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Abstract—The industry is producing new wireless mobile 

devices, such as smart phones, at an ever increasing pace. In 
terms of processors and memory, these devices are as powerful as 
the PCs were one decade ago. Therefore, they are perfectly 

suitable to become the first real-life platforms for ubiquitous 
computing.  For instance, they can be programmed to run 
location-aware applications that provide people with real-time 

information relevant to their current places. Deploying such 
applications in our daily life, however, requires a good 
understanding of their power requirements in order to ensure 

that mobile devices can indeed support them. This paper presents 
a quantitative analysis of power consumption for location-aware 
applications in our SmartCampus project, which builds a large 

scale test-bed for mobile social computing.  Based on this 
analysis, we conclude that carefully designed applications can 
run for up to six hours, while updating the user location 

frequently enough to support real-time location-aware 
communication.  

 

I. Introduction 

Mark Weiser had envisioned an era where people would 

not be confined to their desks for computing, as computers 

would blend in our daily environments [1]. Today, a good part 

of Weiser’s prediction has come true. Computers have become 

increasingly networked, mobile, and small.  We see a barrage 

of mobile devices, such as smart phones, PDAs, and 

pocketPCs, with processing capacity and networking ability 

that was previously thought impossible. Typically, they come 

equipped with several wireless network interfaces, such as 

WiFi, cellular (including 3G), and Bluetooth, processors 

running at 100-400MHz, and 64-128MB of memory. 

From stock tickers to city-wide social games, these 

devices promise to offer support for a large spectrum of 

ubiquitous computing applications [2]. We believe that 

location-aware mobile social applications that link people-to-

people-to-places (P3-Systems [3]) in real-time will be the 

“killer applications” for ubiquitous computing environments. 

Until recently, the ability to locate individuals seamlessly has 

been very limited, but with the introductions of technologies 

such as WiFi, GSM, Bluetooth, and GPS, we are capable to 

overcome this issue in a cost-efficient manner [4, 5].  

We are currently building SmartCampus, a test-bed for 

P3-Systems that leverages all these new technologies [6]. In 

the very near future, SmartCampus will consist of several 

hundred heterogeneous mobile devices carried by students on 

our campus.  In this test-bed, real-time user location 

information is used to improve collaboration and coordination 

among friends, acquaintances, or people with similar interests. 

The applications are built over a common service-oriented 

middleware that captures, processes, and shares social 

information among mobile devices.  

As expected, battery power represents the most important 

limitation that we face in developing P3-System applications. 

For instance, the basic question asked by any user who plans 

to run an application on her smart phone is: “how long can I 

use my phone if I run this application?” A software developer, 

on the other hand, would be interested to know how much 

power is consumed by each hardware component in order to 

optimize the applications and be able to inform the users about 

the power consumption of each application. Previous research 

has focused on topics such as energy-aware application 

adaptation [7], characterization of power consumption for user 

interfaces on handheld devices [8], and energy consumption 

for mobile peer-to-peer applications [9]. 

 This paper presents a quantitative analysis of power 

consumption for location-aware applications running on smart 

phones. The main purpose of this analysis is to provide a set 

of experimental results and guidelines for system and 

application programmers. This is because the software 

industry must be made aware of the constraints imposed on 

mobile devices by their limited battery power in order to 

design and deploy efficient applications. Our results indicate 

that cellular communication and WiFi communication have 

similar power behavior. Furthermore, the processor can be the 

main source of power drainage for many applications. Overall, 

we conclude that carefully designed location-aware 

applications can run on typical current generation smart 

phones for up to six hours while supporting real-time 

communication among users. 

 The rest of this paper is organized as follows. Section II 

introduces the software architecture of the SmartCampus test-

bed and a prototype location-aware application, namely 



CampusMesh. Section III describes the experimental setup. In 

Section IV, we present the power consumption analysis for 

general application running on smart phones, with a special 

focus on the hardware components that drain the most power 

during execution. Section V shows experimental results for 

the SmartCampus location engine, which is used by all 

location-aware applications. We discuss the lessons learned 

and conclude in Section VI.  

 
II. SmartCampus Software Architecture 

The SmartCampus applications are developed on top of 

UbiCon, our service-oriented middleware for P3-System 

applications. UbiCon securely collects individual, community, 

place, and social event data from associated P3-System 

applications, which are continuously mined to produce an 

increasingly rich model of the social environment. Unlike 

typical distributed middleware solutions, our middleware not 

only shields the programmers from the distributed 

heterogeneous hardware, but also provides social models of 

the campus community and allows a large spectrum of P3-

System applications to access data derived from these models 

in a simple and secure way through a service API 

UbiCon was implemented in Java, and its core services 

run over the Apache Tomcat server. These services are 

exposed using KSOAP, a SOAP toolkit designed to work with 

lightweight versions of JAVA. Essentially, any P3-System 

application has two parts: a service that uses UbiCon to access 

data about users and their locations, and a thin client that runs 

on mobile devices such as smart phones. These clients are 

developed in Java using OSGi for simple software 

management [10].  

A key client component is the location engine that runs on 

mobile devices. This engine scans for visible WiFi access 

points and employs centroid and fingerprinting techniques to 

compute the current user location. We assume that all mobile 

clients have wireless Internet access either through WiFi or 

through cellular communication. This assumption holds as 

many urban places such as college campuses already have full 

WiFi coverage; in places that do not have full WiFi coverage, 

we assume the use of smart phones or cellular data cards that 

allow Internet access. 

To illustrate a typical location-aware application in 

SmartCampus, we describe CampusMesh, a social matching 

and alert delivery application developed using UbiCon. 

CampusMesh runs on heterogeneous mobile devices such as 

smart phones, PDAs, and TabletPCs. It leverages rich user 

profile information, user preferences, social networks, and 

user mobility traces for social match generation. Additionally, 

it provides context-aware alerts. This application encourages 

the formation of new friendships, supports goal directed team 

formation, and geo-temporal personal relationship 

management. Let us consider the following scenarios to 

understand how CampusMesh can be used to set up a geo-

temporal alert and to provide a social match. 

Scenario 1: Mike and Joe regularly meet at a computing 

laboratory to study for their Ubiquitous Computing class. Joe 

keeps bringing a textbook borrowed from Mike that needs to 

be returned to the library, but every time they meet, other stuff 

comes up and he forgets to return it. Finally, he decides to set 

a reminding alert triggered by proximity to Mike.  When they 

meet next time, the CampusMesh client delivers the reminder; 

Mike gets his book back and returns it to the library. 

Scenario 2: One Monday afternoon, Ayala is relaxing at 

the university cafeteria when her smart phone vibrates to 

indicate she has a CampusMesh message. She sees that it has 

detected another female student with a high affinity match in 

the vicinity, who she might wish to meet. Though the system 

does not reveal the strangers identity, it does inform Ayala 

that they have several friends in common and a mutual interest 

in art movies.  As Ayala is hoping to organize art movie 

projections on-campus, she sends a message to find out more, 

and after further data is exchanged through mutual user 

controlled progressive identity revelation, she decides to 

personally meet the other user. 

Fig. 1 presents the CampusMesh user interface on smart 

phones. On the left side, we show the event tab, used for alerts 

such as the one described in the first scenario. On the right 

side, we show the match tab, used for social matching such as 

the one described in the second scenario. 

  

 
 

Fig. 1. CampusMesh User Interface on Smart Phones 

 
III. Experimental Setup 

For our quantitative analysis, we ran both micro-

benchmarks to evaluate the individual power consumption of 

the main hardware components (e.g., processor, WiFi 

interface, backlight) and experiments that measured the power 

consumed by the SmartCampus location engine. The 

experiments were performed on iMate KJam smart phones, 

each with the relevant specifications as listed in Table I. 

 

TABLE I 
SMART PHONE CHARACTERISTICS 

Battery Type Lithium Polymer 1250mAh 

Memory 128 MB 

OS Windows Mobile 5.0 

Processor 195 MHz OMAP processor 
 



The following software was used to measure the battery life 

and the CPU usage of the devices: ACB Power Meter[11] and 

Pocket Hack Master[12]. Previously, the unanimously 

accepted best way to measure battery usage by smart phones 

was by connecting an Ampere counter between the battery and 

the smart phone [13]. Although it is potentially more accurate, 

this solution was very difficult and virtually impossible 

without soldering wires onto the smart phone. The ACB 

Power Meter simplified significantly the task of monitoring 

battery usage. The Pocket Hack Master was used to analyze 

the CPU usage of various processes performed on the device. 

 
IV. Smart Phone Power Consumption 

Numerous factors affect the battery lifetime of a smart 

phone. Despite the fact that each application that runs on the 

phone contributes differently to its battery drain, there are five 

fundamental hardware components that consume most of the 

power: backlight, Bluetooth, CPU, WiFi, and the cell radio. 

By understanding their relative contribution to the overall 

power consumption, application programmers can estimate the 

power requirements for each individual application based on 

its specific logic. Furthermore, they can design the 

applications to make better use of the limited power resources. 

In the following, we present experimental results for these five 

components and conclude the section with the component 

distribution of power consumption for a typical use of the 

smart phone. 

A. Backlight 

Smart phones have larger screens compared to regular 

mobile phones. Hence, they require larger backlights that 

consume more power. Most of these phones come with 

settings for backlight levels that may be adjusted by users. Our 

smart phone has five levels of backlight, with 0 being no 

backlight and 4 being the brightest. We conducted 

experiments for each level, starting with no backlight and 

moving up to the 4
th
 level. We observed that the 1

st
 level of 

backlight consumes 45-65mAh. Subsequent levels of 

backlight burn approximately 30-40mAh more power than the 

previous level. At the 4
th
 level, the battery consumed is almost 

200mAh. Thus, keeping the backlight continuously on at the 

4
th
 level would completely drain the battery in slightly over 6 

hours.  

 

B. Bluetooth 

A commonality among recent smart phones is the 

presence of a Bluetooth interface, which provides the 

convenience of sharing files or using Bluetooth headsets and 

keyboards. We measured the power consumed by various 

activities using the Bluetooth adapter, and the results are 

summarized in Table II. 

 

TABLE II 
BLUETOOTH ADAPTER CHARACTERISTICS 

Bluetooth On 20-35mAh 

Scanning for Devices 10mAh 

Data Transfer 30-40mAh 

C. CPU 

The CPU of a handheld device is the component that 

drains the most battery power, assuming that WiFi is not used 

very often. The faster a processor, the more power it 

consumes. Even in standby mode, the CPU is used to keep the 

Smart phone “awake,” and consumes approximately 5-

10mAh. In the following, we list a few important 

characteristics of the CPU power consumption on our smart 

phones: 

• On average, the CPU remains in the idle state for 95% 

of the time. The idle time consumes much less power than 

when the CPU is being actively used. 

• Turning on/off devices such as the WiFi network card 

and Bluetooth adapter causes a spike in the usage of the 

CPU, but maintaining the state of the respective devices 

does not take much CPU time. For example, turning on 

the WiFi network card of a smart phone shows the usage 

of 90-120mAh. 

• The CPU does not participate in scanning for WiFi 

access points or Bluetooth devices. 

• We observed that most common games on the phones 

are very CPU intensive, and hence, they drain a lot of 

battery (a significant factor that influences these results is 

the software emulation of floating point operations by the 

processor). 

 

D. WiFi 

Most new smart phones come equipped with a WiFi 

network interface. Although this interface can be very useful 

for ubiquitous computing applications, it could lead to a quick 

exhaustion of the battery if its use is not controlled properly. 

Fig. 2 depicts the power consumption for the WiFi interface. 

The top line represents the instantaneous power consumption, 

while the bottom line represents the average power 

consumption over time. The markers on the figure indicate the 

points when the WiFi is switched on (a), when the device is 

being authenticated into the network (b), and when the 

connection with the network has been established (c). 

 

 
 

Fig. 2. Battery Usage while Connecting to WiFi Network 



 

Just having the WiFi card on, without any data transfers, 

drains about 130-150mAh. Note that this value includes the 

power consumed by the smart phone in steady state. This 

means that when connected to a network, the battery would 

last 8-9 hours without any computation or communication. 

The network card can drain more battery than the CPU if it 

remains on for longer periods than the CPU utilization 

periods. Also, the network card drains more power while 

scanning for available networks than when maintaining an 

existing network connection. Continuous data transfers over 

the network also drain the battery of the device by an 

additional 150-200mAh in transmit/receive mode. We 

observed that the power consumption is similar in transmit 

and receive mode. 

 

E. Cell Radio 

The cell radio burns about 2-4mAh on top of the 5-

10mAh standby usage of the smart phone. A phone call made 

over the GSM cellular service costs the battery about 250-

300mAh. This value is just slightly less than transferring data 

over the WiFi interface. Therefore, considering that WiFi is 

typically free, while the cellular network incurs a certain cost, 

WiFi should be used as the network interface of choice for 

data transfers each time it is possible. 

 

F. Power Consumption for Typical Use of a Smart Phone 

To obtain a rough estimate the percentages of time when 

a typical user makes phone calls, browses the Internet, uses 

her Bluetooth headset, plays games, or plays media files, we 

interviewed 18 students on our campus. Based on this input, 

Fig. 3 illustrates the hardware component distribution of 

power consumption. We observe that the processor consumes 

the most power, followed closely by the WiFi and the GSM 

radio. The Bluetooth is still significant because the typical 

user keeps the headset on most of the time. The backlight is 

not very important because the users turn it off or maintain it 

at a minimum level most of the time. The other parameters 

that affect the power consumption include the memory and the 

speaker. 

 

Other, 5%

Backlight , 3%

Bluetooth , 7%

GSM, 25%

CPU, 35%

Wifi, 25%

 
 

Fig. 3. Power Consumption for Typical Smart Phone Usage 

 

V. Location Engine Power Consumption 

All SmartCampus location-aware applications use a 

common location engine that runs on the smart phone. This 

section presents experimental results that quantify the power 

consumption of this engine. The engine uses a database of 

known access points and their associated locations (latitude 

and longitude). This database is loaded as a hash table into the 

smart phone memory at runtime for fast access. Each time the 

location is computed, the WiFi network card is made to scan 

for visible access points, and subsequently the location of 

these access points is retrieved from the database. In the 

centroid method that we used for experiments, the position of 

the user is computed as the average of these locations. Once 

the computation is done, the location is sent over the network 

to a server as a SOAP (Simple Object Access Protocol) 

message. This procedure is repeated at regular scan intervals 

to update the location of the user. From this description, it is 

clear that the CPU and WiFi are the biggest power drain 

components for the location engine. 

The amount of battery drained by the WiFi is function of 

the scanning frequency. Obviously, as the scanning period 

increases, the battery life increases. Hence, for a longer battery 

life, the scanning interval should be as large as possible. 

However, with a very large scanning period, the location 

updates to the server are also much less frequent. Thus, it 

defeats the purpose of having real-time updates of user’s 

position. Ideally, the location needs to be updated every few 

seconds for good accuracy, but because of a limited battery 

power, the scanning interval becomes an important design 

decision. This decision is made by taking into consideration 

the trade-off between update frequency and battery drainage. 
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Fig. 4. Battery Lifetime as Function of Location Scan Interval 

and Processor Speed  

 

Fig. 4 shows the battery lifetime as function of WiFi 

scanning frequency. We also plot the battery behavior when 

under-clocking the CPU at 155 MHz instead of its regular 195 

MHz. In this experiment, we consider the entire process of 

scanning for access points, computing the location on the 

phone, and sending this location encapsulated in a SOAP 



message to a server. If we assume that a student will be on-

campus at least 3 hours (i.e., attending one 3-hour course), the 

results at 195MHz demonstrate that the location update 

frequency should be at most three times per minute. We also 

discovered that the CPU speed affects the battery consumption 

significantly (at least 20% in our experiment). 

 

 
 

Fig. 5. CPU Usage for Location Scan Interval of 20 Seconds 

 

Computing the location uses up a fair amount of the CPU 

time. Fig. 5 shows the CPU usage at 195MHz for a scanning 

interval of 20 seconds (as determined above). The results 

demonstrate that the CPU is utilized 33% only by the location 

engine. Therefore, the applications will be capable to use it 

just for the rest of the time. 

 

 
 

Fig. 6. CPU Usage for Location Scan Interval of 1 Second 

  

Furthermore, Fig. 6 demonstrates that a small scanning 

interval such as 1 second not only would consume a lot of 

energy due to WiFi scanning, but also would use up to 75% of 

the processing power. Thus, it would leave very few processor 

cycles for applications. 

 

0

20

40

60

80

100

1 2 3 4 5

Number of Packet 1000 x X

P
o
w
e
r 
C
o
n
s
u
m
e
d
 (
m
A
h
)

SOAP TCP

 
 

Fig. 7. SOAP vs. TCP Power Consumption 

 

Once the location is computed, the smart phones will send 

it to a location server via SOAP. We decided to expose the 

SmartCampus services via SOAP because this protocol offers 

language independence and SOAP clients are available for 

many popular languages. Additionally, it provides a clean 

transport mechanism, with the client services communicating 

over HTTP. We use KSOAP J2ME library that has a memory 

footprint less than 50KB. This makes it extremely suitable for 

resource constraint devices such as smart phones. The KXML 

parser provides good performance comparable to XML-RPC. 

We compared the power consumption when using SOAP vs. 

TCP. The results from Fig. 7 demonstrate the SOAP overhead 

in terms of power consumption increases just slightly with the 

number of packets. This is due to the efficient processing of 

the KXML parser. 
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Fig. 8. Power Consumption Distribution for the SmartCampus 

Location Engine 

 

Fig. 8 summarizes our findings for the power 

consumption of the location engine. The experiments indicate 



that 45% of the power is spent for WiFi scanning to discover 

nearby access points, 40% is consumed by the processor to 

compute the user location, and 15% is consumed by both the 

processor and the WiFi interface to encapsulate the location 

data in a SOAP message and send it to the location server. 

 
VI. Conclusions and Lessons Learned 

Based on our experiments, we derived a number of 

guidelines for software designers in order to maximize the 

battery lifetime of smart phones running location-aware 

applications such as CampusMesh. Since the CPU consumes a 

significant amount of power, the programmers should try to 

offload the computation to a server each time it is possible. In 

making this decision, they must trade-off CPU power 

consumption against WiFi power consumption (i.e., the WiFi 

will be used to exchange parameters and results with the 

server).  

A faster processor is not necessarily better for mobile 

devices running ubiquitous computing applications. This is 

due to the high power consumption of the processor. A lower 

processor speed (e.g., 155MHz instead of 195MHz) does not 

influence the functionality of certain applications, while it 

saves a good amount of battery power. As shown by the 

results from Fig. 4, the battery life was extended by over an 

hour when using under-clocking. 

Since keeping the WiFi card off is not an option with 

applications that need real-time communication, one way to 

increase the battery lifetime is to reduce the frequency of WiFi 

scans used by the location engine. Another potential solution 

is to have a mechanism that switches the WiFi network card 

on and off at certain intervals. However, this can end up in a 

worse drain of power than keeping the interface on all the 

time. A possible solution is to track the location of the smart 

phone, and based on its relocation frequency, to determine 

when it makes sense to switch the WiFi. For instance, if a 

student is in a classroom, she would not be moving. Sensing 

this stagnancy from a few scans, the application may turn off 

the WiFi device and may turn it on every 10 minutes to see if 

the location data has changed or if any new messages have 

been buffered at the server for this user. If the location data 

has changed, the scanning can resume at the normal interval 

specified. If the location data has not changed, the WiFi 

device may be turned off again. 

The decision on the value of scan interval depends on the 

expected overall system performance. Shorter scan intervals 

consume more power, but the location of the smart phone is 

updated faster. This is appropriate for applications that need 

accurate location or real-time location-based communication. 

Longer scan intervals improve the battery life at the expense 

of having slower updates, and consequently the applications 

decrease their location-aware responsiveness. From our 

experiments, we believe that a 30 second to 1 minute scanning 

interval might be a good trade-off. In such a situation, the 

battery lifetime can be as much as 6 hours when only the 

location engine is used. Applications that use the processor 

and the WiFi moderately can, therefore, run for a significant 

period of time. 
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