and the app’s name.
Information about the users’ dynamic location and time is also
stored by this service to assist the DS component. Finally, this
service could be used for sharing large messages as described
in section I'V-C.

Each avatar has a virtual disk directly attached to it; these
disks are not part of the storage service. Each disk serves as
the private and primary storage for the avatar and the apps
running on it.

E. Directory Service (DS)

DS provides answers for queries such as “which users have
the LostChild app installed and were present in Times Square
between 5SPM and 6PM today?”’. DS uses SS as its data
repository. Normally, we expect the mobile carrier to provide
this service.

V. EVALUATION

We implemented a prototype of Moitree and two apps: the
LostChild app and a video-conferencing app that allows users
to create group hierarchies. The Moitree prototype consists
of 2722 lines of Java and Android code. The experimental
evaluation has three goals: (1) verify the effectiveness of the
Moitree programming model to reduce programming complex-
ity by implementing two apps; (2) assess the performance of
an app developed over Moitree, and (3) test the efficiency of
the middleware through micro-benchmarks.

Our testbed uses Android-based mobiles and Android x86
VMs running in an OpenStack-based cloud. The mobiles are
mix of Nexus 6, Nexus 5, Moto X Pure, Kindle Fire, and
HTC One M7. Unless otherwise specified, each avatar VM
runs Android 4.4 and is configured with 4 virtual CPUs and
3GB memory. The mobiles communicate with the cloud using
our institution’s secure WiFi network.

A. A Case Study on Programming Effort

To quantify the benefits of the Moitree programming model,
we used the LostChild app and a video conferencing app.
In the video conferencing app, users share real-time video
streams with friends, family or acquaintance. These three
types of groups have different levels of permissions. Friends
and family have permissions to see all the streams, while
acquaintance can view only selected streams. Both apps are
typical mobile distributed apps that may involve a large

number of mobile users. Their implementations must deal with
the common issues that are usually faced in mobile distributed
apps (e.g., identifying and coordinating groups of participants).
Therefore, they can act as a good test for Moitree.

We compared two implementations of each app: one done
using Java and JXTA [11], and one done in Java and Moitree.
JXTA is selected to compareto Moitree for two reasons: (1)
JXTA is designed for peer-to-peer systems, in which peers
are conceptually similar to sets of autonomous avatar/mobile
pairs, and (2) it also has group concepts, although different
from those used in Moitree.

For the two implementations of each app, we compared
the sizes of their source code. In this comparison, we only
counted the lines written by our programmers. The code in
other libraries (e.g., OpenCV [3] for face recognition and
Kryonet [2] for network communication) is not counted toward
the effort to develop the app. The app implementations include
mostly group management and group communication features;
the rest is done through library function invocations.

We show the numbers of lines of code (LOC) in Table II.
We found that Moitree decreases LOC by a factor higher
than 2. This is a promising result that illustrates how Moitree
can simplify the programming of mobile distributed apps.
Currently, we are implementing several additional apps for
a more thorough evaluation.

B. Performance of the LostChild App

To understand the real-time performance of Moitree apps
and the effect of avatars on latency, we measured the response
time for the LostChild app in two scenarios: (1) the major
workload in the app, including face detection and recognition,
is handled on the mobiles, and (2) the major workload is
executed at the avatars. Let us note that mobile to mobile
communication in the first scenario is mediated by Moitree
services in the cloud. Figure 3 shows the end-to-end response
time from the time of submitting the initial request until the
time of receiving the final results. The figure also shows the
breakdown of the latency between the face detection/recogni-
tion operations and the networking/middleware operations. In
these experiments, we used one mobile device as initiator and
three other mobile devices as participants. All the avatars were
instantiated on the same server. In this experiment, each avatar
VM runs Android 6.0 and is configured with 6 virtual CPUs.
Each participant has a database of 47 images containing 60
faces stored in her avatar. In addition, each participant returns
a result because all participants have photos of the lost child.
The training process for face recognition is done before the
app starts.

The results demonstrate that avatars help reduce the end-
to-end response time to half when compared to the scenario
where the mobiles handle the major workload. A substantial
part of this improvement is due to offloading the computation
for face detection and recognition to the avatars. We also
observe that the latency incurred by Moitree and networking is
reduced by 14.4%; this is due to offloading the communication
part in these workloads to the cloud.

2000

1500

1000

Time (ms)

End-to-end
response time

Face detection Networking and
and recognition middleware time
time
= Avatar

7 Mobile
Fig. 3: End-to-end response time for LostChild app when
the workload is at the mobile and avatar, respectively

Figure 4 shows that the response time when we varied the
number of participants from 2 to 7. In this experiment, the
face detection and recognition are executed at the avatars. The
experiment was conducted for two scenarios: (1) all the par-
ticipant avatars run on a single server; and (2) each participant
avatar runs on a different server. All the other parameters are
the same with those on the previous experiment. The figure
plots the median response latency and the latency of the last
received response as experienced by the initiator. Let us recall
that in this experiment each participant sends a response. In a
real-life situation, most participants are not expected to send
reponses. Therefore, the curves for the latency of the last
received response represent the worst case scenario.

The results show that the absolute values are reasonable
(generally, between 500ms and 700ms). In addition, the ap-
plication scales well with the number of participants for this
experiment. The number of participants has almost no effect
on the median latency values. However, the latency of the last
received response is affected by the number of participants. We
found two reasons for this problem. First, our current Moitree
implementation sequentializes the communication among the
members and adds a few of milliseconds to every message
transmission. Second, avatars do not send responses at the
same time; in most experiemnts, we noticed one or two
stragglers. We are working on improving the message delivery
system of the middleware and planning more experiments to
better understand the second problem. Finally, let us note that
running one avatar per server improves the response time
and, as expected, is relatively constant. Running all avatars
on one server, on the other hand, leads to higher latency and
this latency increases with the number of participants. This is
caused by the resource contention incurred by the increasing
number of avatars on the same machine.

Figure 5 shows the power savings achieved on a LostChild
participant phone when face recognition is done on the avatar
vs. on the phone. The power measurements in our experiments
were taken with Power Tutor [4]. When face recognition runs
on the phone, the energy consumption is approximately 225J.
When the face recognition is run at the avatar, the energy
consumption on the phone is about 9J. Thus, we conclude
that Moitree and Avatar lead to significant improvements in
response latency and energy savings on the mobiles.

_ — Last E2E
response time
(single-serv)

----- Last E2E
response time
(multi-serv)

500

——Median E2E
300 response time
(single-serv)

Time (ms)
N
8

= =Median E2E
100 response time
(multi-serv)

2 4 6 7
Number of perticipants

Fig. 4: End-to-end response time for LostChild app vs.
number of participants: (i) single-serv: all participant
avatars run on one server; (ii) multi-serv: each participant
avatar runs on a different server

3500
3000

2500 |
2000 || | | M
1500 || RO A
1000 | |1 | :
500 oLl

Power Consumption (mW)

Time (s)
Nexus 5 w Avatar
Fig. 5: Power consumption comparison for participant
LostChild app phone with and without avatar help

Component Energy/Power| Comment
Consumed

Moitree in idle state | 5.5 mJ/sec Middleware could run for two
and half month before draining
the battery

Moitree API calls 2.3 ml/call One and half million API calls
with a full battery

Data transfer by | 0.5mJ/KB & | Energy consumed in addition to

middleware & | 0.15 mJ/KB WiFi being ON for the transfer

Plain TCP

TABLE III: Moitree’s energy consumption on phones

C. Experiments with Micro-benchmarks

Moitree itself consumes very limited resources. The mobile
part of Moitree takes 35 MB of memory and registers almost
no CPU usage in the idle state. However, to maintain the avatar
pairing, it periodically checks for data synchronization and
keeps waiting for communication requests. That is why we
see the low energy usage in Table III. This result shows that
energy consumption on mobiles in the idle state is negligible
for all practical purposes. Similarly, Table III shows that
the energy consumed per average API call is very low (a
full battery charge allows one and a half million calls). In
terms of data transmission, Table III shows that Moitree
introduces a relatively high overhead when compared with
plain TCP. This is due to the Kryonet [2] library used for
communication, which simplifies programming at the cost of
overhead. Nevertheless, the absolute values are still low.

Our next set of experiments show the scalability and the

(s
©»

N~

-
[

Latency in Middleware (ms)

A
05IIII|
0

10 20 30 40 50 60 70 80 90 100
Number of API calls

Fig. 6: Average end-to-end latency for concurrent API calls
in Moitree (including network communication)

I

NN oW w
8 8 8 &

N

-
«u
=]

8

Latency in Middleware (ps)
w
=1

o

10 20 30 40 50 60 70 80 90 100
Number of API calls

M Mobile (ps) ™ Avatar+GMS (us)

Fig. 7: Average processing time for API calls in Moitree
on mobile and avatar (no network communication)

Sensor | Reading latency (ms)
Accelerator 3.26
Gyroscope 1.96
Magnetometer 3.60

TABLE IV: Sensor data reading latency in Moitree

pairing capability of the mobile/avatar pairs. For the scala-
bility tests, we measured end-to-end latency for concurrent
API calls. Test programs concurrently called random APIs
from mobiles and avatars, and then measured the latency to
complete these calls. The API calls start at the App layer in
Figure 1, pass through the API and middleware layers, reach
the GMS service layer, and then the results are returned via
the reverse path.

Figure 6 shows the latency of the concurrent API calls.
We used up to 100 API calls at the same time, which is
a significant load. The aim of the experiment is to assess
the delay imposed by the middleware to process the calls.
The results show that even 100 concurrent API calls can be
resolved in 2.4ms. Next, we instrumented the middleware and
discarded the communication time (used by the kryonet [2]
library). The results are shown in Figure 7. We see that the
execution of the API calls remains approximately constant at
about 320us. This demonstrates that Moitree scales well at a
load of up to 100 concurrent API calls.

Our final set of experiments show the pairing capability
of the middleware. The most important metric for pairing is
the latency to resolve API calls spanning across the mobile

and the avatar. For this experiment, our test program runs on
an avatar and reads sensor data on the corresponding mobile.
The middleware on the avatar intercepts the calls, requests
data from the mobile, and transparently provides the data to
the running programs. Table IV shows the average latency
incurred for three of the sensors present in the Nexus 5 phones.
We deducted the network delay from the readings as it depends
on external factors not related to the Moitree middleware. All
the latencies are under 4ms, which is fine for most real-time
apps. We are working on decreasing the networking latency
which may hamper the performance of real-time apps.

VI. RELATED WORK

While assisting mobile devices with cloud resources is a
very active research area [23], [9], [10], [16], [24], Moitree is
the first middleware for cloud-assisted mobile distributed apps.
Very recently, a few works have investigated cloud support for
mobile distributed computing [16], [24]. Clone2Clone [16]
offloads peer-to-peer networking to the cloud, thus enabling
more efficient communication among mobile users. Moitree,
on the other hand, provides full system support for the
execution of mobile distributed apps and a high-level API
for programming distributed apps over mobile/avatar pairs.
Sapphire [24] is a distributed programming platform for mo-
bile cloud applications that separates the application logic
from the deployment logic. Thus, programmers can modify
distributed application deployments without changing the ap-
plication code (e.g., change the caching behavior). This work
is complementary to Moitree and could be leveraged by the
Avatar platform to allow for dynamic management of non-
functional app features. It should be noted that Moitree is
not just for offloading of computation and communication to
the cloud; rather, it is a programming model to build mobile
distributed apps based on dynamic context such as social
groups, time, and location, while providing computation and
communication offloading to improve efficiency.

Moitree has clear advantages in terms of latency, energy-
efficiency, and availability over middleware platforms for
programming distributed apps designed for purely mobile
environments [17], [18], [19], [20]. Among the middleware
for distributed programming over mobile ad hoc networks
(MANET), LIME [20] and TMACS [17] propose group ab-
stractions similar to Moitree. LIME [20] provides a framework
in which mobile agents can form groups based on context-
awareness. Moitree’s programming model has two main ad-
vantages over LIME: more flexible communication abstrac-
tions, and its supporting middleware performs transparent
dynamic group management. TMACS [17] proposes an object-
oriented distributed middleware framework for MANET. In
Moitree, groups are defined based on users and their activities
activities rather than the types and scopes of objects as in
TMACS. This makes mobile distributed programming simpler
and more natural.

MELON [12] is a general purpose coordination language for
MANET that supports asynchronous exchange of persistent
messages. Although MELON provides an API similar to

Moitree, it does not support group management or different
types of communication between group members.

Pogo [8] and MobiSoC [13] are closer to Moitree because
they use server-side resources to provide middleware platforms
for specific areas of mobile computing. Pogo [8] proposes
a middleware for distributed mobile phone sensing. Unlike
Pogo which focuses on sensing, Moitree provides a general
programming model for mobile distributed computing. Fur-
thermore, Pogo does not explicitly use group abstractions such
as Moitree. Also, the assignment of mobile sensing devices to
a particular researcher is done by an administrator in Pogo,
while Moitree groups are handled dynamically by the mid-
dleware. MobiSoC [13] supports mobile social computing and
provides a high-level API based on people and places, similar
in nature with the one provided by Moitree. Both platforms
use groups as main abstractions. But unlike MobiSoC which
maintains global state about communities at the server-side,
Moitree provides a distributed architecture in which apps work
in peer-to-peer fashion. Furthermore, MobiSoC focuses on
mobile social apps, while Moitree enables general-purpose
mobile distributed apps.

VII. CONCLUSION AND FUTURE WORK

To the best of our knowledge, Moitree is the first middle-
ware for mobile distributed apps assisted by the cloud. We
implemented Moitree on top of our Avatar platform and tested
it with two apps. The results of our evaluation are promising.
Moitree is able to reduce the number of lines of code to
less than half when compared to an existing solution. In
addition, Moitree scales well when multiple APIs are invoked
concurrently and helps users save energy on mobile devices
at the cost of a reasonable latency overhead.

As future work, we are building a new distributed file
system, with the goal of making the data available and
consistent for the computation on both the mobile and the
avatar, while reducing the energy and bandwidth costs. We
are also working on privacy aware computation techniques
and seamless computation offloading for Moitree.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation (NSF) under Grants No. CNS 1409523, CNS 1054754,
DGE 1565478, and DUE 1241976, the National Security
Agency (NSA) under Grant H98230-15-1-0274, and by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under Contract No.
A8650-15-C-7521. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NSF,
NSA, DARPA, and AFRL. The United States Government is
authorized to reproduce and distribute reprints notwithstanding
any copyright notice herein.

REFERENCES

[1] Intel begins shipping Skylake CPUs with SGX enabled.
http://www.intel.com/content/www/us/en/processors/core/6th-gen-
core-family-desktop-brief.html.

[2]
[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Kryonet. https:/github.com/EsotericSoftware/kryonet.

OpenCV. http://opencv.org/.

Power Tutor. http://ziyang.eecs.umich.edu/projects/powertutor/.

Redis. http://redis.io/.

A. Baumann, M. Peinado, and G. Hunt. Shielding applications from
an untrusted cloud with haven. In Proceedings of the 11th USENIX
conference on Operating Systems Design and Implementation, pages
267-283. USENIX Association, 2014.

C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and
H. Debnath. Avatar: Mobile distributed computing in the cloud. In
The 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud ’15), March 2015.

N. Brouwers and K. Langendoen. Pogo, a middleware for mobile
phone sensing. In Proceedings of the 13th International Middleware
Conference (Middleware ’12), pages 21-40, December 2012.

B. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: Elastic
execution between mobile device and cloud. Proceedings of the 6th
EuroSys Conference (EuroSys 2011), pages 301-314, 2011.

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. Maui: making smartphones last longer with
code offload. Proceedings of the 8th international conference on Mobile
systems, applications, and services (MobiSys ’10), pages 49-62, 2010.
L. Gong. Jxta: A network programming environment. Internet Comput-
ing, IEEE, 5(3):88-95, 2001.

S. Guinea and P. Saeedi. Mobile application development with MELON.
In Proceedings of 13th International Conference ADHOC-NOW 2014,
pages 265-278, June 2014.

A. Gupta, A. Kalra, D. Boston, and C. Borcea. Mobisoc: A middleware
for mobile social computing applications. Springer MONET, 14(1):35-
52, Jan. 2009.

K. Kim, S. Lee, and P. Congdon. On cloud-centric network architecture
for multi-dimensional mobility. Computer Communication Review,
42(4):509-514, 2012.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. Proceedings of the IEEE Infocom 2012, pages
945-953, 2012.

S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei. Clone2clone (c2c):
Peer-to-peer networking of smartphones on the cloud. In Presented as
part of the 5th USENIX Workshop on Hot Topics in Cloud Computing,
Berkeley, CA, 2013. USENIX.

J. Lin, E. Shing, W.-K. Chanand, and R. Bagrodia. TMACS: Type-based
distributed middleware for mobile ad-hoc networks. In Proceedings
of the 5th Annual International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services, July 2008.

J. Liu, D. Sacchetti, F. Sailhan, and V. Issarny. Group management
for mobile ad hoc networks: design, implementation and experiment.
In Proceedings of the 6th international conference on Mobile data
management (MDM 05), page 192199, May 2005.

M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications with the tota middleware. In Proceedings of
of the second IEEE Annual Conference on Pervasive Computing and
Communications (PERCOM 2004), pages 263-273, March 2004.

A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coordination
model and middleware supporting mobility of hosts and agents. ACM
Transactions on Software Engineering and Methodology (TOSEM),
15(3):279-328, July 2006.

Y. Qin, D. Huang, and X. Zhang. Vehicloud: Cloud computing
facilitating routing in vehicular networks. Proceedings of the 11th IEEE
TrustCom, pages 1438-1445, 2012.

M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan. Odessa: Enabling interactive perception applications on mobile
devices. In Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’11, pages 43-56, New
York, NY, USA, 2011. ACM.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14-23, 2009.

I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy. Customizable and extensible
deployment for mobile/cloud applications. In 71th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages
97-112, Broomfield, CO, Oct. 2014. USENIX Association.

