
A Quantitative Analysis of Power Consumption for

Location-Aware Applications on Smart Phones

Arjun Anand
1
, Constantine Manikopoulos

2
, Quentin Jones

3
, and Cristian Borcea

1

Departments of
1
Computer Science,

2
Electrical and Computer Engineering, and

3
Information Systems

New Jersey Institute of Technology

University Heights, Newark, NJ 07102, USA

aa297@njit.edu, manikopoulos@njit.edu, qjones@njit.edu, borcea@cs.njit.edu

Abstract—The industry is producing new wireless mobile

devices, such as smart phones, at an ever increasing pace. In
terms of processors and memory, these devices are as powerful as
the PCs were one decade ago. Therefore, they are perfectly

suitable to become the first real-life platforms for ubiquitous
computing. For instance, they can be programmed to run
location-aware applications that provide people with real-time

information relevant to their current places. Deploying such
applications in our daily life, however, requires a good
understanding of their power requirements in order to ensure

that mobile devices can indeed support them. This paper presents
a quantitative analysis of power consumption for location-aware
applications in our SmartCampus project, which builds a large

scale test-bed for mobile social computing. Based on this
analysis, we conclude that carefully designed applications can
run for up to six hours, while updating the user location

frequently enough to support real-time location-aware
communication.

I. Introduction

Mark Weiser had envisioned an era where people would

not be confined to their desks for computing, as computers

would blend in our daily environments [1]. Today, a good part

of Weiser’s prediction has come true. Computers have become

increasingly networked, mobile, and small. We see a barrage

of mobile devices, such as smart phones, PDAs, and

pocketPCs, with processing capacity and networking ability

that was previously thought impossible. Typically, they come

equipped with several wireless network interfaces, such as

WiFi, cellular (including 3G), and Bluetooth, processors

running at 100-400MHz, and 64-128MB of memory.

From stock tickers to city-wide social games, these

devices promise to offer support for a large spectrum of

ubiquitous computing applications [2]. We believe that

location-aware mobile social applications that link people-to-

people-to-places (P3-Systems [3]) in real-time will be the

“killer applications” for ubiquitous computing environments.

Until recently, the ability to locate individuals seamlessly has

been very limited, but with the introductions of technologies

such as WiFi, GSM, Bluetooth, and GPS, we are capable to

overcome this issue in a cost-efficient manner [4, 5].

We are currently building SmartCampus, a test-bed for

P3-Systems that leverages all these new technologies [6]. In

the very near future, SmartCampus will consist of several

hundred heterogeneous mobile devices carried by students on

our campus. In this test-bed, real-time user location

information is used to improve collaboration and coordination

among friends, acquaintances, or people with similar interests.

The applications are built over a common service-oriented

middleware that captures, processes, and shares social

information among mobile devices.

As expected, battery power represents the most important

limitation that we face in developing P3-System applications.

For instance, the basic question asked by any user who plans

to run an application on her smart phone is: “how long can I

use my phone if I run this application?” A software developer,

on the other hand, would be interested to know how much

power is consumed by each hardware component in order to

optimize the applications and be able to inform the users about

the power consumption of each application. Previous research

has focused on topics such as energy-aware application

adaptation [7], characterization of power consumption for user

interfaces on handheld devices [8], and energy consumption

for mobile peer-to-peer applications [9].

 This paper presents a quantitative analysis of power

consumption for location-aware applications running on smart

phones. The main purpose of this analysis is to provide a set

of experimental results and guidelines for system and

application programmers. This is because the software

industry must be made aware of the constraints imposed on

mobile devices by their limited battery power in order to

design and deploy efficient applications. Our results indicate

that cellular communication and WiFi communication have

similar power behavior. Furthermore, the processor can be the

main source of power drainage for many applications. Overall,

we conclude that carefully designed location-aware

applications can run on typical current generation smart

phones for up to six hours while supporting real-time

communication among users.

 The rest of this paper is organized as follows. Section II

introduces the software architecture of the SmartCampus test-

bed and a prototype location-aware application, namely

CampusMesh. Section III describes the experimental setup. In

Section IV, we present the power consumption analysis for

general application running on smart phones, with a special

focus on the hardware components that drain the most power

during execution. Section V shows experimental results for

the SmartCampus location engine, which is used by all

location-aware applications. We discuss the lessons learned

and conclude in Section VI.

II. SmartCampus Software Architecture

The SmartCampus applications are developed on top of

UbiCon, our service-oriented middleware for P3-System

applications. UbiCon securely collects individual, community,

place, and social event data from associated P3-System

applications, which are continuously mined to produce an

increasingly rich model of the social environment. Unlike

typical distributed middleware solutions, our middleware not

only shields the programmers from the distributed

heterogeneous hardware, but also provides social models of

the campus community and allows a large spectrum of P3-

System applications to access data derived from these models

in a simple and secure way through a service API

UbiCon was implemented in Java, and its core services

run over the Apache Tomcat server. These services are

exposed using KSOAP, a SOAP toolkit designed to work with

lightweight versions of JAVA. Essentially, any P3-System

application has two parts: a service that uses UbiCon to access

data about users and their locations, and a thin client that runs

on mobile devices such as smart phones. These clients are

developed in Java using OSGi for simple software

management [10].

A key client component is the location engine that runs on

mobile devices. This engine scans for visible WiFi access

points and employs centroid and fingerprinting techniques to

compute the current user location. We assume that all mobile

clients have wireless Internet access either through WiFi or

through cellular communication. This assumption holds as

many urban places such as college campuses already have full

WiFi coverage; in places that do not have full WiFi coverage,

we assume the use of smart phones or cellular data cards that

allow Internet access.

To illustrate a typical location-aware application in

SmartCampus, we describe CampusMesh, a social matching

and alert delivery application developed using UbiCon.

CampusMesh runs on heterogeneous mobile devices such as

smart phones, PDAs, and TabletPCs. It leverages rich user

profile information, user preferences, social networks, and

user mobility traces for social match generation. Additionally,

it provides context-aware alerts. This application encourages

the formation of new friendships, supports goal directed team

formation, and geo-temporal personal relationship

management. Let us consider the following scenarios to

understand how CampusMesh can be used to set up a geo-

temporal alert and to provide a social match.

Scenario 1: Mike and Joe regularly meet at a computing

laboratory to study for their Ubiquitous Computing class. Joe

keeps bringing a textbook borrowed from Mike that needs to

be returned to the library, but every time they meet, other stuff

comes up and he forgets to return it. Finally, he decides to set

a reminding alert triggered by proximity to Mike. When they

meet next time, the CampusMesh client delivers the reminder;

Mike gets his book back and returns it to the library.

Scenario 2: One Monday afternoon, Ayala is relaxing at

the university cafeteria when her smart phone vibrates to

indicate she has a CampusMesh message. She sees that it has

detected another female student with a high affinity match in

the vicinity, who she might wish to meet. Though the system

does not reveal the strangers identity, it does inform Ayala

that they have several friends in common and a mutual interest

in art movies. As Ayala is hoping to organize art movie

projections on-campus, she sends a message to find out more,

and after further data is exchanged through mutual user

controlled progressive identity revelation, she decides to

personally meet the other user.

Fig. 1 presents the CampusMesh user interface on smart

phones. On the left side, we show the event tab, used for alerts

such as the one described in the first scenario. On the right

side, we show the match tab, used for social matching such as

the one described in the second scenario.

Fig. 1. CampusMesh User Interface on Smart Phones

III. Experimental Setup

For our quantitative analysis, we ran both micro-

benchmarks to evaluate the individual power consumption of

the main hardware components (e.g., processor, WiFi

interface, backlight) and experiments that measured the power

consumed by the SmartCampus location engine. The

experiments were performed on iMate KJam smart phones,

each with the relevant specifications as listed in Table I.

TABLE I
SMART PHONE CHARACTERISTICS

Battery Type Lithium Polymer 1250mAh

Memory 128 MB

OS Windows Mobile 5.0

Processor 195 MHz OMAP processor

The following software was used to measure the battery life

and the CPU usage of the devices: ACB Power Meter[11] and

Pocket Hack Master[12]. Previously, the unanimously

accepted best way to measure battery usage by smart phones

was by connecting an Ampere counter between the battery and

the smart phone [13]. Although it is potentially more accurate,

this solution was very difficult and virtually impossible

without soldering wires onto the smart phone. The ACB

Power Meter simplified significantly the task of monitoring

battery usage. The Pocket Hack Master was used to analyze

the CPU usage of various processes performed on the device.

IV. Smart Phone Power Consumption

Numerous factors affect the battery lifetime of a smart

phone. Despite the fact that each application that runs on the

phone contributes differently to its battery drain, there are five

fundamental hardware components that consume most of the

power: backlight, Bluetooth, CPU, WiFi, and the cell radio.

By understanding their relative contribution to the overall

power consumption, application programmers can estimate the

power requirements for each individual application based on

its specific logic. Furthermore, they can design the

applications to make better use of the limited power resources.

In the following, we present experimental results for these five

components and conclude the section with the component

distribution of power consumption for a typical use of the

smart phone.

A. Backlight

Smart phones have larger screens compared to regular

mobile phones. Hence, they require larger backlights that

consume more power. Most of these phones come with

settings for backlight levels that may be adjusted by users. Our

smart phone has five levels of backlight, with 0 being no

backlight and 4 being the brightest. We conducted

experiments for each level, starting with no backlight and

moving up to the 4
th
 level. We observed that the 1

st
 level of

backlight consumes 45-65mAh. Subsequent levels of

backlight burn approximately 30-40mAh more power than the

previous level. At the 4
th
 level, the battery consumed is almost

200mAh. Thus, keeping the backlight continuously on at the

4
th
 level would completely drain the battery in slightly over 6

hours.

B. Bluetooth

A commonality among recent smart phones is the

presence of a Bluetooth interface, which provides the

convenience of sharing files or using Bluetooth headsets and

keyboards. We measured the power consumed by various

activities using the Bluetooth adapter, and the results are

summarized in Table II.

TABLE II
BLUETOOTH ADAPTER CHARACTERISTICS

Bluetooth On 20-35mAh

Scanning for Devices 10mAh

Data Transfer 30-40mAh

C. CPU

The CPU of a handheld device is the component that

drains the most battery power, assuming that WiFi is not used

very often. The faster a processor, the more power it

consumes. Even in standby mode, the CPU is used to keep the

Smart phone “awake,” and consumes approximately 5-

10mAh. In the following, we list a few important

characteristics of the CPU power consumption on our smart

phones:

• On average, the CPU remains in the idle state for 95%

of the time. The idle time consumes much less power than

when the CPU is being actively used.

• Turning on/off devices such as the WiFi network card

and Bluetooth adapter causes a spike in the usage of the

CPU, but maintaining the state of the respective devices

does not take much CPU time. For example, turning on

the WiFi network card of a smart phone shows the usage

of 90-120mAh.

• The CPU does not participate in scanning for WiFi

access points or Bluetooth devices.

• We observed that most common games on the phones

are very CPU intensive, and hence, they drain a lot of

battery (a significant factor that influences these results is

the software emulation of floating point operations by the

processor).

D. WiFi

Most new smart phones come equipped with a WiFi

network interface. Although this interface can be very useful

for ubiquitous computing applications, it could lead to a quick

exhaustion of the battery if its use is not controlled properly.

Fig. 2 depicts the power consumption for the WiFi interface.

The top line represents the instantaneous power consumption,

while the bottom line represents the average power

consumption over time. The markers on the figure indicate the

points when the WiFi is switched on (a), when the device is

being authenticated into the network (b), and when the

connection with the network has been established (c).

Fig. 2. Battery Usage while Connecting to WiFi Network

Just having the WiFi card on, without any data transfers,

drains about 130-150mAh. Note that this value includes the

power consumed by the smart phone in steady state. This

means that when connected to a network, the battery would

last 8-9 hours without any computation or communication.

The network card can drain more battery than the CPU if it

remains on for longer periods than the CPU utilization

periods. Also, the network card drains more power while

scanning for available networks than when maintaining an

existing network connection. Continuous data transfers over

the network also drain the battery of the device by an

additional 150-200mAh in transmit/receive mode. We

observed that the power consumption is similar in transmit

and receive mode.

E. Cell Radio

The cell radio burns about 2-4mAh on top of the 5-

10mAh standby usage of the smart phone. A phone call made

over the GSM cellular service costs the battery about 250-

300mAh. This value is just slightly less than transferring data

over the WiFi interface. Therefore, considering that WiFi is

typically free, while the cellular network incurs a certain cost,

WiFi should be used as the network interface of choice for

data transfers each time it is possible.

F. Power Consumption for Typical Use of a Smart Phone

To obtain a rough estimate the percentages of time when

a typical user makes phone calls, browses the Internet, uses

her Bluetooth headset, plays games, or plays media files, we

interviewed 18 students on our campus. Based on this input,

Fig. 3 illustrates the hardware component distribution of

power consumption. We observe that the processor consumes

the most power, followed closely by the WiFi and the GSM

radio. The Bluetooth is still significant because the typical

user keeps the headset on most of the time. The backlight is

not very important because the users turn it off or maintain it

at a minimum level most of the time. The other parameters

that affect the power consumption include the memory and the

speaker.

Other, 5%

Backlight , 3%

Bluetooth , 7%

GSM, 25%

CPU, 35%

Wifi, 25%

Fig. 3. Power Consumption for Typical Smart Phone Usage

V. Location Engine Power Consumption

All SmartCampus location-aware applications use a

common location engine that runs on the smart phone. This

section presents experimental results that quantify the power

consumption of this engine. The engine uses a database of

known access points and their associated locations (latitude

and longitude). This database is loaded as a hash table into the

smart phone memory at runtime for fast access. Each time the

location is computed, the WiFi network card is made to scan

for visible access points, and subsequently the location of

these access points is retrieved from the database. In the

centroid method that we used for experiments, the position of

the user is computed as the average of these locations. Once

the computation is done, the location is sent over the network

to a server as a SOAP (Simple Object Access Protocol)

message. This procedure is repeated at regular scan intervals

to update the location of the user. From this description, it is

clear that the CPU and WiFi are the biggest power drain

components for the location engine.

The amount of battery drained by the WiFi is function of

the scanning frequency. Obviously, as the scanning period

increases, the battery life increases. Hence, for a longer battery

life, the scanning interval should be as large as possible.

However, with a very large scanning period, the location

updates to the server are also much less frequent. Thus, it

defeats the purpose of having real-time updates of user’s

position. Ideally, the location needs to be updated every few

seconds for good accuracy, but because of a limited battery

power, the scanning interval becomes an important design

decision. This decision is made by taking into consideration

the trade-off between update frequency and battery drainage.

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Scanning Interval 10X (seconds)

B
a
tt
e
ry
 L
if
e
 (
h
o
u
rs
)

195MHz 150MHz

Fig. 4. Battery Lifetime as Function of Location Scan Interval

and Processor Speed

Fig. 4 shows the battery lifetime as function of WiFi

scanning frequency. We also plot the battery behavior when

under-clocking the CPU at 155 MHz instead of its regular 195

MHz. In this experiment, we consider the entire process of

scanning for access points, computing the location on the

phone, and sending this location encapsulated in a SOAP

message to a server. If we assume that a student will be on-

campus at least 3 hours (i.e., attending one 3-hour course), the

results at 195MHz demonstrate that the location update

frequency should be at most three times per minute. We also

discovered that the CPU speed affects the battery consumption

significantly (at least 20% in our experiment).

Fig. 5. CPU Usage for Location Scan Interval of 20 Seconds

Computing the location uses up a fair amount of the CPU

time. Fig. 5 shows the CPU usage at 195MHz for a scanning

interval of 20 seconds (as determined above). The results

demonstrate that the CPU is utilized 33% only by the location

engine. Therefore, the applications will be capable to use it

just for the rest of the time.

Fig. 6. CPU Usage for Location Scan Interval of 1 Second

Furthermore, Fig. 6 demonstrates that a small scanning

interval such as 1 second not only would consume a lot of

energy due to WiFi scanning, but also would use up to 75% of

the processing power. Thus, it would leave very few processor

cycles for applications.

0

20

40

60

80

100

1 2 3 4 5

Number of Packet 1000 x X

P
o
w
e
r
C
o
n
s
u
m
e
d
 (
m
A
h
)

SOAP TCP

Fig. 7. SOAP vs. TCP Power Consumption

Once the location is computed, the smart phones will send

it to a location server via SOAP. We decided to expose the

SmartCampus services via SOAP because this protocol offers

language independence and SOAP clients are available for

many popular languages. Additionally, it provides a clean

transport mechanism, with the client services communicating

over HTTP. We use KSOAP J2ME library that has a memory

footprint less than 50KB. This makes it extremely suitable for

resource constraint devices such as smart phones. The KXML

parser provides good performance comparable to XML-RPC.

We compared the power consumption when using SOAP vs.

TCP. The results from Fig. 7 demonstrate the SOAP overhead

in terms of power consumption increases just slightly with the

number of packets. This is due to the efficient processing of

the KXML parser.

CPU location

computation -

40%

WiFi scanning -

45%

SOAP

transmission -

15%

Fig. 8. Power Consumption Distribution for the SmartCampus

Location Engine

Fig. 8 summarizes our findings for the power

consumption of the location engine. The experiments indicate

that 45% of the power is spent for WiFi scanning to discover

nearby access points, 40% is consumed by the processor to

compute the user location, and 15% is consumed by both the

processor and the WiFi interface to encapsulate the location

data in a SOAP message and send it to the location server.

VI. Conclusions and Lessons Learned

Based on our experiments, we derived a number of

guidelines for software designers in order to maximize the

battery lifetime of smart phones running location-aware

applications such as CampusMesh. Since the CPU consumes a

significant amount of power, the programmers should try to

offload the computation to a server each time it is possible. In

making this decision, they must trade-off CPU power

consumption against WiFi power consumption (i.e., the WiFi

will be used to exchange parameters and results with the

server).

A faster processor is not necessarily better for mobile

devices running ubiquitous computing applications. This is

due to the high power consumption of the processor. A lower

processor speed (e.g., 155MHz instead of 195MHz) does not

influence the functionality of certain applications, while it

saves a good amount of battery power. As shown by the

results from Fig. 4, the battery life was extended by over an

hour when using under-clocking.

Since keeping the WiFi card off is not an option with

applications that need real-time communication, one way to

increase the battery lifetime is to reduce the frequency of WiFi

scans used by the location engine. Another potential solution

is to have a mechanism that switches the WiFi network card

on and off at certain intervals. However, this can end up in a

worse drain of power than keeping the interface on all the

time. A possible solution is to track the location of the smart

phone, and based on its relocation frequency, to determine

when it makes sense to switch the WiFi. For instance, if a

student is in a classroom, she would not be moving. Sensing

this stagnancy from a few scans, the application may turn off

the WiFi device and may turn it on every 10 minutes to see if

the location data has changed or if any new messages have

been buffered at the server for this user. If the location data

has changed, the scanning can resume at the normal interval

specified. If the location data has not changed, the WiFi

device may be turned off again.

The decision on the value of scan interval depends on the

expected overall system performance. Shorter scan intervals

consume more power, but the location of the smart phone is

updated faster. This is appropriate for applications that need

accurate location or real-time location-based communication.

Longer scan intervals improve the battery life at the expense

of having slower updates, and consequently the applications

decrease their location-aware responsiveness. From our

experiments, we believe that a 30 second to 1 minute scanning

interval might be a good trade-off. In such a situation, the

battery lifetime can be as much as 6 hours when only the

location engine is used. Applications that use the processor

and the WiFi moderately can, therefore, run for a significant

period of time.

ACKNOWLEDGMENTS

This work was supported in part by the NSF grants CNS-

0454081 and IIS-0534520.

REFERENCES

1. M. Weiser, The Computer for the 21st Century.

Scientific American 265(3):94-104, September 1991.

2. L. Iftode, C. Borcea, N. Ravi, P. Kang, and P. Zhou.

Smart Phone: An Embedded System for Universal

Interactions. In Proceedings of the 10th IEEE

International Workshop on Future Trends of

Distributed Computing Systems (FTDCS'04).

3. Jones Q., and Grandhi S.A., Supporting Proximate

Communities with P3-Systems: Technology for

Connecting People-To-People-To-Geographical-

Places. The Interaction Society: Practice, Theories,

& Supportive Technologies, 2004.

4. B. Schilit, A. LaMarca, G. Borriello,W. Griswold, D.

McDonald, E. Lazowska, A. Balachandran, J. Hong,

and V. Iverson. Challenge: Ubiquitous Location-

Aware Computing and the Place Lab Initiative. In

Proceedings of the 1st ACM International Workshop

on Wireless Mobile Applications and Services on

WLAN (WMASH 2003), San Diego, CA, Sep 2003.

5. Placelab Project: http://placelab.org

6. SmartCampus Project: http://smartcampus.njit.edu

7. J. Flinn and M. Satyanarayanan, Managing Battery

Lifetime with Energy-Aware Adaptation, ACM

Transactions on Computer Systems, Vol. 22, No. 2,

May 2004, Pages 137-179.

8. L. Zhong and N. Jha, Energy Efficiency of Handheld

Computer Interfaces: Limits, Characterization, and

Practice, In Proceedings of 3
rd
 International

Conference on Mobile Systems, Applications, and

Services (Mobisys 2005), Seattle, Washington, Jun

2005, Pages 247-260.

9. S. Gurun, P. Nagpurkar, and B. Y. Zhao, Energy

Consumption and Conservation in Mobile Peer-to-

Peer Systems, In Proceedings of the 1
st

ACM

International Workshop on Decentralized Resource

Sharing in Mobile Computing and Networking

(MobiShare 2006).

10. Knoplerfish: Open source OSGi implementation.

http://www.knopflerfish.org

11. ACBPowerMeter:http://www.pocketpcfreewares.com

/en/index.php?soft=1564

12. Pocket Hack Master: http://www.pocketgear.com/

software_detail.asp?id=7258

13. P. Divevey, N. Lorenzon, and C. Tambary,

Measuring wireless energy consumption on

SmartPhones and laptops. Technical Report, DISI,

Politecnico Di Milano.

	Introduction
	SmartCampus Software Architecture
	Experimental Setup
	Smart Phone Power Consumption
	Bluetooth
	WiFi
	Cell Radio
	Power Consumption for Typical Use of a Smart Phone
	
	Location Engine Power Consumption
	Conclusions and Lessons Learned

