
Zone-based Federated Learning
for Mobile Sensing Data

Xiaopeng Jiang∗§ Thinh On∗§ NhatHai Phan∗ Hessamaldin Mohammadi∗ Vijaya Datta Mayyuri† An Chen†

Ruoming Jin‡ Cristian Borcea∗

New Jersey Institute of Technology∗ Qualcomm Incorporated† Kent State University‡
Email:{xj8,to58,phan,hm385,borcea}@njit.edu, {vmayyuri,anc}@qualcomm.com, rjin1@kent.edu

Abstract—This paper proposes Zone-based Federated Learn-
ing (ZoneFL) to simultaneously achieve good model accuracy
while adapting to user mobility behavior, scaling well as the num-
ber of users increases, and protecting user data privacy. ZoneFL
divides the physical space into geographical zones mapped to a
mobile-edge-cloud system architecture for good model accuracy
and scalability. Each zone has a federated training model, called
a zone model, which adapts well to data and behaviors of users
in that zone. Benefiting from the FL design, the user data privacy
is protected during the ZoneFL training. We propose two novel
zone-based federated training algorithms to optimize zone models
to user mobility behavior: Zone Merge and Split (ZMS) and
Zone Gradient Diffusion (ZGD). ZMS optimizes zone models by
adapting the zone geographical partitions through merging of
neighboring zones or splitting of large zones into smaller ones.
Different from ZMS, ZGD maintains fixed zones and optimizes
a zone model by incorporating the gradients derived from
neighboring zones’ data. ZGD uses a self-attention mechanism
to dynamically control the impact of one zone on its neighbors.
Extensive analysis and experimental results demonstrate that
ZoneFL significantly outperforms traditional FL in two models
for heart rate prediction and human activity recognition. In
addition, we developed a ZoneFL system using Android phones
and AWS cloud. The system was used in a heart rate prediction
field study with 63 users for 4 months, which demonstrated the
feasibility of ZoneFL in real-life.

Index Terms—federated learning, smart phones, mobile sens-
ing, edge computing

I. INTRODUCTION

Sensing data collected on mobile devices (e.g., from wear-
able sensors) can be employed in many practical deep learning
(DL) application domains, such as mobile health and wellness.
An effective DL model requires data from many users, and
it needs to protect the privacy of sensitive mobile sensing
data. Furthermore, it needs to adapt to user behavior, which is
location-dependent. The aim of this paper is to build an effec-
tive DL system for mobile sensing data that works efficiently
on smart phones and satisfies the following requirements: (i)
Privacy-preserving: learn from data provided by many users,
while protecting user data privacy; (ii) Mobility-awareness:
achieve good model accuracy by adapting to user mobility
behavior, and (iii) Scalability: scale well as the number of
users increases. We propose Zone-based Federated Learning
(ZoneFL), a novel federated learning (FL) architecture that

§Equal contribution

builds and manages different models for different geograph-
ical zones, to satisfy these requirements. By design, ZoneFL
satisfies the privacy-preserving requirement because Federated
Learning (FL) [1] learns from data collected by many users,
while protecting the user data privacy during training. In FL,
the models are trained on mobile devices with their local data,
and the server aggregates the models received from mobile
devices. The users’ local data never leave the mobile devices.

Vehicular traffic prediction and heart health notification are
two motivating examples for ZoneFL. For traffic prediction,
the traffic patterns are different across zones due to zone-
dependent user behavior (e.g., shopping vs. business). For an
app that sends alerts about the level of cardiovascular risk
associated with users’ current activity, the altitude and the
climate of different zones will impact the notifications received
by users. Therefore, zone-based models built by ZoneFL are
expected to outperform a global FL model.

The main novelty of ZoneFL is its zone-based approach
to satisfy requirements for mobility-awareness and scalability.
To adapt DL models to user mobility for higher accuracy
and to achieve good scalability, ZoneFL divides the physical
space into geographically non-overlapping zones mapped to
a mobile-edge-cloud architecture. Each zone trains its own
zone model, which adapts to the data and behaviors of the
users who spend time in that zone. As users move from one
zone to another, they collect data and participate in model
training for different zones. For inference, their mobile devices
switch from one zone model to another, based on their current
location. Thus, zone models achieve higher accuracy than
globally trained FL models, satisfying the mobility-awareness
requirement. In ZoneFL, edge nodes manage the FL training
within their zones and host the latest models for their zones.
Mobile devices can download these models when they enter
a new zone. The cloud collaborates with the edge nodes
to dynamically maintain the zone partitions for the entire
space, but it is not involved in training. Compared to the
traditional FL mobile-cloud architecture, the mobile-edge-
cloud architecture of ZoneFL is more scalable because model
aggregation is done distributedly at the edge (satisfying the
scalability requirement), has lower latency for mobile users
who interact with the edge instead of the cloud, and results in
less bandwidth consumption in the network core [2, 3].

A major challenge in ZoneFL is how to ensure the zone
models adapt to user mobility behavior changes over time.978-1-6654-3902-2/21/$31.00 2021 © IEEE

To solve this challenge, we propose two novel zone-based
federated training algorithms: Zone Merge and Split (ZMS)
and Zone Gradient Diffusion (ZGD). ZMS optimizes zone
models by adapting the zone geographical partitions through
merging of neighboring zones or splitting of large zones back
to previously merged smaller zones. The algorithm ensures
that merging and splitting results in better model accuracy in
each new zone. ZMS can be used to gradually improve the
zone partitions, when they are initially suboptimal. Different
from ZMS, ZGD maintains fixed zones and optimizes a zone
model by leveraging concepts from graph neural networks
to incorporate the gradients derived from neighboring zones’
data. ZGD uses a self-attention mechanism to dynamically
control the impact of one zone on its neighbors. ZGD can be
used to further optimize zone models when the zone partitions
are relatively stable according to ZMS.

ZoneFL was evaluated in terms of model accuracy and
system performance using two models and two real-world
datasets: Human Activity Prediction (HAR) with mobile sens-
ing data collected in the wild, and Heart Rate Prediction
(HRP) with the FitRec dataset [4]1. The results demonstrate
that models using ZoneFL without the optimization performed
by ZMS and ZGD significantly outperform their counterpart
models using traditional FL for zones that have enough
training data. ZoneFL with ZGD and ZMS further improve the
model performance, with ZMS improving the performance in
the initial rounds and ZGD after that.

We implemented a ZoneFL system using Android phones
and AWS cloud. The results show that ZoneFL achieves low
training and inference latency, as well as low memory and
battery consumption on the phones. ZoneFL scales better,
because a zone edge server handles only 34.98% to 37.26% of
the communication and computation load handled by a global
FL server. We also observed multiple zone merges and splits in
the field study, when the model utility improved significantly.
These results show the feasibility of ZoneFL in real-life.

II. BACKGROUND AND RELATED WORK

Federated learning (FL) is a multi-round communication
protocol between a coordination server and a set of N clients
to jointly train a model fθ, where θ is a vector of model
parameters (also called weights). The training proceeds in
rounds. At each round t, the server sends the latest model
weights θt to a randomly sampled subset of clients St. Upon
receiving θt, each client u ∈ St uses θt to train its local
model and generate the weights θut . Client u computes its
local gradient ∇θut = θut − θt, and sends it back to the
server. After receiving the local gradients from all the clients
in St, the server updates the model weights by aggregating
all the received local gradients using an aggregation function
G : R|St|×n → Rn, where n is the size of ∇θut . A typical
function G is weighted average, called FedAvg [5].

By joining the FL protocol, clients minimize the average of
their loss functions as follows: θ∗ = argminθ

1
N

∑N
u=1 Lu(θ),

1Datasets were downloaded and evaluated by the NJIT team.

where Lu is the loss function of client u on their lo-
cal training dataset Du. Lu is defined as Lu(θ) =

1
|Du|

∑
x∈Du

L
(
fθ(x), y

)
, where |Du| denotes the number of

data samples in Du, and L is a loss function (e.g., cross-
entropy) penalizing the mismatch between the predicted values
fθ(x) of an input x and its associated ground-truth label y.

Location Embedding in FL. To adapt to user mobility
behavior, a naive approach in FL could be to incorporate the
user location in the model input [6, 7]. This approach, however,
increases the model size and the computation overhead on the
mobiles. Differently, ZoneFL balances the trade-offs between
model utility, resource constraints, and scalability by develop-
ing novel federated training algorithms seamlessly integrated
into a scalable mobile-edge-cloud system architecture.

Clustering and Personalization in FL. Although ZoneFL
shares the idea of training models over groups of users with
clustering in FL [8–10], there is no efficient clustering method
to group users by their mobility behavior without violating
users’ location privacy. ZoneFL optimizes models to user
mobility behavior and does not require centralized model
updates or privacy-sensitive user information. The edge nodes
do not have access to users’ locations; they just know that the
user has been in a possibly large zone. Furthermore, ZoneFL
provides a solution that can be naturally deployed at the edge
for better scalability, which is a further advantage compared
to clustering approaches. Note that ZoneFL is orthogonal to
personalized FL [11], which can be leveraged in ZoneFL to
produce personalized models for each user in each zone.

Deep Learning at the Edge. DL has been employed in edge
computing for a broad range of applications, such as video
analytics, speech recognition, and autonomous vehicles [12–
14]. However, these solutions still collect device data at the
edge, and hence present privacy problems. Also, ZoneFL
achieves better scalability because the training is done at the
edge, without any involvement from the cloud.

III. ZONEFL TRAINING

This section presents zone partitioning, ZoneFL training,
and our two federated training algorithms.

A. Zone Partitioning

The physical space (e.g., a city) is partitioned into non-
overlapping zones, based on administrative boundaries or other
knowledge about their characteristics (e.g., shopping district,
park, etc.). The zones are model-specific. For example, a heart
rate prediction model has different zones compared with a
vehicular traffic prediction model. In this way, ZoneFL can
achieve better model performance by targeting training to
zones in which the user behavior is more homogeneous for
a given type of mobile sensing data. For example, the user
mobility behavior in a park (e.g., exercising) is different from
the behavior in a shopping districts (e.g., leisurely walking).

The granularity of zones is defined based on the target
application and the size of the user pool, i.e., each zone shall
be small enough to capture behavior differences among zones,

Fig. 1. ZoneFL Training Architecture.

and big enough to have sufficient users for good scalability-
utility balance. The zone topology is a graph defined by
neighboring relations of zones. By default, the neighboring
relation is adjacency (i.e., two zones are neighbors if their
borders touch), but this could be modified, for example, to
define two zones as neighbors if they are geographically closer
than a given threshold.

B. ZoneFL Training Overview

ZoneFL uses a mobile-edge-cloud architecture and trains
separate zone models (i.e., separate instances of the same base
model) on data collected in each zone, as shown in Figure 1.
Each zone is managed by an FL Zone Manager at the edge,
which maintains the latest models for its zone. A mobile is
not tied to a zone, but collects data from all the zones visited
by the user and performs training for each of these zones. For
example, User 4 moves from Zone 2 to Zone 3 and collects
data in both zones (Figure 1). For each zone, the mobiles that
collected data in the zone train the zone models jointly with
its FL Zone Manager. Mobiles download the updated models
from the edge managers when they need inference in a new
zone (e.g., User 4 in Zone 3). The FL Zone Manager does not
know when and where the user was in a zone. It only knows
its participation in zone training and the downloaded zone
models. Therefore, the potential private information known by
the edge is limited to coarse-grained zone information, while
the fine-grained user location data is protected.

The cloud collaborates with the edge to update the zone
partitions for the entire space, as the geographical coordinates
of the zones may change over time due to changes in user
behavior, but it is not involved in training. The mobile devices
download the zone information and the identifiers of the edge
managers from the cloud every time new zone configuration
information is available. The zone partition information is used
to associate data with different zones, perform local training,
and send the weights to the corresponding edge manager,
which will aggregate the zone model.

ZoneFL allows for the FL Zone Managers to be located in
the cloud or at the edge, because their software is decoupled
from the hardware infrastructure. This enables an incremental
deployment over time, given that the edge infrastructure is cur-

rently available only in major cities. The FL Zone Managers
for certain zones can start in the cloud and be migrated to
the edge, when the edge becomes available. The mobile-edge-
cloud architecture provides better scalability than a mobile-
cloud architecture because edge nodes in ZoneFL have a lower
communication and computation load than the cloud server
in traditional FL. Also, the edge allows for faster interaction
with the mobiles and for less bandwidth consumption in the
network core. If there are multiple edge nodes in a zone, only
one runs the FL Zone Manager, while the others act as relays
between the mobile devices and the FL Zone Manager.

A major challenge in ZoneFL training is how to adapt the
models to changes in user mobility behavior over time. We
present two federated training algorithms that address this
challenge. First, Zone Merge Split (ZMS) dynamically adapts
the zone partitions by either (i) merging two neighboring zones
into a larger zone, whose model performs better than each
of the individual zone models, or (ii) splitting a larger zone
back to previously merged smaller zones, whose individual
models perform better than the model of the larger zone.
Second, Zone Gradient Diffusion (ZGD) improves a zone
model by aggregating contextual information derived from
local gradients of neighboring zones. In ZGD, the zones do
not change, but the user mobility behavior change is captured
through the diffusion of information from neighboring zones.
A self-attention mechanism is applied in ZGD to dynamically
quantify the impact of each zone on its neighbors. Different
deployments of ZoneFL may use either ZMS or ZGD or a
combination of both based on trade-offs between model utility,
scalability, and user mobility behavior.

C. Zone Merge and Split (ZMS)

ZMS is a dynamic zone management protocol that optimizes
model utility across zones. Next, we define zone merging and
splitting, and approximate the merging and splitting problem
using novel greedy algorithms for the two operations.

Zone Merging. Given a set of N non-overlapping zones
Z = {Zi}i∈[0,N] and its complete set of possible combinations
of zones Θ, merging a zone Zi with its neighboring zones in
Z is to find the set of non-overlapping and merged zones
Z = {Zj}j∈[0,|Z|] where Z ∈ Θ, |Z| is the number of non-
overlapping and merged zones in Z , and ∪jZj = ∪iZi so that:
(1) The model utility across merged zones

∑
Zj∈Z L(θj ,Zj)

is optimized (Eq. 1); and (2) Every zone Zi achieves better
model utility after merging (Eq. 2). Note that L(θj ,Zj) is the
loss function of a zone Zj with the model parameters θj .

Z∗, {θ∗
j } = argmin

{θj},Z∈Θ

∑
Zj∈Z

L(θj ,Zj) (1)

s.t. ∀Zi ∈ Zj : L(θ∗
j , Zi) ≤ L(θ∗

i , Zi) (2)

where the loss of a zone Zj is an average loss over all the
users’ local data in Zj : L(θj ,Zj) = 1

|Uj |
∑

u∈Uj
L(θj , u)

where |Uj | is the number of users in the zone Zj .
Zone Splitting. Splitting a large zone into a set of smaller

sub-zones is the reverse process of merging zones. Given a

Algorithm 1 Zone Merging Algorithm
Input: Zone Zi

1: C ← ∅ # initialize a list of zone merging candidates
2: N ← getNeighbors(Zi) # get neighboring zones of Zi

3: for each neighboring zone Zn ∈ N do
4: θt

in ← (θt
i + θt

n)/2 # average of two zone models
5: θt+1

in ← argminθin
L(θt

in, Zi ∪ Zn) # Eq. 1
6: if L(θt+1

in , Zi) < L(θt+1
i , Zi) and L(θt+1

in , Zn) < L(θt+1
n , Zn) #

satisfying Eq. 2 then
7: C ← C ∪ Zn # add Zn into a list of candidates
8: if C ̸= ∅ then
9: Z∗

n ← argmaxZn∈C

[
L
(
θt+1
in , Zi

)
− L(θt+1

i , Zi)
]

+[
L
(
θt+1
in , Zn

)
− L(θt+1

n , Zn)
]

get the best neighboring zone
10: Merge(Zi, Z

∗
n)

large zone Z = ∪i∈[0,N]Zi formed by merging smaller sub-
zones {Zi}i∈[0,N] and Θ is the set of all possible combinations
of sub-zones {Zi}i∈[0,N], splitting Z is to find the set of sub-
zones S ∈ Θ, such that: (1) The model utility across sub-zones
is optimized; and (2) Every sub-zone Zi achieves better model
utility after the zone splitting.

S∗, {θ∗
j } = argmax

S∈Θ,{θ∗
j }

1

|S|
∑
Zj∈S

[L(θ∗
Z , Z)− L(θ∗

j ,Zj)] (3)

Eq. 3 indicates S∗ is the set of zones which has the maximal
utility gain from the federated training of the original zone Z,
i.e., 1/|S|

∑
Zj∈S [L(θ∗

Z , Z)− L(θ∗
j ,Zj)].

Zone Merge and Split (ZMS) Algorithm. We proved that
merge and split are NP-Hard by reducing them to the set
cover problem. For brevity, we skip the proofs. Therefore,
we propose greedy algorithms for merge and split. In simple
terms, ZMS merges two zones when the model performance
of the merged zone is better than the performance of each
of the models of the individual zones to be merged. Each
FL Zone Manager decides when to run the zone merging or
splitting, based on the conditions of each zone. For instance,
the users in some zones may collect more data than the users
in other zones, which may result in more frequent training.
Also, the user behavior may change in some zones, while
remaining similar in others. While running the zone merging
and splitting in every training round may result in the best zone
partitioning, such a solution has too much overhead for both
mobiles and FL Zone Managers. Therefore, ZoneFL balances
zone partitioning efficiency with the overhead.

Algorithm 1 shows the pseudo code for zone merging. This
algorithm is executed by the FL Zone Manager of zone Zi in
collaboration with the managers of its neighboring zones. ZMS
merges Zi with its best neighboring zone Z∗

n, optimizing the
zone merging objectives in Eqs. 1 and 2 (Alg. 1, Lines 2-7).
The number of neighbors in line 2 is typically a small constant
in practice, and lines 4-7 repeat over it. The additional round
of training in line 5 trades computation cost for better model
utility. It can be omitted, and θt+1 becomes θt in lines 6 and
9. The best neighboring zone Z∗

n is the zone that provides the
maximal utility gain after the zone merging among all potential
merges (Alg. 1, Line 9). Line 10 merges Zi and Z∗

n.

Algorithm 2 Zone Splitting Algorithm
Input: Zone Zj = ∪iZi, level l
1: C ← getCandidates(Zj , l)
2: for each zone Zc ∈ top-k(C) do
3: θt+1

c ← argminθc
L(θt

j , Zc)

4: if L(θt+1
c , Zc) < L(θt+1

j , Zc) then
5: split(Zj , Zc) # split the sub-zone Zc from the merged zone Zj

6: break
Function getCandidates(Zj , l):

7: C ← ∅ # initialize a list of worst sub-zones
8: for Zc ∈ subZones(Zj , l) do
9: if L(θt

j , Zc) > L(θt
j ,Zj) then

10: C ← C ∪ Zc

11: return sorted(C) # descending L(θt
j , Zc)

The zone models are trained and validated in the back-
ground by the mobiles in their respective zones. Mobiles retain
a small validation dataset to validate the zone models, and send
the validation results to their zone manager to be used in merge
decisions. Thus, these operations do not incur latency during
merges. The only operation that needs to be done specifically
for a merge is the validation of the model over the two zones.
To reduce the overhead, the zone manager selects only a
percentage p of the phones in its zone to perform training
and validation in this case.

In addition to adapting zones to changes in user mobility
behavior, merging in ZMS also handles the case when the orig-
inal zones set during bootstrapping do not have enough data
for adequate training. In this situation, ZMS merges such zones
with neighboring zones, therefore improving performance.

ZMS repeats the merging process across different zones and
training rounds to create a set of merged zones, denoted Z .
However, over time, in response to user mobility behavior
changes, some of the merged zones may need to be split.

The key idea of zone splitting (Algorithm 2) is to iden-
tify the sub-zone that performs worst in terms of model
utility and split it from its merged zone, such that the
zones after splitting perform better than the original zone.
ZMS recursively splits sub-zones of a merged zone, which
have the worst model utility, to optimize model utility
across all sub-zones. Each of the merged zones Zj ∈ Z
is a set of sub-zones {Zi}i∈[1,N] represented by a binary
tree of zone merging history, as illustrated in Figure 2.

Fig. 2. Binary Tree and Zone Splitting

Each internal node in the
tree represents a merged
zone from its two sub-
zones (children). Each leaf
node is an indivisible zone.
Periodically, the FL Zone
Manager of a merged zone
Zj checks for a potential
split. ZMS considers all the

internal nodes of the binary tree of zone Zj up to level l,
a parameter that balances the utility benefit of splitting with
its overhead, as potential sub-zones to split. ZMS keeps the
best merges after zone splitting; thus approximating the zone
splitting objective (Eq. 3) without affecting the zone merging
objectives (Eqs. 1, 2). The training and validation at mobiles
for split are similar to the ones for merge.

Algorithm 3 Zone Gradient Diffusion with Self-Attention
Input: Zone Zi

1: Ni ← getNeighbors(Zi)
2: for Zn ∈ Ni do
3: ein ← σ

(
∇

(
θt
i , Zi

)
•∇

(
θt
i , Zn

))
where “•” is an inner product

4: ∀Zn ∈ Ni : βin ←
exp(ein)∑

Zj∈Ni
exp(eij)

computing coefficients

5: θt+1
i ← θt

i + ∇
(
θt
i , Zi

)
+

∑
Zn∈Ni

βin∇
(
θt
i , Zn

)
aggregating

gradients from neighboring zones

D. Zone Gradient Diffusion (ZGD)

In addition to ZMS, we propose ZGD, an algorithm that
keeps the zones fixed but adapts the model by aggregating
contextual information derived from local gradients of neigh-
boring zones (Algorithm 3). We found that contextual infor-
mation captures changes in mobility patterns and significantly
improves the utility of zone models. In ZGD, at round t,
the managers of the neighboring zones Zn of a zone Zi

derive their local gradients using the model parameters θt
i

from the zone Zi by using local data Du from their users
u, as follows: ∇(θt

i , Zn) = 1/|Un|
∑

u∈Un
∇(θt

i , Du). For
data privacy protection, the mobiles of users u compute the
gradients ∇(θt

i , Du) and send them to the managers of Zn.
Intuitively, the more similar the gradients of a zone

(∇(θt
iZi)) are with the gradients of a neighboring zone

(∇(θt
i , Zn)), the higher the impact of the neighboring zone Zn

on Zi will be. We quantify this impact through self-attention
coefficients βin by normalizing the inner product of the local
gradients of zone Zi and its neighboring zones Zn ∈ Ni :

∀Zn ∈ Ni : βin ←
exp(ein)∑

Zj∈Ni
exp(eij)

(4)

where ein = σ
(
∇(θt

i , Zi) •∇(θt
i , Zn)

)
, σ is the sigmoid

function, and “•” is an inner product.
Finally, we aggregate the gradients from neighboring zones

to update the zone model θt
i at round t:

θt+1
i ← θt

i +∇
(
θt
i , Zi

)
+

∑
Zn∈Ni

βin∇
(
θt
i , Zn

)
(5)

By doing so, ZGD updates the zone models to diffuse con-
textual information from one zone to all the remaining zones
across training rounds. This operation significantly enriches
the information used to optimize zone models in ZoneFL,
compared with existing FL algorithms.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. System Architecture

The ZoneFL architecture has three main components, as
shown in Figure 3: (1) FL Phone Manager coordinates the
ZoneFL activities on the mobiles/phones; (2) FL Zone Man-
ager coordinates the ZoneFL activities at the edge; and (3)
Zone Partition Keeper maintains and provisions the latest zone
partition information in the cloud.

The software components work together to support the six
phases of ZoneFL: data collection and preprocessing, privacy
protection, model training and aggregation, mobile apps using

Fig. 3. ZoneFL System Architecture.

models for inference, zone partition maintenance, and zone
training adaptation to user mobility. The first four phases
follow traditional FL, and their details can be referred from
FLSys [15] that ZoneFL is built on. In the following, we
explain the two phases that are specific to ZoneFL.

Zone Partition Maintenance. The Zone Partition Keeper
maintains the latest zone partition information in the system,
which is represented as a graph. Each non-overlapping zone
is a vertex, and each edge connects two neighboring zones.
The initial zone partition information is bootstrapped by the
administrator of the system based on administrative divisions
of a region. The Zone Partition Keeper is also responsible for
maintaining information about the identity (e.g., IP addresses)
of the FL Zone Managers at the edge.

Initially, a phone receives the zone partition information
from the Zone Partition Keeper. Then, it maps its data to
different zones, based on the geographic locations where the
data were collected. This determines the list of zones to which
the phone subscribes for training. The phone communicates
with the FL Zone Managers of these zones to jointly train the
zone models. For inference, a phone may use a zone model
even if the phone did not participate in the training of the given
zone. This allows new users to quickly benefit from ZoneFL.

Zone Training Adaptation. The Zone Adapter of each
zone exchanges model weights with its neighboring zones for
dynamic adaptation of zone training (i.e., ZMS and ZGD)
To perform merge and split in ZMS, the system needs to
perform zone level model validation. This operation is done
through the cooperation of the phones and the edge manager.
The FL Zone Manager maintains a Zone Local Model Utility
Storage for phones to report the model utility computed on
their validation datasets, periodically aggregates the validation
results, and updates the zone partition information accordingly.
This process involves extra communication between phones
and the FL Zone Manager, but it mitigates potential privacy
issues, since data never leaves the phone.

ZGD exploits the fixed and stable zone partition information
from the Zone Partition Keeper. The model aggregator aggre-
gates clients gradients incorporating the gradients with regard
to neighboring zones’ model weights (received from the Zone
Adapter) to further optimize a zone model (Eq. 5).

B. ZoneFL Prototype Implementation

We implemented an end-to-end ZoneFL prototype on An-
droid phones and AWS cloud. This prototype, with ZMS for
dynamic adaptation, was used in our field study, described
in Section V. AWS offers AWS Local Zones as its edge
computing service. However, it is not available yet in the
area of our field study, and therefore the edge components
of ZoneFL are deployed in the AWS cloud. We chose Deep
Learning for Java (DL4J) as the underlying framework for
DL-related operations, because it is a mature framework that
supports model training on Android devices.

Deployment and Operation Scripts. The system admin-
istrator prepares the initial zone partition information as a
geojson file, which defines the zones’ geometry as polygon
coordinates. We implement Python scripts to deploy and op-
erate the system. The deployment script reads the geojson file
provided by the system administrator to create an independent
FL Zone Manager for each zone in AWS. The operation scrips
are used to collect performance and reliability data.

FL Zone Manager. Most components are inherited from
FLSys [15]. The new Zone Adapter component is implemented
and deployed as AWS Lambda functions for low overhead and
fast start time, and it communicates with its counterparts in
neighboring zones to perform ZMS.

Zone Partition Keeper. We use an AWS S3 bucket as the
Zone Partition Keeper of all zones. This is the only shared
AWS resource in the system. All the other AWS resources are
independent among different zones. In this way, once edge
computing becomes more widespread, the FL Zone Manager
can be migrated from the cloud to the edge. The S3 bucket
makes the latest zone partition information available to phones
for download. The previous partition information is also stored
for the Zone Adapter to help with the split operation in ZMS.

Android Implementation. In the FL Phone Manager, the
Data Collector collects heart rate (HR) sensing data, used in
the field study, from a Bluetooth Polar HR tracking wrist
band [16]. The Data Preprocessor uses the geojson file with
Android Google Map API to check the zone where each data
point belongs to, and generates the model input for training.
The rest of the Android implementation is based on FLSys.

V. EVALUATION

The evaluation presents results for model utility and system
performance. The model utility experiments have two goals:
(i) Compare the performance of ZoneFL with Global FL (i.e.,
traditional FL trained with all users globally); (ii) Quantify
the benefit of ZGD and ZMS. The system experiments have
three goals: (i) Demonstrate the feasibility of ZoneFL in a
real-life deployment; (ii) Investigate ZoneFL scalability; and
(iii) Quantify the ZoneFL phone training time overhead.

A. Datasets, Models, and Metrics

We use two datasets collected in the wild to evaluate two
types of ZoneFL models: (1) Human activity recognition
(HAR) [15]; and (2) Heart rate prediction (HRP) [4]. While

TABLE I
ZONEFL VS. GLOBAL FL PERFORMANCE

Application Metrics Global FL Static ZoneFL Improvement Gain
HAR Accuracy (%) 65.27 69.63 6.67%
HRP RMSE 21.20 19.86 6.74%

other models can benefit even more from ZoneFL (e.g., ve-
hicular traffic prediction), we chose these two models because
we had access to suitable mobile sensing datasets for them.

HAR Model. The dataset for this model has data from
51 users, moving in a region larger than 20,000 km2. In the
experiments, we start with 9 non-overlapping zones over the
region covered by the dataset, based on GPS coordinates. The
zones are diverse and include a university campus zone, several
suburban residential zones, a riverside urban zone, a metro
zone, etc. On average, each user have 1,995 data samples
for each zone. The preprocessing and the CNN-based model
architecture follow the work in [15]. We use accuracy as the
main metric for model performance.

Heart Rate Prediction (HRP). The dataset for this model
contains 167,373 workout records for 956 users in 33 coun-
tries. Among the countries, we select the top 6 countries
having at least 10 zones with a reasonable number of average
data samples per zone to assess ZoneFL’s performance effec-
tively. We use an LSTM-based model [4] to predict the heart
rate given input features consisting of the workouts’ altitude,
distance, and time elapsed (or speed). We use the root mean
squared error (RMSE) metric for this prediction task.

B. Model Utility Results

ZoneFL vs. Global FL. Table I shows the performance
comparison between ZoneFL and Global FL. In this exper-
iment, ZoneFL works only with the zones defined at the
beginning of the experiment (called Static ZoneFL), without
employing ZMS or ZGD to adapt the models to user mobility
behavior over time. Thus, it provides a lower bound on
ZoneFL’s performance, which is expected to improve with
ZMS and ZGD. Global FL trains with all the users in the
datasets. Zone FL trains a different model for each zone in
the respective dataset. Some users have data and participate
in training in more than one zone. The metrics are computed
per sample in the test data set and then averaged. ZoneFL
models outperform the Global FL models by 6.67% for HAR
and by 6.74% for HRP. This performance gain is significant
given that it is very challenging for DL models to achieve
even 1% improvement in HAR and HRP tasks, as illustrated
in recent studies [4, 17]. As shown next, we observe further
improvements with the dynamic adaptation algorithms.

ZGD Performance. Although both ZGD and ZMS adapt
zone models to user mobility behavior changes, they serve
different purposes. Hence, we present the performance of ZGD
and ZMS separately. ZGD is designed to work with fixed zones
that have enough data for training. ZMS is designed to adapt
the zone partitions until all of them achieve reasonable model
performance. In practical terms, ZMS is generally used for
the beginning rounds of ZoneFL, while ZGD is used once
the zone model performance is relatively stable. For both

Fig. 4. Performance Improvements of ZGD for HRP.

TABLE II
PERFORMANCE IMPROVEMENTS OF ZMS FOR HRP.

Before
(RMSE)

After
(RMSE)

Improvement Gain
(%) Mean / SD

Occurrence Per
100 Rounds

Merge 23.79 21.44 9.87 / 3.11 4
Split 23.04 20.71 11.10 / 3.63 3

algorithms, we show just the results for HRP because its
dataset is more suitable for dynamic adaptation, since it has a
sufficient number of zones and users, while the HAR dataset
does not.

Figure 4 shows the performance of ZGD for the top-6
countries in the HRP dataset. ZoneFL with ZGD performs
better than Static ZoneFL for each country, and it clearly
outperforms Global FL (by as much as 11.89% for Poland).
We also observe that Static ZoneFL performs better than
Global FL for 5 countries, and slightly worse for one country.
The reason for the worse performance for Spain is that the
static zones do not capture well the changes in user mobility
behavior. ZoneFL with ZGD is able to alleviate this problem
and results in better performance than Global FL.

ZMS Performance. Table II shows the average model
performance improvement for zone merge and split in HRP.
In merge, the improvement gain is calculated as follows:
L1+L2

2 −L12, where L1 and L2 are RMSE losses evaluated on
the two constituent zones, and L12 is RMSE loss computed
on the merged zone. The reverse formula is used for splitting
a larger zone in two sub-zones. The results demonstrate that
ZMS can significantly improve the model performance. On
average, 4 merges and 3 splits occur every 100 rounds of
training, which shows that dynamic adaptation needs to happen
about once a month in a scenario where users train once a day.

C. System Results

To showcase the feasibility and benefits of ZoneFL in a
real-life deployment, we conducted an HRP field study with
63 users for 4 months. Along with phone sensor data, the
users were tasked to collect heart rate data from a Bluetooth-
connected heart rate tracking wrist band for daily activities.
The region of the study is larger than 20,000 km2, and it was
originally divided in 9 zones. The study ran the prototype of
ZoneFL with ZMS. In the field study, the ZMS split operation
is performed for only one level (l = 1). The prototype worked
reliably throughout the duration of the field study.

1) ZoneFL Feasibility on Smart Phones: We benchmarked
ZoneFL with HAR and HRP on Android phones using a

TABLE III
TRAINING ON PHONES: RESOURCE CONSUMPTION AND LATENCY

Application Phone

Max
RAM
Usage
(MB)

Foreground
Training

Time
Mean/SD

(min)

Background
Training

Time
Mean/SD

(min)

Battery
Consumption

per Round
(mAh)

Number of
Training
Rounds
for Full
Battery

HAR Nexus 6P 232 15.21/2.89 59.99/4.06 53.86 64
Google Pixel 3 228 2.13/0.24 9.32/0.09 9.91 294

HRP Nexus 6P 266 3.09/0.39 10.97/1.08 33.18 104
Google Pixel 3 230 0.40/0.10 5.07/0.37 4.66 625

TABLE IV
INFERENCE ON PHONES: RESOURCE CONSUMPTION AND LATENCY

Application Phone

Max
RAM
Usage
(MB)

Foreground
Inference

Time
Mean/SD

(millisecond)

Background
Inference

Time
Mean/SD

(millisecond)

Battery
Consumption

per
prediction

(µAh)

Millions of
inferences

for
Full

Battery

HAR Nexus 6P 161 54.65/16.36 1963.04/1540.29 4.49 0.77
Google Pixel 3 177 36.59/6.43 99.60/33.69 1.94 1.50

HRP Nexus 6P 232 528.93/53.53 1809.71/700.96 45.47 0.08
Google Pixel 3 229 167.71/6.83 669.88/112.01 5.74 0.51

testing app to evaluate training and inference performance. We
also assessed the resource consumption on the phones, with
different specs (Nexus 6P and Google Pixels 3). The results
demonstrate the on-device feasibility of ZoneFL, even for the
Nexus 6P phone, unveiled in 2015 and running Android 7.
Since ZoneFL works well on such a low-end phone, we expect
ZoneFL to work well on most of today’s phones.

Training Performance. Table III shows the ZoneFL train-
ing time and resource consumption on the phones. The training
time is recorded by training on average 86 samples samples
per zone per user in 5 epochs for HAR and HRP, respectively.
Foreground training (screen turned on) provides a lower bound
for the training time by using the full single core capacity.
In reality, we expect training to be done in the background,
while the phone is being charged. We take 10 measurements
and report the mean and standard deviation.

Training for one round is fast on the phones. The foreground
training time on Pixel 3 is just 2.13 min for HAR, and 0.4 min
for HRP. The background training time is also good for any
practical situation. The background training time is notably
longer compared with foreground training, since Android
attempts to balance computation with battery savings.

The results also show training is feasible in terms of
resource consumption. The maximum RAM usage of the app
is less than 266MB, and modern phones are equipped with
sufficient RAM to handle it. The phones could easily perform
hundreds of rounds of training on a fully charged battery. It
is worth noting that, typically, one round of training per day
is enough, as the users need enough time to collect new data.

Inference Performance. The results in Table IV demon-
strate that ZoneFL can be used efficiently by third-party apps
working in real-time. The measured time consists of the infer-
ence computation time and the inter-process communication
time. We continuously perform predictions/classifications for
30 minutes and report the average values. The inference time
for the two scenarios, foreground and background, follows a
similar trend as training.

2) Scalability: ZoneFL utilizes multiple FL Zone Managers
to receive and aggregate the gradients from the users. Com-
pared with a single server in Global FL, the communication

TABLE V
SERVER LOAD IN ZONEFL VS. GLOBAL FL

Application HAR HRP
ZoneFL server load 37.26% 34.98%

TABLE VI
ZMS PERFORMANCE IN THE FIELD STUDY

Merge Time
Zone X/
RMSE

Zone Y/
RMSE

Merged
Zone RMSE

2022-04-09 13:57 A/13.96 B/18.40 12.56
2022-05-29 12:53 C/44.53 D/11.86 10.84
2022-06-05 13:07 E/18.48 A/15.28 13.30
2022-07-29 21:56 F/17.40 G/39.23 14.78

Fig. 5. User Training Time vs. Number of Zones in the Datasets.

and computation load in ZoneFL is distributed among mul-
tiple zone servers. Considering a user may send gradients to
multiple zone servers, Table V computes the average ZoneFL
server load savings based on the user percentage distribution
over the number of zones in Figure 5. The results demonstrate
ZoneFL scales better than Global FL because the server load
is 34.98% to 37.26% of the one in Global FL.

3) ZMS Performance in the Field Study: Table VI depicts
zone merge time and model utility gains in the field study. At
the end of the field study, the number of zones changed from
9 to 7 after several merges and splits. For merge, the highest
model utility gain observed is to improve RMSE from 44.53 to
10.84. This is because the original zones did not have enough
users and data. For split, the highest RMSE improvement is
from 16.38 to 11.20. These observations showcase the ZMS
benefits in real-life.

4) ZoneFL User Training Time Overhead: In ZoneFL, the
phones may train in multiple zones, which may introduce
overhead when compared with Global FL. For every round in
Global FL, a phone trains once for all its data. In ZoneFL,
a phone may train once per zone from where it has data,
but for a smaller fraction of data. Figure 5 illustrates the
background training time when the phone trains on the same
amount of data, while varying the number of zones from
which the data is collected. The percentage of users shown
under the X axis represents the fraction of users that have
data in [1, 5] zones (e.g., 8.2% of users have data in 5
zones). The number of samples trained per zone follows the
average reported in section V-C1. For the 49% of the users
that have data in a single zone, there is no overhead compared
to Global FL. For the rest of the users, we observe a small
overhead, which increases with the number of zones but never
exceeds 3.5 minutes. Considering that the training occurs in
the background, this is an acceptable overhead for the benefits

of ZoneFL in terms of model utility and server scalability.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed ZoneFL, a mobile-edge-cloud FL
system, that distributes training across geographical zones to
improve model utility and scalability. We augmented ZoneFL
with two federated training algorithms, ZMS and ZGD, en-
abling zone models to adapt to changes in user mobility
behavior. Using two FL models and mobile sensing datasets
collected in the wild, we showed that ZoneFL outperforms
traditional FL in terms of model utility and server scalability.
We implemented an Android/AWS prototype of ZoneFL with
ZMS and demonstrated the feasibility of ZoneFL in real-life
conditions. As future work, we will investigate how ZGD and
ZMS work together to further improve model performance.

REFERENCES
[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, pages 1273–1282, 2017.

[2] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge
computing: A survey. IEEE IoT Journal, 5(1):450–465, 2017.

[3] MG Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh
Ananthanarayanan, and Faraz Hussain. Machine learning at the network
edge: A survey. arXiv preprint arXiv:1908.00080, 2019.

[4] Jianmo Ni, Larry Muhlstein, and Julian McAuley. Modeling heart rate
and activity data for personalized fitness recommendation. In WWW,
page 1343–1353, 2019.

[5] Peter Kairouz et al. Advances and open problems in federated learning.
Foundations and Trends in Machine Learning, 14(1–2):1–210, 2021.

[6] Xiaopeng Jiang, et al. Federated meta-location learning for fine-grained
location prediction. In IEEE Big Data, pages 446–456, 2021.

[7] Anliang Li, Shuang Wang, Wenzhu Li, Shengnan Liu, and Siyuan
Zhang. Predicting human mobility with federated learning. In ACM
SIGSpatial, pages 441–444, 2020.

[8] Sannara EK, François PORTET, Philippe LALANDA, and German
VEGA. A federated learning aggregation algorithm for pervasive
computing: Evaluation and comparison. In IEEE PerCom, pages 1–10,
2021.

[9] Riccardo Presotto, Gabriele Civitarese, and Claudio Bettini. Fedclar:
Federated clustering for personalized sensor-based human activity recog-
nition. In IEEE PerCom, pages 227–236, 2022.

[10] Yang Qin and Masaaki Kondo. Mlmg: Multi-local and multi-global
model aggregation for federated learning. In IEEE PerCom Workshops,
pages 565–571, 2021.

[11] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto:
Fair and robust federated learning through personalization. In ICML’21,
pages 6357–6368.

[12] Q. Cui, Z. Gong, W. Ni, Y. Hou, X. Chen, X. Tao, and P. Zhang.
Stochastic online learning for mobile edge computing: Learning from
changes. IEEE Communications Magazine, 57(3):63–69, 2019.

[13] Mondher Bouazizi, Chen Ye, and Tomoaki Ohtsuki. Low-resolution
infrared array sensor for counting and localizing people indoors: When
low end technology meets cutting edge deep learning techniques. Infor-
mation, 13(3):132, 2022.

[14] He Li, Kaoru Ota, and Mianxiong Dong. Learning IoT in edge: Deep
learning for the Internet of Things with edge computing. IEEE network,
32(1):96–101, 2018.

[15] Xiaopeng Jiang, et al. Flsys: Toward an open ecosystem for federated
learning mobile apps. IEEE Transactions on Mobile Computing, pages
1–18, 2022.

[16] Polar. SDK for Polar sensors. https://github.com/polarofficial/polar-ble-
sdk, 2022.

[17] Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and
Yunhao Liu. Deep learning for sensor-based human activity recognition:
Overview, challenges, and opportunities. ACM Computing Surveys
(CSUR), 54(4):1–40, 2021.

