
Context-Aware Migratory Services
in Ad Hoc Networks

Oriana Riva, Tamer Nadeem, Member, IEEE, Cristian Borcea, Member, IEEE, and

Liviu Iftode, Senior Member, IEEE

Abstract—Ad hoc networks can be used not only as data carriers for mobile devices but also as providers of a new class of services

specific to ubiquitous computing environments. Building services in ad hoc networks, however, is challenging due to the rapidly

changing operating contexts, which often lead to situations where a node hosting a certain service becomes unsuitable for hosting the

service execution any longer. We propose a novel model of service provisioning in ad hoc networks based on the concept of context-

aware migratory services. Unlike a regular service that executes always on the same node, a migratory service can migrate to different

nodes in the network in order to accomplish its task. The migration is triggered by changes of the operating context, and it occurs

transparently to the client application. We designed and implemented a framework for developing migratory services. We built TJam, a

proof-of-concept migratory service that predicts traffic jams in a given region of a highway by using only car-to-car short-range wireless

communication. The experimental results obtained over an ad hoc network of personal digital assistants (PDAs) show the

effectiveness of our approach in the presence of frequent disconnections. We also present simulation results that demonstrate the

benefits of migratory services in large-scale networks compared to a statically centralized approach.

Index Terms—Mobile computing, mobile applications, ubiquitous computing, distributed programming, distributed systems.

Ç

1 INTRODUCTION

SHORT-RANGE wireless technology is on its way to
becoming ubiquitous, and it will soon be possible to

program real-world ad hoc networks, which can be formed
spontaneously (for example, vehicles on the road) or
deployed for specific tasks in specific regions (for example,
monitoring a certain region during an emergency situation).
Traditionally, ad hoc networks have been viewed as data
carriers between a mobile device and an Internet server or
between two mobile devices. However, besides transferring
static data to/from mobile nodes, these networks can be
leveraged to provide a new class of services that acquire,
process, and distribute real-time information from nodes
located in the immediate proximity of geographical regions,
objects, or activities of interest. For instance, a mobile ad hoc
network of vehicles can provide traffic information from a
region 10 miles ahead of a given car on a highway, whereas
an ad hoc network of intelligent video cameras can transmit
images from the proximity of a disaster area.

Building such services is difficult because the rapidly
changing nodes’ operating contexts can often lead to
situations where a node currently providing a certain

service becomes unsuitable for hosting that service any
longer. For example, the target of an object-tracking service
can move out of the sensing range of the node (for example,
video camera) where the service currently executes, or a
node may stop providing a service currently in use due to
limited resource availability (for example, its energy is
exhausted). Essentially, a node may become incapable of
hosting a service when certain context parameters (for
example, location, time, node capabilities, and network
topology) change.

Typically, service interaction models are connection
oriented: clients select services, bind to the service inter-
faces, and then invoke operations on these interfaces [1]. As
the environment and network connectivity change, differ-
ent rebinding techniques can be employed in an attempt to
maintain the illusion of a connection-oriented communica-
tion. The simplest way to address such an issue is to require
the client to discover a similar service running on a different
node every time the old node becomes unsuitable, and then
restart the interaction with the new one. There are two
potential issues posed by this solution. First, it is possible
that no other node providing the service of interest exists in
the ad hoc network; rather than offering all possible
services, each node will tend to offer just a small set of
services determined by its owner or resources. Furthermore,
even though another node providing the service of interest
may exist, such a node could still be incapable of hosting
the service execution due to its current operating context
(for example, low battery power). Second, any state
associated with the old service execution is lost unless a
handoff mechanism is employed.

In addition to these issues, the deployment of services in
ad hoc networks is hampered by the possible unavailability
of Internet connectivity. Due to costs, limited resources, or
deployment issues, Internet connectivity is not always

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007 1

. O. Riva is with the Helsinki Institute for Information Technology, PO Box
9800, FIN-02015 TKK, Finland. E-mail: oriana.riva@hiit.fi.

. T. Nadeem is with Siemens Corporate Research, 755 College Road East,
Princeton, NJ 08540. E-mail: tamer.nadeem@siemens.com.

. C. Borcea is with the Department of Computer Science, New Jersey
Institute of Technology, University Heights, Newark, NJ 07102.
E-mail: borcea@cs.njit.edu.

. L. Iftode is with the Department of Computer Science, Rutgers University,
110 Frelinghuysen Road, Piscataway, NJ 08854-8019.
E-mail: iftode@cs.rutgers.edu.

Manuscript received 20 June 2005; revised 6 Dec. 2005; accepted 13 Feb. 2007;
published online 8 Mar. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0179-0605.
Digital Object Identifier no. 10.1109/TMC.2007.1053.

1536-1233/07/$25.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

available in these networks, thus precluding the use of
Domain Name System (DNS) and well-known service
discovery protocols such as Jini [2] and WS-Discovery [3].
Therefore, new naming and service discovery mechanisms
are needed.

To address these issues, we propose a novel model of
service interaction in ad hoc networks based on the concept
of context-aware migratory service. Unlike a regular service
that always executes on the same node, a context-aware
migratory service is capable of migrating to different nodes
in the network in order to effectively accomplish its task.
The service migration is context aware as it is triggered by
context changes of the nodes in the ad hoc network. The
migration occurs transparently to the client application,
which is constantly presented with a single service end
point. Thereby, the interaction between a client application
and a migratory service can continue uninterrupted, except
for small delays generated by the migration process. Our
model presents two advantages. First, when a node
becomes unsuitable for hosting any longer a certain service,
the client application does not need to perform any new
service discovery because the current service can autono-
mously migrate to a node that is qualified for accomplishing
the current task. Second, the migratory service incorporates
all the state information necessary to resume the interaction
with the client when the migration to a different node has
completed.

We designed a framework that supports the develop-
ment and execution of migratory services. This framework
provides communication primitives, migratory service
control, context management, and reliability support. The
system support for this framework is supplied by the Smart
Messages (SM) [4], [5] distributed computing platform,
which provides support for naming, routing, and execution
migration. The SM platform also defines the security
architecture needed to protect against malicious services
or nodes. We have built TJam, a proof-of-concept migratory
service that dynamically predicts if traffic jams are likely to
occur in a given region of a highway by using only car-to-
car short-range wireless communication. Experimental
results executed over mobile ad hoc networks of personal
digital assistants (PDAs) show the feasibility and effective-
ness of our approach. We have also simulated the same
service in order to investigate its behavior in large-scale
networks and to compare our model to a traditional static
interaction paradigm.

The rest of the article is organized as follows: We start, in
Section 2, with a brief overview of Smart Messages in order
to make this article as self-contained as possible. Section 3
presents the migratory service model, and Section 4 pre-
sents the migratory service framework and application
programming interface (API). Section 5 describes our
migratory service prototype TJam. Experimental evaluation
and simulation results for larger scale networks are
presented in Section 6. The related work is discussed in
Section 7. The article concludes in Section 8.

2 SMART MESSAGES OVERVIEW

Smart Messages (SM) [4], [5] is a distributed computing
platform for cooperative computing in highly volatile

mobile ad hoc networks. An SM is an application whose
execution is sequentially distributed over a series of nodes
using execution migration. The nodes on which SMs
execute are named by properties and discovered dynami-
cally using application-controlled routing. To move be-
tween two nodes of interest, an SM explicitly calls for
execution migration. Each node participating in the SM
execution provides:

1. a virtual machine (VM) for execution over hetero-
geneous platforms,

2. a shared memory addressable by names, namely, the
tag space, for inter-SM communication, synchroniza-
tion, and interaction with the host,

3. an admission manager that prevents excessive use of
resources by incoming SMs, and

4. a code cache for storing frequently executed code.

An admitted SM at a node generates a task that is
scheduled for execution. During execution, an SM can
interact with the node or other SMs through the tag space,
which is local to each node. The tag space consists of (name,
data) pairs, called tags, which are created by SMs and used
for data exchange. The tag space also provides a simple
update-based synchronization mechanism; an SM can block
on a tag until another SM performs a write on that tag.
Special I/O tags are predefined at nodes and used as an
interface to the Operating System (OS) and I/O system (for
example, battery lifetime, available memory, and location
sensors). Tags also serve to name the destination of SM
migrations.

Migration is the key operation in the SM programming
model as it routes SMs across multiple hops to the nodes of
interest. This high-level primitive for multihop migration is
implemented using a low-level primitive for one-hop
migration, namely, sys_migrate, and routing tables built in
the tag space [6]. The sys_migrate primitive captures the
execution context of the SM (data explicitly identified by the
programmer and control state), packs it with the SM code,
transfers the SM to the next hop, and resumes the execution
with the following instruction in the code.

To illustrate the SM distributed computing model, we
consider the example depicted in Fig. 1. An ad hoc network
of intelligent cameras can be programmed to perform
intruder tracking across the region of deployment. Each
camera runs a preinstalled SM that periodically acquires
images and performs a simple image analysis. Each time
this SM detects a potential threat, it creates a “potential_
threat” tag. A mobile user can track potential threats by
injecting an IntruderTracking SM in the network. This SM
takes as a parameter a set of features that define the object
of interest and returns the motion path of the threat as a list
of camera locations (that is, those cameras where this threat
was recognized). At the user node, the IntruderTracking SM
creates a “threat_path” tag, which is used to identify this
node when the SM migrates back with the result. To
accomplish its task, the injected IntruderTracking SM
migrates to nodes named by “potential_threat” tags and
performs threat recognition on each of them. If the threat is
recognized on a certain node, the location of such a node is
added to the threat motion path. This process continues
recursively until no new nodes identified by a “potential_
threat” tag can be found (that is, the migration times out).

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

The IntruderTracking SM completes by migrating back to
its user node and writing the threat path list to its
corresponding tag. In this example, the set of features and
the motion path list represent the SM data carried from
node to node across migrations.

We have implemented the SM prototype in the Java
programming environment over Linux. Specifically, we
have modified Sun Microsystem’s Kilobyte Virtual Ma-
chine (KVM) [7] because its source code is available and
has a small memory footprint suitable for resource
constrained devices. SMs are essentially Java programs
that invoke an API encapsulated in two Java classes:
1) SmartMessage, which includes primitives for migration,
new SM creation, and synchronization, and 2) TagSpace,
which includes primitives to create, delete, read, and write
tags. SMs can incorporate multiple Java classes, namely,
code bricks, and multiple Java objects, namely, data bricks,
which are explicitly specified by the programmer when an
SM is instantiated. The data bricks contain the data that
must be transferred during migrations. At runtime, SMs
can create “child” SMs carrying a subset of their code
bricks and data bricks.

When an SM calls explicitly for migration, its state needs
to be captured and converted into a machine-independent
representation that will be used to resume the SM execution
at destination. Since the code bricks are already in the
machine-independent Java class format, only the data
bricks and execution control state are converted. Data
bricks are converted using our own serialization format (we
implemented it, as KVM does not support one). The
execution control state of an SM is represented by the
execution stack frames of its associated VM-level thread.
Each stack frame is serialized into a tuple of six values:
current offset of instruction and operand stack pointers,
method name, signature name, class name, and a flag
indicating whether the method is nonstatic. For nonstatic
methods, we also encode the machine-independent identi-
fier for the this self-reference. After the admission manager
successfully received the code bricks, data bricks, and
execution control information from a source node, a new
VM-level thread and its associated SM structure are

constructed. Additionally, the admission manager deser-
ializes the data bricks and reconstructs the stack frames
using the tuples sent from the source.

An SM is admitted at a node if enough resources can be
provided to support its execution or migration (that is, the
SM specifies the minimum amount of resources required).
Based on the specified admission policy, the node may
grant more resources to SMs that exceed the specified
amount of resources during execution. If no more resources
can be granted, the SM is requested to migrate to another
node. To ensure that SMs do not interfere maliciously with
each other, we defined five protection domains for
controlling the access to tags. These domains (owner, SM
with a common ancestor, SM with a common node of
origin, SM with common code bricks, or unknown SM)
define various relations between the creator of a tag (that
is, the owner) and other SMs that attempt to access this tag.
The owner of each tag specifies read and write permissions
for each of the five protection domains. For each attempted
tag space operation, the VM verifies the SM credentials and
authorizes the access according to these credentials.

3 CONTEXT-AWARE MIGRATORY SERVICES

A prominent interest behind the deployment of services in
ad hoc networks originates from their capability of
exploiting temporary and unstable network support to
acquire real-time information in the proximity of geogra-
phical regions, entities, or activities of interest. We assume
that nodes in these networks are willing to collaborate;
some nodes offer services, others host client applications,
and the rest cooperate to provide service discovery and
routing of messages. To achieve its goal, in principle, a
service of this type can contact other services, thus acting as
a client for those services. In our work, however, we assume
that services compute results by processing only data made
available by their hosting nodes.

3.1 Motivating Scenarios

Deploying services of this type in ad hoc networks proves
challenging due to the dynamism, in particular, mobility,

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 3

Fig. 1. Smart Messages example: IntruderTracking.

of the interacting entities. Highly dynamic operating
contexts affect the client that generates the request, the
service that processes the request, and, occasionally, the
target of the service (for example, a moving object being
tracked). Fig. 2 proposes three scenarios illustrating how a
service interacting with a certain client can stop satisfying
the client’s request due to context changes affecting its
hosting node or the environment. In these situations,
under typical service models, the interaction between the
client and the service ends. Hence, the client may attempt
to discover new nodes hosting the same type of service
and restart the interaction. It is possible, however, that no
service satisfying the client’s requirements exists. How-
ever, even if it does, these interruptions in the service
interaction could lead to inefficient performance due to the
cost of the discovery process and to the cost associated
with the loss of the interaction state.

An entity-tracking client application can provide police-
men with real-time images of certain suspicious entities (for
example, people and cars) as they move across a given
region, as well as with alerts every time a potential threat is
recognized. This type of application particularly suits
crowded events such as political conventions, conferences,
and manifestations in which it is hard to quickly deploy
wired networks of video cameras. A more feasible and cost-
effective solution is to exploit a mobile ad hoc network of
wireless video cameras that, for instance, can be installed on
police patrols and policemen’s helmets (both mechanisms
have already been tested in real-life events). Tracking
services execute on each video camera; they are capable of
performing image recognition of entities specified by
policemen and sending back images of those entities. There
are two factors, however, that can force the client to
interrupt its current interaction with a certain tracking
service and start a new interaction with a different service:
1) the node where the service executes is mobile and might
move away from the tracked entity and 2) likewise, the
tracked entity is mobile and might move away from the
sensing range of the service node. For example, Fig. 2a
shows how the client needs to interact with three different
tracking services over a short period of time. Besides the
time necessary to carry out service discovery multiple
times, the lack of service continuity precludes the service
process from using advanced image recognition algorithms
based on long-term learning, correlation, and history.

A parking spot finder client application can inform drivers
about parking spot availability in the proximity of a

specified destination. We assume that parking spot avail-
ability can be determined by services running on cars or
smart phones that interact with wireless-enabled parking
meters located in their transmission range. In his or her
request, the user can specify the destination of interest and
his or her current location, along with other preferences like
cost and security of parking lots. The request is forwarded
to a service located in the proximity of the destination using
a spontaneously created network of wireless-equipped
smart phones and cars. Upon receiving a request, a service
checks if any parking spot is available. If so, it informs the
client about the location of the most suitable parking spot
(based on the request parameters) and keeps monitoring the
parking meter associated with the free spot. If another
driver takes this spot, the service replies to the client either
with a new parking spot or with an “unavailable” response.
Upon receiving an “unavailable” response, a user will need
to discover another service in the destination area, as Fig. 2b
shows. Furthermore, a user might be forced to contact a
new service when the current service, executing on a mobile
node, moves away from the monitored parking spot.
Conversely, the user would like to submit his or her request
only once and be informed about parking spot availability
until the destination is reached.

A driver-assistant client application can inform drivers on
highways about the traffic conditions of the road ahead of
them. For instance, if a traffic jam is predicted at the next
segment of the highway, the driver can decide to take an
earlier exit. We assume that the driver requires to be
continuously notified about traffic conditions at a constant
distance ahead of her position (for example, 10 miles
ahead). The client application communicates with services
executing on some of the vehicles forming the mobile
ad hoc network. Each service estimates the status of the
road traffic by using locally available information such as
the density of one-hop neighboring vehicles and their
speeds. In such a scenario, we observe that 1) the service
needs to constantly execute in the region of interest to the
user, 2) such a user-defined region changes over time
according to the user’s movement/speed on the road, and
3) the set of cars located in the region of interest changes
over time due to their mobility (for example, cars can leave
the highway, stop, or slow down). As shown in Fig. 2c, due
to these reasons, the client occasionally needs to reestablish
the interaction with a new service that can meet the user’s
requirements.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

Fig. 2. Examples of client-service interactions in ad hoc networks. (a) Entity-tracking service. (b) Parking spot finder. (c) Driver-assistant service.

3.2 Requirements for Services in Ad Hoc Networks

By analyzing these scenarios, we identified four require-

ments that services in ad hoc networks need to address:

1. Context-awareness. To be semantically correct and
efficient, these services need to take into account
their current operating context such as location,
resources available on the node, and network
connectivity. For example, in all described scenarios,
the service must be location aware. Additionally, the
service must occasionally monitor entities in its
proximity (suspicious presences in the first scenarios
and parking meters in the second scenario).

2. User-driven adaptability. To provide useful results,
these services need to constantly adapt their execu-
tion according to current needs and operating
context of the user (for example, location, activity,
and terminal equipment). As the user operates in a
highly dynamic environment, his or her request
parameters are subject to frequent context-induced
changes. For instance, the driver-assistant client
must constantly communicate its location to the
service, thus ensuring that results are computed in
the region of interest.

3. Service continuity. Client applications can highly
benefit from continuous service provisioning in
many situations. Our scenarios show how, after a
while, a node running a certain service can become
inappropriate to host that service any longer. This
can be due to mobility, limited resource availability,
or network partitioning. In these cases, the client has
to discover and restart its interaction with a new
service, but the entire state of the old interaction is
lost. Although this approach is acceptable for a
stateless interaction, it can lead to a significant
performance degradation for a stateful interaction.
For instance, in the above scenarios, the entity-
tracking and the traffic jam algorithms require
history and learning support to provide accurate
results; the parking spot finder needs to know a
user’s preferences and destination. Therefore, a
mechanism for capturing and transferring the state
of a service to a new node and resuming its
execution using this state is necessary.

4. On-demand code distribution. It is unrealistic to
assume that every node in an ad hoc network will
possess the code for every type of service. For
example, the code for running the parking spot
finder might not be available on cars or smart
phones in the proximity of the destination of
interest. Therefore, a mechanism capable of dyna-
mically transferring the code to certain nodes that
are semantically and computationally suitable for
running the service is necessary (that is, the code
could be transferred from other nodes in the ad hoc
network or even from the Internet if possible).

3.3 Migratory Service Model

To address the above requirements, we propose a novel

service model based on the concept of context-aware

migratory service, hereafter referred to as migratory service.

Intuitively, this kind of service is capable of migrating to
different nodes in the network in order to effectively
accomplish its functions. It executes on a certain node as
long as it is able to provide semantically acceptable results
using the available resources; when this is not possible
anymore, it migrates through the network until it finds a
new node where it can continue to satisfy the client request.
The service migration occurs transparently to the client and,
except for a certain delay, no service interruption is
perceived by the client. Although a migratory service is
physically located on different nodes over time, it con-
stantly presents a single virtual end point to the client.
Hence, a continuous client-service interaction can be
maintained.

The migratory service model involves three main
mechanisms. The first monitors the dynamism of interact-
ing entities (client or service) by assessing context para-
meters characterizing their state of execution and available
resource capabilities. The whole set of context parameters
constitute the context of a certain entity. The second
specifies, through context rules, how the service execution
is influenced and should be modified based on variations
of those context parameters. The third makes the service
capable of migrating from node to node and of resuming
its execution once migrated. We call this context-aware
service migration since it is triggered by changes of the
operating context, which occur on the service as well as on
the user side.

Fig. 3 depicts a typical interaction in the migratory
service model. As mentioned before, every node in the
network is expected to possess the code for a limited
number of services. To facilitate service code distribution in
the network, every node provides a metaservice for each
individual service code it owns. The role of a metaservice is
to instantiate migratory services. Initially, the client dis-
covers and contacts a metaservice that is capable of serving
its request. The metaservice processes the request by
instantiating a new migratory service that will take over
the interaction with the client; the metaservice just spawns
migratable instances of itself, but it does not migrate or send
responses to clients. There is a one-to-one mapping between a
migratory service and a client application. Upon the
creation of a migratory service, the client application ceases

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 5

Fig. 3. Instantiation of a migratory service and example of interaction.

communication with the metaservice and continues to
interact solely with its associated migratory service.

Our service model aims to support long-running
queries and can be characterized as “one request, multiple
responses.” This is an appropriate model, especially for
services that monitor entities or actions in real-time
and report their observations periodically. Therefore, the
service interaction consists of two main operations: 1) the
migratory service sends responses to the client application,
and 2) the client application sends “request updates” each
time the user’s context changes beyond relevant thresholds
(that is, in fact, these updates are sent by the runtime
system at the client node).

These concepts are exemplified in Fig. 4. Upon being
instantiated on Node2, a driver-assistant migratory service
changes the node of execution by migrating from Node2 to
Node3, which is located in the region to be monitored.
Subsequently, the service migrates from Node3 to Node4 and
from Node4 to Node5. These two migrations are triggered by
changes of the user’s and service’s context, respectively. For
example, the first migration could be due to the fact that the
user requests more accurate observations as she gets closer
to the region of interest, whereas the second one could be
due to the fact that Node4 has left the region of interest.

4 MIGRATORY SERVICE FRAMEWORK

To support the migratory service model, we designed a
common framework that runs on all nodes willing to
cooperate in the ad hoc network. A main challenge that
hinders the practical development of applications and
services in ad hoc network environments is the difficulty
of writing software for distributed systems with such
complex requirements. Although building applications
and services from scratch could lead to a better perfor-
mance for individual situations, we believe that a common
software platform can provide a more functional set of
primitives above the potentially heterogeneous operating
systems. Thereby, application developers can program and
deploy new applications and services more quickly.

Fig. 5 illustrates the system architecture for the migratory
service framework. At the lower layer, the Smart Messages
(SM) computing platform provides support for execution
migration, naming, routing, and security. On top of the SM
layer, we provided support for

1. context provisioning and monitoring,
2. context rules creation and validation,
3. client-service communication, and
4. service reliability.

The migratory service framework can be logically
divided into two functional planes: data plane and control
plane. Data traffic, routing, and migration form the data
plane and mostly build on basic functionalities offered by
the SM platform. The Communication Manager is the
corresponding module for the data plane. The control plane
specifically targets issues related to unreliability and
dynamism of ad hoc networks. The control plane is
organized in a logical flow of three modules: the Context
Manager monitors and stores the variability of the environ-
ment, the Validator evaluates the observed variability based
on application/service requirements and decides how to act
upon those changes through the Communication Manager,
and the Reliability Manager allows migratory services to
recover from node failures.

Practically, the framework consists of a set of Java classes
that can be added to any SM platform. As it will be detailed
in Section 4.5, clients, migratory services, and metaservices
are Java programs that register with the framework and
invoke simple message passing primitives provided by our
API. The control plane execution is transparent to the
application/service layer. Ultimately, the framework maps
these programs onto lower level SMs.

4.1 Context Provisioning and Monitoring

The SM platform provides several types of context data
accessible through specific I/O tags (see Section 2 for
the definition of I/O tags). Commonly, the SM platform
provides context information such as location, speed, and
time by means of GPS and various system status infor-
mation (for example, amount of available memory and
remaining battery power). It also maintains and periodi-
cally updates a list of one-hop neighboring nodes. Ad-
ditionally, the SM platform can perform reasoning of raw
context data to infer higher layer context information and
offer access to those through specific application tags.

The Context Manager supports storage and access to
context data provided by the SM platform. Clients or
services can specify, through the migratory service inter-
face, which context parameters the Context Manager must
monitor; these parameters constitute the MonitoredCxt. The
Context Manager translates a certain MonitoredCxt identi-
fier into an SM tag name according to the application-
specific semantics. As the Context Manager can integrate
different translators for different context ontologies, the
application developer can ideally utilize any context

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

Fig. 4. Example of context-aware service migrations.

Fig. 5. Migratory service framework.

ontology to build the application logic. Upon the transla-
tion, the Context Manager provides access to the values
corresponding to those context parameters by polling or
blocking on the associated SM tags.

4.2 Context Rules Creation and Validation

The main task of the Validator module is to evaluate if a
service computation can be “correctly” carried out on the
current hosting node; the correctness of the execution is
evaluated both in terms of the resources necessary to
compute a result and in terms of the quality of the produced
result. If the computation can no longer be correctly carried
out, the Validator triggers a service migration.

The Validator validates incoming and outgoing data
based on service-specific (or client-specific) context rules,
referred to as CxtRules. These rules specify policies/filters/
preferences ruling system behavior. For instance, they can
define how the node’s resources should be utilized, which
type of incoming results should be accepted, or which level
of security should be applied. CxtRules are of two types
and are applied in different phases of the client-service
interaction:

. InCxtRules. These are used to validate the correct-
ness of incoming data. 1) A metaservice utilizes
InCxtRules to decide whether to accept/refuse an
incoming client request. This is done in collaboration
with the Admission Manager at the SM level, which
performs authentication and admission based on
local security policies. 2) A client application utilizes
InCxtRules to decide whether to accept/refuse a
received service response. Based on the current user
context, a response can be deemed irrelevant or even
wrong. In such a case, the Validator instructs the
Communication Manager to send a request update
to the migratory service.

. OutCxtRules. These are used to validate the correct-
ness of outgoing data at the service side and,
implicitly, to trigger service migrations if necessary.
Before computing a new response, the Communica-
tion Manager invokes the Validator to verify these
context rules. For example, the Validator of a driver-
assistant service verifies that the given node is still
located in the region to be monitored; if the node has
left this region, a service migration is triggered.

Context rules are expressed in the form of condition/
action statements. Conditions are articulated as full binary
trees of Boolean expressions. Each node of the tree can be a
comparisonNode or a combinationNode. A comparisonNode is a
triplet consisting of contextName, comparisonOperator, and
value. ComparisonOperators currently supported areequal,
not-equal, morethan, lessthan, inRegion, and out-

Region. An example of a comparisonNode is <battery

Level, equal, low>. A combinationNode combines
two nodes by means of combination operators such as and
and or. A common example of combinationNode is <or,
<batteryLevel, equal, low>,<responseLocation,
outRegion, userRegion>>. Therefore, and and or

operators permit flexibly combining elementary conditions
to build more complex ones. Actions currently supported
are migrate service, send update, accept/refuse
response, and accept/refuse request. The entire

condition clause of a certain context rule is evaluated by
verifying all the contained Boolean expressions based on the
current values of user’s and service’s context parameters.
Each rule is set as optional or mandatory, as the context
parameters required by the rule may not always be available
(for example, a node may not provide location information).

When defining context rules, applications or services
may introduce ambiguities, contradictions, or logical incon-
sistencies. For instance, an application might have specified
contradictory actions in response to similar context changes.
Following the definitions presented in [8], our scenarios
could involve both intraprofile and interprofile conflicts.
Specifically, intraprofile conflicts emerge inside the specifica-
tion of policies for applications or services, and they are
local to a node. Interprofile conflicts involve only two entities
on different nodes (that is, client and service). Conflict
resolution can be performed partly statically and partly
dynamically. The dynamic resolution selects the action that
satisfies the largest number of conditions.

4.3 Client-Service Communication

We assume ad hoc networks without Internet connectivity
and, consequently, without access to DNS or Internet-based
service discovery mechanisms. Furthermore, we do not
assume global addresses for the nodes in the network. Since
migratory services can run on different nodes over time, we
prefer to name the communicating programs directly. Due
to the fact that these programs are ultimately converted into
SMs, we enforce the naming conventions defined by the SM
platform [5]. More exactly, tag names are used to uniquely
identify the communication end points in the migratory
service model. Each time a migratory service moves
between two nodes, its name is removed from the old node
and recreated on the new node.

In the SM platform, service discovery and routing are
integrated in a single module that performs content-based
routing [6]. To locate communication end points, our
current implementation provides two basic SM routing
algorithms: geographical routing and region-bound con-
tent-based routing. The geographical routing is similar to
the Greedy Perimeter Stateless Routing (GPSR) [9]. At each
node, the algorithm migrates the SM to the closest neighbor
to the location of interest. The content-based on-demand
routing (similar to Ad-Hoc On-Demand Distance Vector
(AODV) [10]) is used to discover a node identified by a tag
name within a given geographical region (reached using the
geographical routing).

The Communication Manager is responsible for interacting
with the SM layer to discover metaservices, route messages
between communicating end points, and carry out service
migration when necessary. Metaservices are identified
through SM tags (learned by clients offline), and they are
discovered by exploiting the two SM routing algorithms
mentioned above. Identical identifiers for migratory ser-
vices are generated independently on the framework at the
client and metaservice nodes; each identifier is directly
derived from a combination of the client name and the
metaservice name. The metaservice also passes the client
request to the migratory service. After these operations, the
same two routing algorithms are used to enable the
communication between the client and the migratory
service. Note that the Communication Manager does not
guarantee reordering of out of order messages or recovery

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 7

of lost messages. However, each exchanged message is
identified by a sequence number that is accessible to the
client/service; hence, it is up to the client/service to deal
with losses or out of order messages.

If at any time the Validator deems the current service
node unsuitable for hosting the service, the Communication
Manager is invoked to perform service migration. The
Communication Manager removes the SM tag identifying
the service end point from the old node, uses the SM
content-based migration to find a new node of execution,
rebinds the service to this node (that is, creates its tag name
on the node), and resumes the service execution. Although
a client update could be lost during this process, the entire
migration is transparent to the client that sees the same
virtual end point. The lost of a client update can lead just to
a slight decrease in performance, as the client will send a
new one if an irrelevant or wrong response is received.

4.4 Service Reliability

In the basic framework implementation, a migratory service
is lost if the node on which it executes fails. In this situation,
a timeout expires at the client side, and a new request for a
metaservice is generated. To improve upon this solution,
we provide a mechanism that ensures fault tolerance to one
failure. This mechanism is optional due to the extra load it
induces in the network. The Reliability Managers at the
nodes where the migratory service executes maintain an
inactive version of the service on a secondary node. The
secondary node is the first node where the migratory
service executes. This version can take over the service
provisioning if a failure in the interaction with the primary
version of the service occurs. If no failures occur, at the end
of the interaction with the client, the hosting node of the
primary service generates a request to remove the inactive
copy. To further improve the reliability, the secondary node
could also be the client node itself. However, the overhead
for such a solution could increase significantly.

The inactive version of the service is created before the
first response is delivered to the client. Periodically, the
Reliability Manager on the primary node (which changes as
the service migrates) updates the service state on the
secondary node. These updates are sent using the SM
content-based routing and can be delivered over multiple
hops. At the SM level, the creation of the secondary copy
and the update deliveries are implemented by spawning a
copy of the migratory service and by migrating it to the
secondary node. Since frequently used SM code is cached at
nodes, only the execution state is transferred. The Relia-
bility Manager at the destination is responsible for main-
taining only the latest version of the inactive service copy.
Practically, the inactive service is an SM blocked on a tag.
When a new update from the primary service arrives, the
Reliability Manager unblocks the old SM, instructs it to
terminate, and stores the new SM.

A client application that does not receive any answer for
a given time period will time out and contact the inactive
version of the service on the secondary node. The frame-
works on all nodes share the same naming conventions;
hence, the client is able to determine locally the name (that
is, the SM tag) of the inactive version of the service. When a

client request arrives at the secondary node, the Commu-
nication Manager invokes the Reliability Manager that will
unblock the SM representing the inactive copy. This copy
becomes active and starts its interaction with the client. If a
response from the former active service is received after the
client started its new interaction (that is, potentially, the
former active copy was not lost), the response will be
discarded. Furthermore, the framework at the client side
will generate a request to terminate the old service.

4.5 Programming Migratory Services

With the perspective of a migratory service’s designer in
mind, we provide a Java API that offers all the functions
that are common across migratory services, thus requiring
the designer to only provide support for the service-specific
functions. The API must also support the specification of
client applications that interact with migratory services.
This API shields the programmer from the underlying SM
platform and the networking aspects.

Fig. 6 shows a typical client application, metaservice, and
migratory service along with their interactions. To make the
entire process of service migration transparent, each of
these three entities has to register with the migratory service
framework. At the registration invocation, the entities pass
their class name, name of context parameters to be
monitored, and context rules to be evaluated at runtime.
These parameters are needed by the framework to create
the underlying SMs associated with each entity and to
initialize all the necessary framework-level SMs for multi-
hop service migration, data delivery, and so forth. More-
over, at the first registration of a migratory service with a
hosting node, the Reliability Manager is invoked to create
the inactive copy of the service, which will take over if a
failure occurs.

Since programmers are well versed with the message
passing programming model, the framework provides a
similar API. Note that all the communication primitives are
synchronous. Metaservices run in a loop and block waiting
for client requests (Fig. 6b, line 7). At the SM layer, this
corresponds to SM blocking on a tag. When a client
application sends a request to a metaservice (Fig. 6a, line 7),
the SM tag is appended with the request parameters, and
the metaservice is unblocked to receive the request. Then,
the metaservice instantiates the migratory service.

Before sending any response to the client, the Commu-
nication Manager at the migratory service side invokes the
Validator. The Validator, at its turn, invokes the Context
Manager to get fresh context information and evaluates the
OutCxtRules. If these are positively verified, the response is
delivered (Fig. 6c, line 9). Subsequently, the Communica-
tion Manager invokes the Reliability Manager to update the
state on the secondary node. If the validation fails, the
Communication Manager deregisters the service (removes
its unique SM tag) and invokes an SM migration to transfer
the service to a suitable node. Once it arrived at the new
node, the Communication Manager registers the service
with the framework and returns the control to the service
code. At the client side, the Communication Manager
invokes the Validator for each newly received response
(Fig. 6a, line 9); only responses that are positively validated
by the InCxtRules are returned to the application.

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

5 CASE STUDY: TJAM

We have built TJam, a proof-of-concept migratory service
that dynamically predicts if traffic jams are likely to occur
in a given region of a highway by using only car-to-car
short-range wireless communication. For instance, a driver
can use this system to decide which exit to take from a
highway: If a traffic jam is likely to occur at the next exit,
the driver can instead opt for the current exit. We assume
that cars on highways communicate using short-range
wireless networking (for example, IEEE 802.11) and they
have GPS receivers for reporting location and speed. We
also assume that all cars travel in the same direction.
Typically, the driver instructs the service on which region
to monitor by specifying the distance from her current
position and the length of the region. Although other
solutions can be envisioned to provide this service, a
migratory service implementation is especially beneficial in
this case due to 1) the highly dynamic operating contexts of
ad hoc networks of vehicles, 2) the need to update the
coordinates of the monitored region according to the user’s
location/speed, and 3) the need to transfer the execution
state and maintain service history for accurately estimating
the traffic jam probability.

In a typical example of interaction, the client first
discovers the TJam metaservice. A TJam service request
includes the name of the client, context parameters, and
coordinates of the region to be monitored. If the metaser-
vice accepts the request, it instantiates a TJam migratory
service. This starts running on the metaservice node. If this
node is not located in the region of interest, the TJam
migratory service migrates to a node in the correct region.
Then, it will continuously compute the traffic jam prob-
ability in such a region and send back results to the client.
The framework at the migratory service node periodically
recalculates the coordinates of the region based on the latest
available location and speed of the client’s car. Addition-
ally, the framework at the client node, at any time, can
decide to recalibrate this estimation by updating the
request’s parameters.

Traffic jams are locally congested phases in which cars
travel at slow or zero velocity. To compute the traffic
jam probability, TJam utilizes two types of information
that every car in the network has locally available: 1) the
number and 2) the speed of one-hop neighboring cars.

The probability of a traffic jam Ptjam is computed using
the following equations, where Pnumber is the probability
of a traffic jam given the current number of neighboring
cars and Pspeed is the probability of a traffic jam given
the current speed of neighboring cars:

Pnumber ¼ maxPnumber �
avgnum �minnum
maxnum �minnum

; ð1Þ

Pspeed ¼ maxPspeed �
avgspeed �maxspeed
minspeed �maxspeed

; ð2Þ

P 0tjam ¼ � � Pnumber þ ð1� �Þ � Pspeed; ð3Þ

Ptjam ¼ P 0tjam �
Ntjam

Ntotal
: ð4Þ

avgnum and avgspeed are computed by a low-pass filter
with an exponential moving average with weight w ¼ 0:7:
avgXnþ1

¼ ð1� wÞavgXn
þ w � Xn. As avgnum varies from

minnum to maxnum, Pnumber varies linearly from 0 up to
maxPnumber, which is an upper bound of Pnumber. Below the
lower boundary minnum, Pnumber is 0 (that is, the road is
empty); above the upper boundary maxnum, Pnumber is 1
(that is, the road is full). Likewise, similar parameters and
boundaries are used to specify how Pspeed varies with the
avgspeed. The intermediate Ptjam probability, called P 0tjam, is
computed by a weighted combination of Pnumber and Pspeed,
with � ¼ 0:5. Finally, Ptjam is the P 0tjam corrected by the
ratio between the number of observations in which Ptjam
was less than 0.5 (that is, Ntjam) and the total number of
observations (that is, Ntotal).

To provide a more accurate computation of the prob-
ability, it is necessary to tune the employed parameters
according to traffic variations and history. For the sake of
brevity, we simply say that the minimum and maximum
thresholds for the number and speed of neighboring
vehicles are adjusted based on the minimum and maximum
values observed during the period of observation. The
probabilities maxPnumber and maxPspeed are updated in such
a way that, if it happens that avgnum is lower than minnum,
then maxPnumber is decreased:

if ðavgnum < minnumÞ ! maxPnumber ¼ maxPnumber � �;

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 9

Fig. 6. Pseudocode for a typical client application, metaservice, and migratory service.

where � ¼ 0:8. If it happens that avgnum is greater than
maxnum, then maxPnumber is increased:

if ðavgnum > maxnumÞ ! maxPnumber ¼ maxPnumber þ �;

where � ¼maxPold
number=10. The opposite applies tomaxPspeed.

In order to illustrate an example of TJam migration
along with some context parameters (CPs) and context
rules (CRs), we refer to Fig. 7. The client application
executes on node n1. At time t, the client interacts with the
TJam migratory service that is located on node n6. TJam
constantly computes the traffic jam probability and verifies
the OutCxtRules (outCR). After dt, the position and the
speed of nodes have changed. Therefore, the space of
interaction is subject to a new computing environment. The
new region of interest is either predicted by TJam based on
the request’s parameters and the user’s context history or
computed based on an update sent by the client node’s
framework. At this time, the migratory service framework
at node6 evaluates outCR and realizes that n6 is out of the
user-specified region. Therefore, TJam migrates to n4,
which is located in the region of interest, and resumes
the service computation.

While migrating, TJam carries its computation state
consisting of all parameters necessary for predicting
traffic jams (that is, minnum, maxnum, minspeed, maxspeed,
maxPnumber, maxPspeed, Ntjam, and Ntotal) and the history
of the user’s locations/speeds for updating the user-
defined region. In this way, the service can provide a
continuous and more efficient interaction with the client.

6 EVALUATION

This section presents experimental and simulation results
for TJam, our prototype migratory service. We ran experi-
ments in a mobile ad hoc network testbed. The goal of the
testbed study was to prove the feasibility and effectiveness
of our model in dynamic environments. Given the rapid
changes of the nodes’ configuration and location, it is
crucial to evaluate how the service interaction can adapt to
such changes and recover from disconnections. Addition-
ally, in order to investigate the scalability of our approach in

larger scale networks, we simulated the prototype service.
We simulated and compared the performance of two
different versions of TJam, namely, TJam-Smart and TJam-
Base. The first version implements our model of context-
aware migration; the second one implements a baseline
centralized approach.

6.1 Experimental Results

The ad hoc wireless network consists of 11 Hewlett-Packard
Laboratories (HP) iPAQs that run Linux and use Orinoco’s
802.11b PC cards. Since it has proved very difficult to run
the experiments with the iPAQs moving at an adequate
speed, we have emulated the mobility by instructing each
node to periodically read from a file its position and speed
on a two-lane highway. Each file contains the location
coordinates and the speed of the node at time intervals of
5 seconds. The speed is a uniform variable between 5-10 m/
s. In almost all of the experimental results, the service
executes on a node that is at 2 hops away from the client
node and has an average of 2-3 neighbors. The testbed
configuration contains only one metaservice. We ran the
same experiment 20 times, and each replication included
100 responses (that is, correct, wrong, or missing response).

In order to reduce the overhead due to the exchange of
notifications carrying context changes, TJam predicts the
new coordinates of the user’s region of interest based on the
past speeds/locations. Additionally, it includes this infor-
mation in the response to the client. At the reception of such
a response on the client side, the response is validated. If the
predicted region’s coordinates are incorrect compared to
the current location, the answer is discarded, and an update
is sent to the service. Otherwise, the answer is delivered to
the client application, and no update is sent. This approach
is feasible for TJam since the speed and direction of moving
vehicles can be easily estimated on a highway. Furthermore,
the client application sends an update if no answer is
received within a certain time-out. In the experiments, the
time-out is set to 7.5 seconds.

The main metrics employed in the experimental evalua-
tion are given as follows:

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

Fig. 7. Example of TJam’s execution and migration over time.

. Interresponse time. This measures the elapsed time
between consecutive correct answers. It also in-
cludes the time to update the user’s request
parameters at the service side.

. Service discovery time. This measures the elapsed time
to discover a metaservice and receive the first correct
response from the migratory service.

. Service quality. This is the percentage of correct
answers out of the total number of received answers.

. Response/update rate. This is the average number of
responses the client application receives per each
update message that was sent.

Our main goal was to study how the migratory service
allows the user to constantly receive correct observations in
spite of disconnections and mobility. As Fig. 8 shows, the
service migration successfully follows the movement of the
user. Specifically, the graph compares the location of the
user to that of the migratory service. If the service’s position
is out of the range of interest, the answer is labeled as
wrong. When disconnections occur, the client application
sends update messages. One update message is necessary
to get almost six correct responses, thus reducing the
communication overhead due to context changes. Table 1
summarizes these experimental results. It reports the
average value and the 90 percent confidence interval for
every metric. The reason why the interresponse time is
rather high is that it includes the time to propagate and
process the updates sent from the client side to recalibrate
the query parameters. As nodes constantly move and end-
to-end interactions usually involve 2-hop communication,
high interresponse and service discovery times are mainly
due to the routing overhead. However, these values are
more than acceptable for this type of application.

6.2 Simulation Experiments

The objective of the simulation study was to evaluate the
scalability of the migratory service model. The TJam-Smart
and TJam-Base services have been simulated using the ns-2
simulator [11], enhanced with the Carnegie Mellon Uni-
versity (CMU)-wireless extensions [12]. As wireless media,
we used 802.11b with a data transmission rate of 11 Mbits
and a transmission range of 250 meters. The received signal
strength threshold is set to maintain information about
neighbors within 200 meters only. TJam-Smart implements
the migratory service model, whereas TJam-Base represents
a baseline centralized approach. In TJam-Base, a few mobile

nodes host the service in the network; upon receiving a
client’s request, the service node computes the traffic jam
probability by directly querying nodes in the region of
interest, sends back the results to the client, automatically
updates the query parameters, and finally initiates a new
query cycle.

Our simulation study is organized in three parts. First,
we investigated the scalability of the migratory service
model with respect to the number of clients (scenario 1)
and, then, the effects of vehicular traffic variability with
respect to the vehicles speed (scenario 2) and the vehicles
density (scenario 3).

6.2.1 Vehicular Traffic Generator

We used a microscopic simulation model. Three types of
simulation models for traffic analysis are generally avail-
able for usage: Macroscopic, Mesoscopic, and Microscopic
simulation models [13]. Macroscopic simulation models
such as those in [14] and [15] are based on the deterministic
relationships of flow, speed, and density of the traffic
stream. The simulation in a macroscopic model takes place
on a section-by-section basis rather than by tracking
individual vehicles. Microscopic models, such as those in
[16] and [17], simulate the movement of individual vehicles.
Typically, vehicles enter a transportation network using a
statistical distribution of arrivals and are tracked through
the network over small time intervals. Mesoscopic simula-
tion models, such as that in [18], combine the properties of
both microscopic and macroscopic models. As both macro-
scopic and mesoscopic models do not provide the flexibility
to analyze traffic in as much detail as the microscopic
models, we decided to employ a microscopic model.

As microscopic modeling tools are not freely available to
the public or do not capture certain road characteristics, we
have developed our own microscopic traffic generator tool,
called Micro-VTG, which is based on the random-way point
mobility model used by ns-2. The scenario generator
accepts as parameters the simulation time, road length,
number of lanes per road, average speed of the vehicles,
average gap distance between vehicles on the same lane,
number of service (or metaservice) nodes, and number of
client nodes. More details about Micro-VTG can be found in
[19], where it was used to generate highway traffic, and in
[20], where it was used to generate city traffic. As far as the
simulation study in this article is concerned, we focus on
highway traffic, and we generate various scenarios that
capture significant highway conditions.

6.2.2 Simulation Metrics

In the simulation study, we employed the following
metrics:

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 11

Fig. 8. The service location accurately follows the user movement.

TABLE 1
Results of Testbed Experiments

. Interresponse time. This is the same metric previously
defined for the testbed experiments. However, note
that, in the simulation results, this time also includes
the sleep interval between two consecutive result
generation processes (in our tests, this was set to
5 seconds).

. Response generation time. This is the average time
needed by a correct response to be computed and
transmitted in the ideal case in which no responses
are lost or wrongly computed and no updates are
triggered from the client side. It measures the
elapsed time between the time at which a query
process is started (either by the latest node in the
TJam-Smart or by the service node in the TJam-Base)
and the time at which the response is delivered to
the client. It differs from the interresponse time as it
does not include the time needed by the update
process or the time wasted due to lost responses.

. Packet utilization rate. This measures the average
percentage of exchanged packets that were actually
used in computing and delivering results out of the
total number of exchanged packets.

. Response packet overhead. This is the average number
of packets that needs to be exchanged for every
correct result received by the client (that is, packets
exchanged to process the query, to update request
parameters, and to communicate the result).

6.2.3 Simulation Results

Service nodes and clients are selected uniformly among the
vehicles. By “service” node, we mean a node hosting a
service in TJam-Base and a node hosting a metaservice in
TJam-Smart. When a client becomes active, a client request
is generated after a warm-up period of 25 seconds. In TJam-
Base, once a client request is assigned to a service node, the
service node initiates a query process phase, which is
periodically reinitiated every 5 seconds. In addition, if a
client does not receive any result after three time periods, it
resends the request.

Scenario 1—Effects of the number of clients. We first studied
how TJam-Smart scales with an increasing number of
clients. The scenario consists of a three-lane highway of
length 25 km. The average vehicular speed is 30 m/s (that
is, 108 km/h) with a gap of 150 meters. The total number of
vehicles is 800, with 500 vehicles active. Fifty service nodes
are randomly selected among all vehicles.

Fig. 9 plots the average time needed to generate new
correct responses and the interresponse time experienced
by TJam-Smart and TJam-Base users. Interresponse times
include the sleep time of 5 seconds between subsequent
querying phases. In TJam-Smart, the time needed to
compute and transmit new correct responses is almost
constant, whereas in TJam-Base, it increases as the number
of clients grows. This is due to the capability of migratory
services to follow the user motion and to the fact that no
service is overloaded. In the statically centralized approach,
the service is always running on the same node; as the
number of clients grows, the average distances in hops
between the client node and the service node and between
the service node and the region of interest increase. On the
other hand, with migratory services, those distances remain
practically the same as the service migrates according to the
user movement. In TJam-Base, if the packets need to
traverse longer paths, their chance of getting lost increases
due to geographic routing holes or collisions, thereby, the
performance is negatively affected. This phenomenon
partly also affects the interresponse times, where we
observe lower interresponse times (of roughly 1 second)
for TJam-Smart and slightly increasing interresponse times
with the number of clients. Moreover, another reason why
TJam-Smart performs better is that fewer packets (carrying
responses, updates, intermediate results, and so forth) need
to be exchanged.

As Fig. 10 shows, TJam-Smart performs more efficiently
in terms of packet utilization rates and response packet
overhead. In the migratory services approach, the packet
utilization rate is over 86 percent, as the packet overhead
consists only of update packets sent by the client to refresh
its request parameters. In the centralized approach, as the
service might execute on a node far from the region of
interest, the additional overhead derives from packets used
to propagate the service request to nodes located in such a
region and to receive the collected data. Consequently, the
total number of packets that need to be exchanged per each
received correct response (that is, the response packet
overhead) is higher in TJam-Base. Additionally, in TJam-
Base, exchanged messages generally need to traverse longer
paths as the monitored region moves further, thus generat-
ing a larger number of packets in the network.

Scenario 2—Effects of vehicles speed. We then investigated
how the vehicular speed affects the performance of
migratory services. The number of clients was fixed to
150. We varied the average speed of vehicles from 10 m/s
to 30 m/s (that is, from 36 km/h to 108 km/h). The values

12 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

Fig. 9. Response generation time (bars) and interresponse time (lines)

versus the number of clients.

Fig. 10. Packet utilization rate (bars) and response packet overhead

(lines) versus the number of clients.

of the rest of the parameters are as given in the previous
scenario. Results for this scenario are reported in Figs. 11
and 12. TJam-Smart performs better with respect to all
four metrics. As the vehicular speed increases, TJam-Smart
guarantees almost constant response generation times and
packet utilization rates, whereas TJam-Base performs
slightly better with an increased vehicular speed. More-
over, with both mechanisms, as the average vehicular
speed increases, the interresponse time and the response
packet overhead decrease. The better performance for
higher vehicles speed is due to the fact that a higher
mobility increases network connectivity [21]. This phe-
nomenon is more evident for TJam-Base because the
packet overhead in it is almost double that in TJam-Smart.

Scenario 3—Effects of vehicles density. The settings for this
scenario are the same as that for the previous one, with the
average speed fixed to 20 m/s (that is, 72 km/h). The
vehicles density is varied by increasing the average gap
between each consecutive car from 100 to 200 meters. As
Figs. 13 and 14 show, in both mechanisms, variations of the
vehicles density have no effect on the time required by the
service to generate correct responses. However, as the
vehicle gap grows, the interresponse times observed by the
client (which include the times to process updates, time-
outs due to lost responses, and sleep time) increase since
the chance of having holes in the geographic routing
increases. The interresponse time is lower in TJam-Smart,
and it increases more slowly compared to TJam-Base, as
the packet overhead is higher in TJam-Base. In addition,
larger gaps between vehicles negatively affect the commu-
nication and increase the number of packet losses and
retransmission; with increasing vehicular distances, the
packet utilization rate and the response packet overhead
heavily decreases and increases, respectively.

From the above results, we can conclude that TJam-
Smart performs better than TJam-Base in terms of response
times, network utilization, and packet overhead. Moreover,
these experiments showed that, besides increasing vehicles
density, increasing the vehicles speed also helps reduce
the communication overhead and provide a better perfor-
mance. These results indicated how the service migration
mechanism employed by TJam-Smart is more efficient and
scalable than the traditional centralized mechanism used by
TJam-Base. Essentially, with a higher number of clients and
with different traffic conditions, migratory services guar-
antee better results than the statically centralized approach
due to the smaller number of packets that need to be
exchanged.

7 RELATED WORK

In the near future, mobile users will expect to be
provided with continuous access to personalized adaptive
services [22]. Services become personalized when they are
tailored to the user’s context and adaptive when they are
able to adapt to context changes observed in the
environment. Several projects have investigated how to
employ context awareness in carrying out service provi-
sioning. In [23], an intelligent software agent transpar-
ently and constantly selects the most suitable network
service (in terms of network quality of service (QoS) and
connectivity) based on the user’s profile. In [24], Lee and
Helal demonstrate how service matching based on static
descriptions of service characteristics provides minimal
service discovery and filtering, whereas useful context
information including service-specific selection logic, user
characterization, and network conditions can be exploited
to minimize user’s manual selection and to make the

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 13

Fig. 11. Response generation time (bars) and interresponse time (lines)
versus the average vehicular speed.

Fig. 12. Packet utilization rate (bars) and response packet overhead

(lines) versus average vehicular speed.

Fig. 13. Response generation time (bars) and interresponse time (lines)
versus average vehicle distance

Fig. 14. Packet utilization rate (bars) and response packet overhead
(lines) versus average vehicle distance.

service discovery process more effective. In our work, we
employ context awareness in a more extensive way. We
propose a context-aware service provisioning model in
which not only the framework supporting the client
application monitors context changes and enables the
application to react accordingly but the service itself can
react to context changes occurring on the hosting node
and in the surrounding environment. Additionally, the
service is aware of the user’s operating context.

The adoption of context awareness in mobile ad hoc
networks enables interaction and coordination of entities in
such networks. The Sentient Model [25] abstracts context-
aware applications in pervasive ad hoc environments as a
large collection of software components called Sentient
Objects. These accept input via a variety of sensors and
autonomously react by acting upon the environment
through a variety of actuators. Sentient Objects were used
to build sentient vehicles, which are context-aware vehicles
cooperating over mobile ad hoc networks [26]. Julien and
Roman propose the EgoSpaces model [27] and demonstrate
how context awareness can be employed to abstract
resources available in an ad hoc network into a data
structure. EgoSpaces consists of logically mobile agents that
operate over mobile nodes. The agents can specify which
data have to be included in their operating context by
means of declarative specifications containing properties of
the data items, of the agents that own the data, of the hosts
on which those agents are running, and of the attributes of
the ad hoc network. The coordination model sees agents
interacting with a dynamically changing environment
through a set of views, which are custom-defined projec-
tions of the set of data objects present in the surrounding
ad hoc network.

Similarly, the migratory service model addresses co-
operation over mobile ad hoc networks, but it differs from
these projects in the problem it solves. Context information
is not only used to represent the operating environment of
available entities but also to support the concrete deploy-
ment of real-world context-aware adaptive services that are
built on top of those computing entities. The uniqueness of
our solution consists of the context-aware service migration
model and the framework that supports it. In our vision,
the ad hoc network enables a completely new class of
services. Few attempts have been made so far to deploy real
services over mobile ad hoc networks. In [28], Doyle et al.
propose a mobile context-aware narrative that allows the
dynamic presentation of scenes and sequences based on the
interaction of the user with the story itself. Behavior and
actions of the user influence the narrative and make the
story interactive. However, at the core of the system, there
is a hybrid ad hoc network, which consists not only of
mobile nodes associated with users, but also of fixed
multimedia nodes embedded in the environment. In our
scenarios, we consider only mobile and often resource-
constrained entities.

To provide context-aware adaptive services, we use
execution migration. Migratory services share ideas and
leverage work done on process migration [29], [30], [31],
[32], [33], virtual machine monitors (VMMs) [34], [35], [36],
mobile agents [37], [38], active networks [39], [40], [41], and
dynamic reconfiguration in distributed systems [42], [43].
Research work that can be seen as precursors of our model
includes process migration for load balancing and service

component offloading [44]. MobiDesk [45] allows a user’s
computing environment to be migrated transparently from
one server to another by decoupling a user’s desktop
computing session from the underlying operating system
and service instance. MobiDesk builds on Zap [46], a system
for transparent migration of networked applications.

Fluid [47] offers a nomadic and resource-aware Web
service framework that allows dynamically migrating a
Web service to different nodes according to the available
resources at nodes. However, this work addresses services
running in relatively stable Internet-based networks and is
similar to traditional process migration for load balancing.
We share the concept of relocation to other hosts in the ad
hoc network due to new context requirements on the
original host, but we target services in mobile ad hoc
networks. Moreover, in our approach, we consider a wider
range of context information that characterizes both the user
and service.

Another research project similar to migratory services
proposes “follow-me” services [48]. In this proposal, as the
user moves through the network, services can migrate from
node to node to maintain a seamless interaction with the
client application. As such, these services can be considered
a particular example of migratory services where the
migration is triggered by the lack of connectivity between
client applications and services.

Work done on Transmission Control Protocol (TCP)
connection migrations and continuations for Internet
services could be employed to achieve the same goals as
that of our model. Session-based mobility [49] provides
continuations at the application level to support migration
and load balancing. Service Continuations [50], [51] is an
operating system mechanism that enables seamless dy-
namic migration of Internet service sessions between
multiprocess cooperating servers. Fault-tolerant TCP (FT-
TCP) [52] allows a faulty server to keep its TCP connections
open until the server recovers or until they are moved to a
backup server that will take over the interaction with the
connected client processes. This process is transparent to
the connected clients. There are several problems, however,
that make these solutions hard, if not impossible, for ad hoc
networks. First, the traditional end-to-end model of com-
munication assumed by TCP does not work well in
dynamic ad hoc networks [53]. Second, it is difficult to
introduce changes in TCP as network providers deny them.
Third, TCP may be relatively heavyweight for resource-
constrained devices.

Trickles [54], a TCP-like transport protocol, provides
service continuation at the packet level, thus enabling new
functionalities within the network infrastructure. The
novelty of Trickles is that the system state can be kept
entirely on one side of a connection, thus allowing the other
side of the connection (typically the server) to operate
without any per-connection state. Trickles servers can be
replicated and distributed while providing the same
services as that of stateful servers. However, the applic-
ability of this approach to support services in ad hoc
networks may not always be feasible due to CPU limitations
and dynamism that characterize nodes in ad hoc networks.

In recent years, there have been many research efforts to
improve the programmability of sensor networks and
ubiquitous computing environments. For example, Hood

14 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

[55] simplifies application development by providing high-
level abstractions that group together nodes with similar
properties and enable data sharing among neighboring
nodes. MagnetOS [56] is a distributed operating system that
supports the programming of ad hoc networks by making
the entire network appear as a single VM. Applications are
automatically and transparently partitioned into compo-
nents that are placed on nodes within the network to reduce
energy consumption and increase system longevity. Among
many projects that target the programmability of ubiquitous
computing environments, one.world [57] is similar to our
work in the sense that both consider migration as a key
mechanism to adapt to dynamic computing environments.
Each application in one.world has at least one environment
that contains tuples (similar to application tags in the SM
platform), application’s components, and other nested
environments. When needed, a migration moves a check-
pointed copy of an environment to another node.

8 CONCLUSIONS

In this paper, we presented a context-aware service model
that allows ad hoc networks to provide services that
quickly adapt to context changes while still guaranteeing
service continuity to the client. A migratory service frame-
work monitors these changes and reacts by triggering a
service migration each time it renders the current hosting
node unsuitable for supporting the service execution any
longer. As a result, the service resumes its execution on a
new node where it can effectively accomplish its task.
Service migrations are transparent to client applications
because the framework constantly presents a single virtual
end point for every migratory service.

We used this framework to build a migratory service
prototype, which was evaluated using an ad hoc network of
PDAs, as well as large-scale simulations. The experimental
results demonstrated the viability of our model in highly
dynamic ad hoc networks such as cars moving on a
highway. The simulation results showed that our migratory
service performs better than a traditional implementation
based on a centralized model in terms of response time,
efficiency, communication overhead, and scalability.

ACKNOWLEDGMENTS

This work was supported in part by US National Science
Foundation Grants ANI-0121416, CNS-0520123, CNS-
0520033, CNS-0454081, and IIS-0534520 and in part by the
Nokia and Emil Aaltosen scholarships. The authors would
also like to thank the anonymous reviewers who helped
them improve this paper.

REFERENCES

[1] N. Davies, A. Friday, S.P. Wade, and G.S. Blair, “L2imbo: A
Distributed Systems Platform for Mobile Computing,” ACM
Mobile Networks and Applications, special issue on protocols and
software paradigms of mobile networks, vol. 3, no. 2, pp. 143-156,
1998.

[2] Jini Network Technology, http://www.sun.com/software/jini,
Sept. 2007.

[3] Web Services Dynamic Discovery (WS-Discovery), http://specs.
xmlsoap.org/ws/2005/04/discovery/, Apr. 2005.

[4] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L. Iftode, “Cooperative
Computing for Distributed Embedded Systems,” Proc. 22nd Int’l
Conf. Distributed Computing Systems (ICDCS ’02), pp. 227-236, July
2002.

[5] P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer, and L. Iftode,
“Smart Messages: A Distributed Computing Platform for Net-
works of Embedded Systems,” Computer J., special issue on mobile
and pervasive computing, pp. 475-494, 2004.

[6] C. Borcea, C. Intanagonwiwat, A. Saxena, and L. Iftode, “Self-
Routing in Pervasive Computing Environments Using Smart
Messages,” Proc. First IEEE Int’l Conf. Pervasive Computing and
Comm. (PerCom ’03), pp. 87-96, Mar. 2003.

[7] K Virtual Machine, http://java.sun.com/products/cldc/, Sept.
2007.

[8] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Context-
Aware Reflective mIddleware System for Mobile Applications,”
IEEE Trans. Software Eng., vol. 29, no. 10, pp. 929-945, Oct. 2003.

[9] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” Proc. ACM MobiCom, pp. 243-254, Aug.
2000.

[10] C. Perkins and E. Royer, “Ad-Hoc On-Demand Distance Vector
Routing,” Proc. Second IEEE Workshop Mobile Computing Systems
and Applications (WMCSA ’99), pp. 90-100, Feb. 1999.

[11] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/,
Sept. 2007.

[12] The Monarch Group at Rice University, http://www.monarch.cs.
rice.edu/, Sept. 2007.

[13] “Traffic Analysis Tools Primer,” Traffic Analysis Toolbox, vol. 1,
http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol1, June 2004.

[14] KRONOS, http://street.umn.edu/, Sept. 2007.
[15] M. van den Berg, A. Hegyi, B. De Schutter, and J. Hellendoorn, “A

Macroscopic Traffic Flow Model for Integrated Control of Free-
way and Urban Traffic Networks,” Proc. 42nd IEEE Conf. Decision
and Control, pp. 2774-2779, Dec. 2003.

[16] AIMSUN NG the Integrated Traffic Environment, http://www.tss-
bcn.com/aimsun.html, Sept. 2007.

[17] DRACULA (Dynamic Route Assignment Combining User Learn-
ing and microsimulAtion), http://www.its.leeds.ac.uk/software/
dracula, Sept. 2007.

[18] CONTRAM (CONtinuous TRaffic Assignment Model), http://
www.contram.com, Sept. 2007.

[19] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode, “TrafficView:
Traffic Data Dissemination Using Car-to-Car Communication,”
ACM Mobile Computing and Comm. Rev., vol. 8, no. 3, pp. 6-19, July
2003.

[20] P. Zhou, T. Nadeem, P. Kang, C. Borcea, and L. Iftode, “EZCab: A
Cab Booking Application Using Short-Range Wireless Commu-
nication,” Proc. Third IEEE Int’l Conf. Pervasive Computing and
Comm. (PerCom ’05), pp. 27-38, Mar. 2005.

[21] M. Grossglauser and D.N.C. Tse, “Mobility Increases the Capacity
of Ad Hoc Wireless Networks,” IEEE/ACM Trans. Networking,
vol. 10, no. 4, pp. 477-486, 2002.

[22] Technologies for the Wireless Future: Wireless World Research Forum
(WWRF), R. Tafazolli, ed., John Wiley & Sons, Oct. 2004.

[23] P.F.G. Lee, S. Bauer, and J. Wroclawski, “A User-Guided
Cognitive Agent for Network Service Selection in Pervasive
Computing Environments,” Proc. Second IEEE Ann. Conf. Pervasive
Computing and Comm. (PerCom ’04), pp. 219-228, Mar. 2004.

[24] C. Lee and S. Helal, “Context Attributes: An Approach to Enable
Context-Awareness for Service Discovery,” Proc. Third IEEE/IPSJ
Symp. Applications and the Internet (SAINT ’03), pp. 22-30, Jan. 2003.

[25] M. Wu, A. Friday, G.S. Blair, T. Sivaharan, P. Okanda, H.D.
Limon, C.-F. Sørensen, G. Biegel, and R. Meier, “Novel Compo-
nent Middleware for Building Dependable Sentient Computing
Applications,” Proc. ACM Workshop Component-Oriented Ap-
proaches to Context-Aware Computing (ECOOP ’04), June 2004.

[26] T. Sivaharan, G.S. Blair, A. Friday, M. Wu, H.A. Duran-Limon, P.
Okanda, and C.-F. Sørensen, “Cooperating Sentient Vehicles for
Next Generation Automobiles,” Proc. ACM/Usenix MobiSys Int’l
Workshop Applications of Mobile Embedded Systems (WAMES ’04),
June 2004.

[27] C. Julien and G. Roman, “Active Coordination in Ad Hoc
Networks,” Proc. Sixth Int’l Conf. Coordination Models and
Languages, pp. 199-215, Feb. 2004.

[28] L. Doyle, G. Davenport, and D. O’Mahony, “Mobile Context-
aware Stories,” Proc. IEEE Int’l Conf. Multimedia and Expo (ICME
’02), vol. 2, pp. 345-348, Aug. 2002.

RIVA ET AL.: CONTEXT-AWARE MIGRATORY SERVICES IN AD HOC NETWORKS 15

[29] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,
“Process Migration,” ACM Computing Surveys, vol. 32, no. 3,
pp. 241-299, Sept. 2000.

[30] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A.
Tevanian, and M. Young, “Mach: A New Kernel Foundation for
Unix Development,” Proc. Usenix Summer Conf., pp. 93-113, July
1986.

[31] A. Barak and R. Wheeler, “MOSIX: An Integrated Mulitprocessor
Unix,” Mobility: Processes, Computers, and Agents, pp. 41-53, 1999.

[32] D.R. Cheriton, “The V Distributed System,” Comm. ACM, vol. 31,
no. 3, pp. 314-333, 1988.

[33] P. Smith and N.C. Hutchinson, “Heterogeneous Process Migra-
tion: The Tui System,” Software—Practice and Experience, vol. 28,
no. 6, pp. 611-639, 1998.

[34] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and
M. Rosenblum, “Optimizing the Migration of Virtual Compu-
ters,” ACM SIGOPS Operating Systems Rev., vol. 36, pp. 377-390,
2002.

[35] Internet Suspend/Resume Project, http://www.pittsburgh.intel-
research.net/projects/isr.html, Sept. 2007.

[36] VMware VirtualCenter, http://www.vmware.com/products, Sept.
2007.

[37] J. White, Mobile Agents, J.M. Bradshaw, ed., MIT Press, 1997.
[38] R. Gray, G. Cybenko, D. Kotz, and D. Rus, “Mobile Agents:

Motivations and State of the Art,” Handbook of Agent Technology,
J. Bradshaw, ed., AAAI/MIT Press, 2002.

[39] D. Wetherall, “Active Network Vision Reality: Lessons from a
Capsule-Based System,” Proc. 17th ACM Symp. Operating Systems
Principles (SOSP ’99), pp. 64-79, Dec. 1999.

[40] J. Moore, M. Hicks, and S. Nettles, “Practical Programmable
Packets,” Proc. IEEE INFOCOM, pp. 41-50, Apr. 2001.

[41] B. Schwartz, A. Jackson, W. Strayer, W. Zhou, R. Rockwell, and C.
Partridge, “Smart Packets: Applying Active Networks to Network
Management,” ACM Trans. Computer Systems, vol. 18, no. 1, pp. 67-
88, 2000.

[42] J. Kramer and J. Magee, “Dynamic Configuration for Distributed
Systems,” IEEE Trans. Software Eng., vol. 11, no. 4, pp. 424-436,
1985.

[43] J. Magee and M. Sloman, “Constructing Distributed Systems in
Conic,” IEEE Trans. Software Eng., vol. 15, no. 6, pp. 663-675, June
1989.

[44] A. Messer, I. Greenberg, P. Bernadat, D.S. Milojicic, D. Chen, T.J.
Giuli, and X. Gu, “Towards a Distributed Platform for Resource-
Constrained Devices,” Proc. 22nd Int’l Conf. Distributed Computing
Systems (ICDCS ’02), pp. 43-51, July 2002.

[45] R.A. Baratto, S. Potter, G. Su, and J. Nieh, “MobiDesk: Mobile
Virtual Desktop Computing,” Proc. ACM MobiCom, pp. 1-15,
2004.

[46] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The Design and
Implementation of Zap: A System for Migrating Computing
Environments,” ACM SIGOPS Operating Systems Rev., vol. 36,
pp. 361-376, 2002.

[47] I. Pratistha and A. Zaslavsky, “Fluid: Supporting a Transportable
and Adaptive Web Service,” Proc. ACM Symp. Applied Computing
(SAC ’04), pp. 1600-1606, 2004.

[48] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman, “Context
Aware Session Management for Services in Ad Hoc Networks,”
Proc. IEEE Int’l Conf. Services Computing (SCC ’05), pp. 113-120,
July 2005.

[49] A.C. Snoeren, “A Session-Based Approach to Internet Mobility,”
PhD dissertation, Dept. of Electrical Eng. and Computer Science,
Massachusetts Inst. of Technology, Dec. 2002.

[50] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP:
Connection Migration for Service Continuity in the Internet,” Proc.
22nd Int’l Conf. Distributed Computing Systems (ICDCS ’02), pp. 469-
470, July 2002.

[51] F. Sultan, A. Bohra, and L. Iftode, “Service Continuations: An
Operating System Mechanism for Dynamic Migration of Internet
Service Sessions,” Proc. Symp. Reliable Distributed Systems (SRDS
’03), pp. 177-186, Oct. 2003.

[52] L. Alvisi, T.C. Bressoud, A. El-Khashab, K. Marzullo, and D.
Zagorodnov, “Wrapping Server-Side TCP to Mask Connection
Failures,” Proc. IEEE INFOCOM, pp. 329-337, 2001.

[53] C. Wan, A. Campbell, and L. Krishnamurthy, “PSFQ: A Reliable
Transport Protocol for Wireless Sensor Networks,” Proc. First
ACM Int’l Workshop Wireless Sensor Networks and Applications
(WSNA ’02), pp. 1-11, Sept. 2002.

[54] A. Shieh, A. Myers, and E.G. Sirer, “Trickles: A Stateless Network
Stack for Improved Scalability, Resilience and Flexibility,” Proc.
Second Usenix Symp. Networked Systems Design and Implementation
(NSDI ’05), pp. 175-188, May 2005.

[55] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: A
Neighborhood Abstraction for Sensor Networks,” Proc. ACM
MobiSys, pp. 99-110, 2004.

[56] H. Liu, T. Roeder, K. Walsh, R. Barr, and E.G. Sirer, “Design and
Implementation of a Single System Image Operating System for
Ad Hoc Networks,” Proc. ACM MobiSys, pp. 149-162, 2005.

[57] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T.
Anderson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall,
“System Support for Pervasive Applications,” ACM Trans.
Computer Systems, vol. 22, no. 4, pp. 421-486, 2004.

Oriana Riva received the MSc degree in
telecommunication engineering from Politecnico
di Milano, Italy, in 2003. She is completing her
dissertation on how to support mobile sensing
applications in heterogenous pervasive environ-
ments for the doctoral degree in computer
science at the University of Helsinki. She is a
researcher at the Helsinki Institute for Informa-
tion Technology. Her research interests include
ubiquitous computing, ad hoc networking, and

context-aware services for mobile users.

Tamer Nadeem received the PhD degree from
the University of Maryland in 2006. He is a
research scientist at Siemens Corporate Re-
search. His research interests include wireless
networks management, mobile ad hoc networks,
vehicular networks, sensor networks, peer-to-
peer systems, and pervasive computing. He is a
member of the IEEE, the IEEE Computer
Society, and the ACM. He is an elected member
of the Phi Kappa Phi and Sigma Xi honor

societies and a member of the Association of Egyptian American
Scholars.

Cristian Borcea received the PhD degree in
computer science from Rutgers University in
2004. He is an assistant professor in the
Department of Computer Science, New Jersey
Institute of Technology. His research interests
include mobile computing, middleware for ubi-
quitous networked systems, vehicular networks,
and sensor networks. He is a member of the
IEEE, the IEEE Computer Society, the ACM,
and Usenix.

Liviu Iftode received the PhD degree in
computer science from Princeton University in
1998. He is an associate professor of computer
science at Rutgers University, New Jersey. His
research interests include distributed systems,
operating systems, vehicular networks, and
mobile and pervasive computing. He is a senior
member of the IEEE and the IEEE Computer
Society and a member of the ACM. He is the
vice-chair of the IEEE Technical Committee on

Operating Systems and a member of the editorial boards of IEEE
Pervasive Computing and IEEE Distributed Systems Online.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 12, DECEMBER 2007

