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Machine learning algorithms based on Deep Neural Networks have achieved remarkable

results and are currently employed across many application domains. However, these

algorithms rely on obtaining raw data, which is often confidential and can create

potential security and privacy risks. Several privacy-preserving techniques have

been developed to deal with these issues, including differential privacy, homomorphic

encryption, secure multi-party computation, and federated learning. These techniques

allow for data analysis and machine learning applications by mitigating or eliminating

the privacy risks of individuals whose data is being used.

However, privacy is a complex issue, and a single solution typically cannot fully

address it across different application domains. Furthermore, the trade-offs between

privacy and utility of machine learning models may vary depending on the specific

application and context. Therefore, it is essential to carefully consider the privacy

implications of machine learning algorithms and choose the most appropriate solution

for each specific case. This dissertation presents three privacy-preserving machine

learning systems for several application cases.

First, a secure federated learning aggregation technique, called FedMTL, is

proposed to handle task heterogeneity across users. FedMTL generates personalized

multi-task learning models based on task similarities, which are determined by

analyzing the parameters of the task-specific layers in the trained models. To

prevent privacy leakage through these model parameters and to protect the privacy

of the task types, FedMTL employs low-overhead algorithms that are adaptable

to existing techniques for secure aggregation. The FedMTL aggregation algorithm

is implemented using secure multi-party computation (SMPC), and it can achieve



the same accuracy as the plain-text version while preserving privacy. Extensive

experiments on three datasets demonstrate that FedMTL outperforms state-of-the-art

approaches.

Second, a secure and effective inference solution, called CryptGNN, is designed

for third-party graph neural network models in the cloud, which are accessed by clients

as ML as a service. The main novelty of CryptGNN is its secure message passing

and feature transformation layers using SMPC techniques. CryptGNN protects the

client’s input data and graph structure from the cloud provider and the third-party

model owner, and it protects the model parameters from the cloud provider and

the clients. CryptGNN works with any number of SMPC parties, does not require

a trusted server, and is provably secure even if P − 1 out of P parties in the cloud

collude. Theoretical analysis and empirical experiments demonstrate the security and

efficiency of CryptGNN.

Third, this dissertation discusses the privacy threats posed by current indoor

localization and prediction approaches, and then proposes GoPlaces, a novel app

that fuses inertial sensor data with WiFi-RTT estimated distances to predict the

indoor places visited by a user in a privacy-preserving way. GoPlaces works on

user phones and protects users’ location privacy because user’s data never leaves

the phone. GoPlaces does not require any infrastructure, except for one cheap

off-the-shelf WiFi access point that supports ranging with RTT. GoPlaces uses an

attention-based BiLSTM model to detect the user’s current trajectory, which is then

used together with historical information stored in a prediction tree to infer the

user’s future places. GoPlaces is implemented in Android and is evaluated in several

indoor spaces. The experimental results demonstrate high prediction accuracy in

various situations. Furthermore, GoPlaces has been shown to be feasible in real-world

scenarios due to its low latency and low resource consumption on the phones.
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CHAPTER 1

INTRODUCTION

Machine learning (ML) algorithms play a central role in numerous applications that

significantly impact our daily lives, including recommendation systems [1], medical

diagnosis [2], traffic forecasting [3], autonomous vehicles [4], and more. However,

building an accurate and reliable model requires a significant amount of data for

training. This process can raise concerns regarding data privacy and security [5],

especially when dealing with sensitive personal data such as health records or financial

information. Moreover, ML models themselves constitute a threat [6], as it is possible

to extract sensitive information from them. Therefore, it is required to protect data

privacy in the various phases of the ML-based systems, including data preparation,

model training and evaluation, model deployment, and model inference.

The development of systems for privacy-preserving machine learning is an

emerging area of research that aims to design techniques for training machine learning

models on sensitive data without compromising the privacy of individuals whose data

is being used. Various techniques and approaches have been developed to tackle

privacy concerns in machine learning. One such technique is differential privacy

(DP) [7, 8], which involves adding random noise to training data to safeguard

the privacy of individuals. Another approach is to use homomorphic encryption

(HE) [9, 10] to perform computations on encrypted data. Secure multi-party

communication (SMPC) [11, 12] enables multiple parties to jointly compute a function

on their private inputs without revealing their inputs to one another. Despite the

availability of these privacy-enhancing techniques, there are still several challenges

that need to be addressed. For example, achieving a balance between privacy and

utility [13] is a difficult task in DP. The computation and communication overhead [14]

1



required for complex algorithms can be significant, which may hinder the adoption of

techniques such as HE or SMPC in environments with limited resources.

With the advancement of computing power on mobile devices, it has become

possible to collect and preprocess data from device sensors, train and evaluate ML

models on the device [15, 16], and make real-time predictions while ensuring that

user data and models remain on the device to preserve privacy. However, privacy

concerns persist due to the risk of data exploitation by external devices used for data

collection in the environment [17, 18]. In addition, certain systems require training

models to learn heterogeneous trends from multiple users, making it necessary to

protect the privacy of their data. Federated learning [19, 20] has been proposed

as a solution that enables model training without sharing raw data across different

devices. Nevertheless, there is a security risk associated with federated learning, as

an adversary may be able to infer information [6] about the training dataset through

the model parameters.

The choice of a privacy-preserving ML technique relies on several factors, such

as the use case, the assets to be protected, etc. There is no silver-bullet solution;

understanding the various factors helps identify the right approach. In addition, we

must balance scenario-specific considerations with the need for portable and reusable

solutions. In this dissertation, we propose privacy-preserving systems for specific

applications, such as designing secure algorithms to support multi-task learning in a

federated learning setting, using the SMPC technique for secure inference service of

graph neural networks in the cloud, and using mobile computation to predict users’

location in an indoor environment.

The rest of this chapter presents an overview of three systems for privacy-

preserving machine learning, namely secure multi-task learning in a federated learning

setting in Section 1.1, secure graph neural networks in the cloud in Section 1.2 and

privacy-preserving indoor place prediction using mobile computation in Section 1.3.
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The contributions of this dissertation are presented in Section 1.4. Finally, Section

1.5 details the structure of this dissertation.

1.1 Secure Multi-task Learning in a Federated Learning Setting

The growing volume of data generated by smart phones and IoT devices enables them

to train models for various tasks. Multi-task learning (MTL) [21] proves particularly

useful for mobile and IoT devices that require local model training to uphold privacy

(i.e., avoid sending data to a server for centralized training), as the overhead of

MTL is comparatively lower on resource-constrained devices than training individual

models for each task. For example, a device can collect audio signals and employ

MTL models for tasks such as speech recognition, speaker identification, and emotion

detection. Autonomous vehicles, likewise, can capture video data to train MTL

models for lane detection, recognizing traffic signs, predicting pedestrian intent, and

detecting obstacles. Text data gathered by mobile devices can also be used to train

MTL models for sentiment analysis, text summarization, spam detection, and named

entity recognition.

Although these models can be trained independently by each device, collabo-

ration among devices can further improve model performance by allowing them to

learn from each other’s models, which may be trained on similar or different sets of

tasks. However, privacy becomes a concern when raw data is gathered from devices for

centralized learning or when clients exchange data for distributed learning. Federated

learning (FL) [22] allows collaborative training across clients while keeping client data

locally. Unfortunately, conventional FL is not applicable to MTL scenarios, wherein

clients do not collectively train models for similar sets of tasks. One possible approach

is for each client to share information about the tasks (i.e., task IDs) with the FL

aggregation server so that it can group the MTL models based on the set of tasks

for which the models were trained. However, this raises concerns, as it could reveal
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information about the client, such as the tasks performed, which can expose the

client’s interests, preferences, or client’s processing capabilities, such as computational

power, storage capacity, or specialized hardware. Furthermore, sharing MTL model

parameters with an aggregator server may inadvertently leak task- or dataset-related

information.

Prior studies [23, 24] on federated MTL assume each client performs only

one task, and tune the local models through methods such as (a) minimizing the

parameter differences between models or (b) clustering models into distinct groups to

generate average models for each group. However, these approaches face challenges

when clients work on different sets of tasks due to: (i) Heterogeneity in model

structures arising from differences in the set of tasks, and (ii) Difficulty of clustering

models, as a client model with a specific set of tasks may yield a similar score to

models trained by others on different subsets of tasks, making it difficult to assign

a unique cluster ID. Therefore, it is crucial to design an aggregation algorithm

that considers the heterogeneity of tasks executed by each client. Furthermore, the

algorithm needs to ensure the privacy of the model parameters to prevent leakage

of the training datasets [25] and of the tasks executed by each client. While various

privacy-preserving techniques exist for secure aggregation [26, 27], they cannot be

applied directly because of the following challenges: (a) The heterogeneity of model

structures may leak the number and types of tasks in the dataset, and (b) Analyzing

encrypted model parameters and applying complex algorithms on encrypted data

incurs high computation and communication overhead.

In this dissertation, we focus on designing an algorithm that allows clients

to obtain personalized MTL models in an FL setting while safeguarding the

confidentiality of user data. To address these issues, this dissertation introduces

FedMTL, a novel algorithm to support MTL in the FL setting. This work paves the

way for privacy-aware, resource-efficient federated MTL, enabling the deployment of
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collaborative intelligence in privacy-sensitive environments such as mobile and IoT

applications. FedMTL uses new protocols to enhance the capabilities of each client

model by enabling collaboration among models from the participating clients based on

similarities in the tasks they execute. It aims to develop a low resource-consumption

approach, enabling straightforward integration with established privacy-preserving

techniques for secure aggregation.

Targeting privacy assurance and high efficiency, FedMTL employs the secure

multi-party computation (SMPC) technique [28, 29, 11], which enables a set of

aggregation servers to compute a public function on secret inputs. To protect the

data (i.e., model parameters, task IDs), FedMTL splits and distributes the data across

multiple servers, each of which is only allowed to access its local data. Thus, neither

server is able to combine or reconstruct the original data. To perform computations,

each server conducts local calculations using its local copy of the data and coordinates

with the other servers to produce the final personalized models. To evaluate the

effectiveness of FedMTL, we implement the proposed FL aggregation algorithm and

privacy-preserving protocols in SMPC, achieving the same accuracy as the plain text

version while preserving client data privacy.

1.2 Secure Graph Neural Networks in the Cloud

Graphs provide a universal representation for a wide range of real-world data,

including online social networks [30], transportation networks [31, 32], financial

transaction networks [33, 34], integrated circuits [35], and chemical molecules [36, 37].

Graph Neural Networks (GNNs) are a set of prominent neural models that translates

the success of deep learning (DL) to graph-structured data [38, 39, 40]. Thanks to

their great capability in learning representations for graphs, GNNs have advanced

numerous computational tasks on graph-structured data, including drug discovery
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[41, 42], fraud detection [43, 44], recommendation systems [45, 46], and traffic flow

prediction [47, 48].

As with traditional DL models, unleashing the power of GNNs typically requires

large amounts of training data and prohibitive computing resources, which are not

available to small businesses or individuals. Hence, a promising way to democratize

access to large-scale GNN models is to provide GNN-based predictive tools in the form

of machine learning-as-a-service (MLaaS) [49, 50, 51, 52, 53, 54]. In MLaaS settings,

the owners of the trained models can monetize these models, while the clients do not

need to train or optimize the models. The clients perform inference by uploading

their input data to the cloud service. In this way, they benefit from models that

they may not be able to build quickly, effectively, and inexpensively. For example, a

company may enable researchers and small start-ups to quickly screen out unqualified

molecules in a drug discovery process by providing a GNN model in the cloud, trained

on a proprietary collection of organic compound data. Similarly, a company may use

a large proprietary codebase to represent code components by a program dependence

graph (PDG) [55], and train a GNN model that provides an automated code analysis

service in the cloud for software developers.

However, privacy in GNN inference in the cloud is a critical challenge,

particularly in MLaaS settings, where clients submit sensitive graph-structured data

to a cloud-hosted GNN model. In particular, there are two main challenges. First,

the sensitive input graph data that the clients submit to the GNN model in the cloud

need to be protected from the cloud provider and the GNN model owner. Second,

the GNN model in the cloud needs to be protected from the cloud provider and the

clients. Therefore, to promote GNNs in MLaaS settings, this dissertation addresses

these two privacy challenges for GNN inference in the cloud.1

1We do not address training privacy, as we assume the model may be trained in the private
infrastructure of the model owner.
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Several research efforts have proposed protocols for privacy-preserving ML

inference [56, 57, 58, 59, 60, 61, 62] using cryptographic techniques such as

homomorphic encryption (HE), trusted execution environment (TEE), and secure

multi-party computation (SMPC). SMPC is preferred over other approaches, as it is

computationally less expensive, does not require specialized hardware, and achieves

accurate results while ensuring information-theoretical security [63, 64]. Many recent

works [65, 60, 57, 58, 66, 59] have developed SMPC protocols to perform major

operations in neural networks, such as activation and convolution [56, 67, 68].

Applying SMPC to GNNs faces major challenges due to the unique structure

and operations of GNNs. Specifically, to protect the graph data, no parties are allowed

to access or infer the graph structure and the node feature information. Since GNNs

typically employ message passing to propagate information through the entire graph,

it is particularly difficult to perform this operation without allowing different parties

to access the full graph. Furthermore, it is challenging to design an efficient algorithm

to secure the computations in the feature transformation layers (FTL) in GNN, which

is required to protect the intermediate and final results, thereby safeguarding the

model parameters and node features.

In this dissertation, we propose CryptGNN, a secure and efficient inference

solution for GNN models, deployed as MLaaS in the cloud. To ensure privacy and

high performance, we develop SMPC protocols [28, 29, 11] that enable a set of cloud

providers (parties) to perform operations in the MPL and FTL layers of the GNN

model on clients’ input graphs, where both the model and graph data are encrypted

in an additive secret-shared format. We implement the complete CryptGNN system

using our novel components and conduct comprehensive theoretical analysis and

empirical experiments to demonstrate the security, effectiveness, and efficiency of

CryptGNN.
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1.3 Privacy-preserving Indoor Place Prediction

Ensuring privacy in indoor place-level prediction systems is a critical challenge,

as these systems inherently rely on users’ mobility data to infer their future

locations. With the development of indoor positioning technology and the widespread

availability of mobile and wearable devices, there has been an explosive growth in the

amount of indoor mobile trajectory data [69]. While location prediction can enhance

various applications, it also raises significant privacy concerns due to the sensitive

nature of the data. Depending on the data collection approach, unauthorized external

parties may be able to track a user’s movements. Montjoye et al. [18] demonstrated

that human mobility patterns are highly unique, and it is possible to re-identify the

movement traces of specific individuals even in a sparse, large-scale, and imprecise

mobility dataset. Moreover, studies have shown that human mobility is highly

predictable, with 93% of user movements being predictable [70]. This predictability

underscores the need for robust privacy protection in data processing and prediction

systems, as knowledge of future locations can enable intrusive tracking.

Knowing the places to be visited by a moving user has positive implications in

many application scenarios. For example, an assisted living application may predict

the place where an elderly person goes and guide the person to follow the safest path.

In a smart home, a door can be unlocked automatically, and the lights can be turned

on if a user is predicted to go to that room, or a smart music system can adjust

its volume to provide a better user experience as the user is predicted to move to

another place. Other applications may warn the user that the WiFi signal strength

is weak at the predicted place to improve the customer experience of home Internet

services, or the phone can change the settings automatically for user privacy before

reaching a common area in a shared living space (e.g., turn off sound notifications).

However, without adequate privacy safeguards, these benefits come at the risk of

exposing users’ movement patterns to unauthorized parties.
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The current solutions developed for indoor localization or prediction systems

do not ensure privacy protection due to one or more of the following issues. Firstly,

they employ complex infrastructure to determine the user’s location because GPS

accuracy is limited inside buildings. For instance, indoor localization based on visual

anchors [71] needs to attach pre-defined image tags at certain known locations in

the environment. Other types of indoor localization use multiple ultra-wideband

(UWB) anchor nodes [72] with known coordinates, and the user needs to carry a

UWB tag to communicate with the anchors to estimate location. In addition, different

forms of wireless fingerprinting and multi-lateration [73] have been explored for indoor

localization, including WiFi [74], FM radio [75], RFID [76], acoustic [77], GSM [78],

light [79], and magnetism [80]. These solutions are dangerous from a privacy point of

view because they may be able to collect and store the user’s locations or trajectories

on systems that are not under the user’s control [81]. For instance, an attacker could

use RFID or UWB tags attached to the user to track their movement within the

building. Additionally, the system can estimate the user’s position by measuring

their distance from multiple Bluetooth beacons or WiFi access points. Secondly,

some studies use a localization server to access the user’s mobility data, which allows

it to monitor the user’s activities within the building, including continuous tracking,

storing historical records of the user’s location, and sharing these data with third

parties without the user’s knowledge.

A possible approach to address privacy risks involves using a simple infras-

tructure that can not track users and performs all localization computations on the

user’s device. This approach is effective in achieving privacy-by-design since the

user’s data stays on the phone and is not shared with any external entity. Moreover,

this system can also be customized to improve personalization, which provides two

benefits for place prediction: (i) allows individual users to name places in a way that

makes sense for them (i.e., semantic naming), and (ii) improves prediction accuracy
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because different people have different frequently visited places. However, designing

an efficient system for data collection, analysis, training, and inference to minimize

energy consumption and manual effort poses a significant challenge.

To solve these challenges, this dissertation proposes GoPlaces, a place prediction

smart phone app that does not require any infrastructure, except for one cheap off-

the-shelf WiFi AP that supports ranging using WiFi Round Trip Time (WiFi-RTT).

GoPlaces enables personalized place naming and place prediction through its on-the-

phone data collection, training, and inference algorithms. Additionally, GoPlaces

ensures better privacy protection for user locations and trajectories since the data

never leaves the device, and the AP cannot track the user. We implemented GoPlaces

as an Android app that collects and analyzes data, trains models, and performs

inference of destination places with low latency and low resource consumption.

1.4 Contributions of the Proposed Research

1.4.1 Privacy-preserving federated multi-task learning

This dissertation introduces FedMTL, a novel algorithm designed to support privacy-

preserving MTL in the FL setting. FedMTL algorithm facilitates collaborative

learning among client models while ensuring that sensitive information remains

protected. It achieves this by employing a secure aggregation mechanism that enables

task-based model collaboration without exposing client-specific model parameters,

task distributions, or dataset sizes.

Figure 1.1 illustrates the high-level system architecture of FedMTL. FedMTL

employs new protocols to enhance the capabilities of each client model by enabling

collaboration among models from the participating clients based on similarities in the

tasks they execute. It aims to develop a low resource-consumption approach, enabling

straightforward integration with established privacy-preserving techniques for secure

aggregation. In particular, the secure version of FedMTL is designed to preserve the
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Figure 1.1 FedMTL system architecture.

privacy of (a) the parameters of the clients’ models, (b) the types and numbers of

tasks executed by each client, and (c) the size of the training dataset. To the best

of our knowledge, FedMTL is the first framework that supports privacy-preserving

MTL in an FL setting.

FedMTL generates personalized MTL models based on task similarities, which

are determined by analyzing the parameters of the task-specific layers in trained

models. It assumes that the supported tasks have unique IDs and that clients are

aware of the task IDs for which their models have been trained. Furthermore, it

employs a hard parameter-sharing architecture [21] for local MTL models, wherein

hidden layers are shared across related tasks while task-specific output layers are

maintained. This architecture enables the MTL model to understand the overall

data structure while gaining expertise in multiple tasks. The aggregator in FedMTL

applies layer-wise aggregation policies, computing different sets of weights for clients’

model parameters to enhance personalization in MTL models.
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The secure version of FedMTL leverages a secure multi-party computation

approach, allowing clients to upload their model and task-specific information in

an additive secret-sharing format. To prevent task type inference based on the

size of the uploaded data, the FedMTL protocol on the client side injects fake

data into the task-specific parameters, ensuring that all tasks have the same

number of parameters. Additionally, to obscure the actual number of tasks, the

client introduces fake task layers. The aggregator servers then execute the secure

FedMTL aggregation protocol, generating personalized MTL models while preserving

user data privacy. Since the FedMTL algorithm is designed to be computable

using standard additive secret-sharing techniques, data privacy remains protected

throughout the computation. Finally, the client downloads the personalized model

from the aggregator servers and extracts the necessary parameters by removing the

injected fake task layers.

To evaluate the effectiveness of FedMTL, we implement the proposed FL

aggregation algorithm and privacy-preserving protocols using PyTorch and conduct

experiments on benchmark datasets. The results show that FedMTL outperforms

baseline approaches when each client trains an MTL model for distinct sets of two

tasks. Furthermore, FedMTL demonstrates its adaptability in cases where clients’

MTL models are trained on different numbers of tasks — a scenario not directly

supported by the state-of-the-art approaches. Additionally, we conduct ablation

studies that demonstrate the significance of our aggregation algorithm compared

to alternative methods. We use CrypTen [11] to implement a secure version of

FedMTL aggregation and achieve the same accuracy performance as the plain text

while preserving the privacy of client data.
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Figure 1.2 CryptGNN system architecture.

1.4.2 Secure inference for graph neural networks

This dissertation presents CryptGNN, a cloud-based ML-as-a-service (MLaaS) that

provides a secure and effective inference solution for graph neural networks (GNNs).

Figure 1.2 shows the high-level system architecture of CryptGNN. CryptGNN

safeguards the user’s graph input data from the cloud provider and the model owner,

and protects the model from the cloud provider and the clients. It employs SMPC

in the cloud, enabling privacy-preserving GNN inference even if P-1 out of P parties

collude with each other. The cloud providers compute the forward pass of the model,

as the model architecture is known, while CryptGNN protects the model parameters

in an additive secret-shared format. To protect the client input graph, CryptGNN

encrypts the node features and the graph structure in an additive secret-shared format

before uploading the data to the SMPC parties.

CryptGNN consists of two novel protocols to enable privacy-preserving inference

of encrypted GNN models on encrypted input graph data in the cloud. CryptMPL

executes the message-passing layer, while preserving the privacy of input data (i.e.,

node features and graph structure). It employs novel operations that involve rotation

and shifting of input data to securely perform the read and write steps in the MPLs.

These operations use a data preprocessing step at the client, which helps the SMPC

parties mask the private data, thereby eliminating the need for any trusted servers.

CryptMUL executes the secure multiplication operations required for evaluating

the linear and nonlinear FTLs in GNN models. In this protocol, the SMPC parties
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conduct offline preprocessing to generate auxiliary data that allows them to execute

matrix and element-wise multiplications without expensive cryptograpic operations

or relying on a trusted server. Both protocols can work with any number of SMPC

parties. CryptMPL and CryptMUL are invoked from the GNN models to guarantee

the cloud providers do not learn partial results of functions executed over secure

inputs or the final inference results.

To implement a full CryptGNN system, we leverage several privacy-preserving

components from CrypTen [11] in addition to the novel components mentioned earlier.

The CryptGNN system can perform privacy-preserving inference using a wide variety

of GNN models. We conducted comprehensive theoretical analyses and empirical

experiments to demonstrate the security, effectiveness, and efficiency of CryptGNN.

Notably, CryptGNN protects both the model and user input data while producing

the same inference results as a non-secure version.

1.4.3 Privacy-preserving personalized indoor place prediction

In this dissertation, we present GoPlaces, a place prediction smart phone app.

Through its privacy-first design, GoPlaces empowers users with a secure and person-

alized place prediction system, built on a simple, privacy-preserving infrastructure,

mitigating privacy risks while utilizing the advantages of mobility-based predictive

services. This work demonstrates that privacy and functionality can coexist, offering

a robust solution to the growing concerns surrounding indoor mobility data security.

GoPlaces does not require any infrastructure, except for one cheap off-the-shelf

WiFi AP that supports ranging using WiFi Round Trip Time (WiFi-RTT). Due to

this feature, such APs can become common in houses, shops, or workplaces in the

near future. However, knowing the distance from a single AP is not enough to localize

the user. GoPlaces’ idea is to detect the user’s walking trajectories by augmenting

the WiFi-RTT distance measurements with mobile sensor measurements, specifically
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accelerometer and magnetometer data. Although the data collected from sensors are

usually noisy, GoPlaces finds similar patterns for the sequence of data collected along

a trajectory, and it identifies a trajectory by analyzing the walking direction and the

series of WiFi-RTT distance measurements.

GoPlaces enables personalized place naming and place prediction through its

on-the-phone data collection, training, and inference algorithms. By design, GoPlaces

also leads to better privacy protection of user’s locations and trajectories because the

user’s data never leaves the phone. Furthermore, the single WiFi-RTT AP cannot

localize the users accurately to detect their trajectories. The high-level software

framework of GoPlaces is shown in Figure 1.3. GoPlaces divides the trajectories into

smaller segments, which are automatically identified and labeled based on changes

of direction in the trajectories. We designed an attention-based bidirectional long

short-term memory (attention-BiLSTM) model that learns and classifies the segments

traversed by the user. This model effectively learns the trends of walking direction and

WiFi-RTT distance features and finds the correlation between them. The trajectories,

as sequences of segments, are stored in a prediction tree, and used to infer the

user’s destination place. During inference, GoPlaces checks possible combinations

of segments, assigns weights to each place, and predicts the place with the highest

confidence value.

We implemented GoPlaces in Android and evaluated it in several indoor spaces,

using a Google WiFi-RTT AP and commodity smart phones. The place prediction
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accuracy depends on the percentage of progression by the user toward the destination.

The higher this percentage, the higher the accuracy. The experimental results

demonstrate prediction accuracy as high as 86% when 90% of the trajectory is

traveled, and as high as 74% when 75% of the trajectory is traveled. Based on the

characteristics of the WiFi-RTT distance and walking direction patterns, we designed

a technique to collect and label trajectory data automatically, which substantially

reduces the manual effort required to collect training data. Furthermore, we developed

a data augmentation process to enrich the training dataset with synthetic data that

improves the prediction accuracy by as much as 140% when compared to a model

that uses only user-collected data. We also demonstrate that GoPlaces is feasible

in real life because it has low latency and low resource consumption on the phones.

With a full battery, a Google Pixel 4 phone can execute 0.5 million predictions, and

each inference takes 142 ms. For application scenarios that require lower latency, we

demonstrate that GoPlaces’ parameters can be configured to have faster inference,

with a slight drop in prediction accuracy.

1.5 Structure of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides a

review of the literature related to this study. Chapter 3 introduces FedMTL - a

privacy-preserving system designed for multi-task learning within a federated learning

framework. Chapter 4 describes CryptGNN - a secure inference service for graph

neural networks. Chapter 5 presents GoPlaces - an app for personalized indoor place

prediction. Finally, Chapter 6 concludes the dissertation.
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CHAPTER 2

LITERATURE REVIEW

Machine learning is a data-driven technology that requires vast amounts of data

to build accurate models. Large-scale data collection and use pose significant

privacy concerns as a result of recent data breaches [82, 83]. Many techniques and

frameworks have been proposed to address the challenge of privacy preservation in

machine learning. Some popular frameworks for privacy-preserving machine learning

include Google’s TF Encrypted [84], Microsoft’s SEAL [85], OpenMined’s PySyft [86]

and Meta’s CrypTen [87]. Through the exploitation of these frameworks and the

development of new techniques, several research works are being conducted to build

systems that preserve privacy in machine learning.

For the training of a generalized model, it may be necessary to collect data

from many users at a single location. In such cases, it is required to ensure that

sensitive data remains protected while still enabling machine learning algorithms to be

trained and deployed. To preserve data privacy, several techniques such as differential

privacy [8, 7], homomorphic encryption [9, 10], trusted processors (SGX) [88], secure

multi-party computation [89, 12] are employed by different research works. However,

those techniques face several challenges such as achieving a balance between privacy

and utility [13], computation and communication overhead [14] etc.

With the increasing use of mobile devices and the amount of sensitive data

that they collect, it has become more common to train machine learning models

on-device [90] which can be tailored to each consumer. There are several machine

learning frameworks that are specifically designed for mobile devices. For instance,

Google’s TensorFlow Lite [16] is a mobile-friendly version of TensorFlow that can be

used to train machine learning models on mobile devices. Additionally, by leveraging
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hardware capabilities and optimization techniques, Apple’s Core ML [91] framework

supports machine learning model training on iOS devices, helping models stay relevant

to user behavior without compromising privacy. However, machine learning on

mobile devices presents unique challenges, such as limited computational resources

and limited battery life.

Although mobile computation enables personalization, it does not utilize

knowledge sharing among users, thus losing the benefit of generalization. To overcome

this limitation, federated learning (FL) [20, 92, 93] is a popular approach that enables

multiple devices or nodes to collaborate and train a model without sharing their data

with a central server. In FL, the training process takes place locally on each device,

and only the updated model parameters are sent to a central server for aggregation

and updating of the global model. However, malicious attackers can exploit an ML

model through various attacks such as membership inference attacks [94, 95], model

inversion attacks [96, 97], and privacy leakage from gradients [6, 98, 99] exchanged

in distributed ML scenarios. Hence, it is crucial to adopt appropriate measures to

ensure the privacy and security of user data and model parameters.

In this dissertation, we focus on the design, implementation, and evaluation of

systems for privacy-preserving machine learning for several application cases. This

chapter provides a review of related works in the areas of federated multi-task learning,

secure machine learning as a service, secure inference of graph neural networks, indoor

localization and place prediction.

2.1 Privacy-Preserving Federated Multi-task Learning

Multi-task learning (MTL) [21, 100, 101, 102] enhances task performance and

reduces training and inference time by simultaneously learning related tasks. To

learn the generic patterns of data, as well as task-specific features, several MTL

architectures [103, 104] adopt hard parameter sharing, which utilizes the same hidden
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layers for all tasks and incorporates task-specific output layers. However, these

approaches typically assume a centralized setup, where the model trainer has full

access to all tasks and data. In this dissertation, we present FedMTL, which addresses

scenarios where each client has a small amount of data for training an MTL model

focused on a subset of all the supported tasks in the system, exploring collaboration

among clients to enhance the performance of the MTL models.

Federated learning (FL) [22] enables collaboration among clients without

sharing private datasets. In FL, each client trains a model using its private data,

and uploads the model to a central server for aggregation with models from other

clients. To address data heterogeneity, several works [105, 106] aim to learn a

personalized model for each client, enhancing compatibility with highly non-IID

clients. FedFomo [107] allows each client to compute personalized aggregation weights

by minimizing validation loss using model information from other clients, leading to

high computational and communication costs, as well as privacy concerns. Ghosh et

al. [106] introduces a clustering algorithm to represent relationships among clients and

aggregates models within client groups. FedMSplit [108] enables federated training on

multi-modal distributed data, taking into account modality incongruity across clients

while assuming the task remains consistent. Despite addressing data heterogeneity,

all these methods overlook the task heterogeneity across clients.

To address task heterogeneity, MOCHA [23] employs an optimization algorithm

to fit related models trained for separate tasks. FedU [109] formulates the

federated MTL problem using Laplacian regularization to explicitly leverage the

relationships among the models. Since these approaches update models for all clients

simultaneously, it is necessary to re-run the algorithms to support a newly added

client, leading to waste in bandwidth and computational resources. FedEM [110]

enables each client to learn personalized models as mixtures of several component

models. Cai et al. [111] employs a clustering-based training approach to address task
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heterogeneity by enabling each client to infer its similarity with others by comparing

their layer-wise weight updates sent to the server, and then determining how to

aggregate weights for selected similar clients. In contrast to our work, all these prior

studies assume each client executing a single task.

Although MAS [112] enables clients to train local models for multiple tasks,

it assumes the clients have data and labels for all possible tasks. MAS allows the

server to pick a subset of tasks, and the clients train models for that specific subset,

ensuring task consistency across all clients. In contrast, FedMTL assumes that each

client holds data for only a subset of tasks, which may differ among clients, making it

a more realistic scenario. Furthermore, FedMTL does not require collecting all clients’

models for aggregation, and it enhances personalized MTL models by leveraging the

similarities in task-specific parameters among participating clients’ models.

To avoid data leakage [113, 114] from uploaded model parameters, several

studies [115, 116, 117] propose secure aggregation of local models. These studies

employ techniques such as secure multi-party computation (SMPC) [118], homomorphic

encryption (HE) [119], or a combination of both. However, none of these works

are designed to support MTL where clients’ model architectures are different, each

working on a different set of tasks. FedMTL introduces an algorithm designed for

computing personalized MTL models with minimal overhead, which has the flexibility

to integrate with established privacy-preserving techniques for secure aggregation.

2.2 Secure Machine Learning as a Service

With the increasing growth of cloud services, it is now possible to train and deploy

machine learning models on the infrastructure of cloud providers. These types of

Machine Learning as a Service (MLaaS) are currently offered by different industries

including Google [120], Microsoft [121], IBM [122] and Amazon [123].
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Recently, there has been an increased interest in developing methods for the

training and inference of neural networks in a secure environment. There are several

existing works [56, 57, 58, 59, 60, 61, 62] that provide a secure inference service

for a model trained on a proprietary dataset. They use different cryptographic

techniques, such as homomorphic encryption [59], garbled circuits [56, 124], and

SMPC/secret sharing [68]. In comparison with SMPC, homomorphic encryption

and garbled circuits are relatively expensive and usually incur large performance

overheads. All of these studies work with unstructured data, such as images and

text.

2.3 Secure Inference of Graph Neural Networks

Graph Neural Networks (GNNs) is a popular type of neural model that apply

deep learning techniques to graph-structured data [38, 39, 40]. However, providing

secure inference for graph-structured data using SMPC is challenging, as it requires

protecting both the data and the graph structure. A major challenge is to

protect the graph structure in GNNs that use a message passing layer, where each

node aggregates the feature vectors of its neighbors to compute its new feature

vector [125, 38, 39, 40, 126]. Preserving the privacy of the graph structure in this

layer is challenging because message exchange through edges requires exploiting the

graph structure without revealing edge source and destination nodes.

To address this challenge, Wang et al. proposed SecGNN [127], an SMPC-based

solution, that encrypts graph data using 2-out-of-2 additive secret sharing and a

trusted server to assist in the computations. This design has several problems. First,

it relies on a trusted server, which is a strong assumption in practice. Second, it works

only for two parties, which cannot collude with each other or with the trusted server.

In this dissertation we propose CryptGNN, which works for an arbitrary number of
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parties, even when P-1 out of the P parties collude with each other. Thus, CryptGNN

offers a significantly stronger security guarantee.

One intuitive approach for secure message-passing layer (MPL) computation is

to represent node features in an encrypted feature matrix and the graph structure

in an encrypted adjacency matrix, and then employ state-of-the-art matrix multipli-

cation methods [128, 11]. However, this incurs high communication overhead, may

require an additional trusted party, and results in unnecessary computations for sparse

real-world graphs. CryptGNN represents the graph structure as source/destination

arrays and achieves substantially lower overhead. To reduce the computation in the

matrix representation, CryptoGCN [129] proposed an efficient matrix multiplication

using homomorphic encryption (HE). However, it does not protect the graph structure

and assumes the GNN model parameters are in plain-text format. In fact, it is

challenging to protect the client input graph and model parameters with HE for

two reasons: (a) Since the data are encrypted by two different entities (client

and model owner), there is an additional overhead for bootstrapping [130] and

key relinearization [131]; (b) It requires complex operations to create an adjacency

matrix-aware formatting [129] of the graph and execute MPL using that matrix.

CryptGNN uses a much cheaper A-SS approach in SMPC, reducing the overall

overhead.

ORAM techniques [132, 133, 134] could enable a client to access graph data

without leaking the access patterns, and thus the graph structure; however, they

require the client to download and decrypt data, making it more expensive to

compute at potentially resource-constrained clients. In contrast, CryptGNN’s secure

message-passing protocol CryptMPL offers a more efficient approach that reduces

client involvement in GNN inference computations.

Several approaches exist for secure element-wise and matrix multiplication for

FTLs in SMPC settings. CrypTen [11] requires the parties to communicate with a
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trusted third party. This is not required in CryptGNN. Protocols using HE [135]

and oblivious transfer [136] tend to have a high overhead, making them impractical,

especially for numerous inference requests. CryptGNN’s secure protocol CryptMUL

employs HE or OT-based techniques only during preprocessing, enabling the design

of FTLs with very low overhead for computing multiple inference requests.

2.4 Indoor Localization and Place Prediction

Location prediction systems [137, 138, 139, 140, 141, 142, 143, 144], which predict

location points, have been widely studied. More recently, place prediction has become

an active research field [145, 146, 147, 148]. The quality of the prediction depends

on the localization accuracy of users’ historical data and current position, which is

difficult to determine indoors where GPS cannot be used effectively. The remaining

of this subsection places our work in the context of related work on indoor localization

and indoor place prediction.

There has been considerable interest in developing accurate indoor local-

ization [149, 150, 151]. Radio technology, especially RSSI measurements [152, 153], is

the most widely employed. In typical indoor environments, RSSI is affected by dense

multipath fading [154] effects and its overall accuracy is low. As signal strength from a

single AP is not enough to estimate distance, signals from several APs are recorded at

each position, and the user’s location is estimated by finding the best match between

the current RSSIs and the historical RSSIs. The major drawbacks of this method are

the requirements to (i) have 3 or more APs in the transmission range of the mobile

devices, and (ii) build a fingerprint database [155].

Another popular approach for indoor localization is CSI [156, 157, 158], which

provides more information compared to RSSI. Most CSI-based solutions require a

fingerprinting approach, and thus have the same disadvantages as the RSSI-based

solutions. Chronos [159] does not use fingerprinting, as it emulates a wideband radio
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using CSI captured by multiple packets and processes the CSI to infer time-of-flight

and device locations. One problem with this solution is that mobile operating systems

do not make physical layer information, such as CSI, accessible to apps.

Several studies [151, 160, 161, 162, 163] attempt to localize users using a single

WiFi access point by applying techniques that leverage multipath effects to extract

signal metrics such as angle-of-arrival (AoA), angle-of-departure (AoD), and time-of-

flight (ToF). However, all of these techniques require WiFi access points equipped

with antenna arrays, typically consisting of three or more antennas, whereas most

commodity routers are equipped with only two antennas. Although access points

with antenna arrays can potentially enhance distance measurements by integrating

multiple techniques, they are affected by multipath fading and require precise clock

synchronization, which increases both cost and complexity.

Other solutions for indoor localization involve anchors with known locations

(visual or RF). Xiao et al. [164] propose a system based on static objects as anchors

and estimates the position of the user based on features extracted from photos. Its

main drawbacks include the requirement for good lighting conditions and the high

computational cost on the phone. If the execution is at the server-side, privacy risks

become a drawback. Furthermore, the user needs to hold the phone to take photos.

Other studies [165, 166, 167] use artificial markers (e.g., barcodes), which are more

robust and work well under varying lighting conditions. However, these solutions

require the deployment of markers in the indoor space.

Yu et al. [168] use an Ultra-wideband (UWB) protocol for indoor localization.

In this approach, users carry tags that transmit UWB signals to fixed sensors (i.e.,

anchors), and the user’s position is estimated using the time-of-arrival method. The

main disadvantage of this approach is that it requires multiple anchors to be placed

in the indoor space. Furthermore, it requires users to carry additional tags, and the

user location is tracked by the infrastructure.
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There are several studies on indoor localization systems that use acoustic signals

beyond the audible range. Mobile devices can work as acoustically passive [169]

or active [170, 171]. Similar to other anchor-based systems, these solutions require

substantial infrastructure support and can also track the users.

To mitigate the need for expensive or difficult to deploy infrastructure, GoPlaces

takes advantage of WiFi-RTT in the IEEE 802.11-2016 standard, which created a

WiFi fine timing measurement (FTM) protocol, commonly known as WiFi-RTT.

This protocol defines a WiFi-based two-way ranging approach that makes WiFi

ranging more robust and accurate (e.g., meter-level positioning accuracy). Therefore,

a smart phone can estimate its distance from APs that support WiFi-RTT [172, 173].

This technology has been incorporated into commercial products and is currently

supported by different smart phones and WiFi AP manufacturers.

WiFi-RTT alone, however, cannot provide a solution for the data needed for

place prediction, due to two reasons. First, the WiFi-RTT estimated distance

places the user on a circle around the AP, not at an exact location. Second, the

WiFi-RTT measurements are noisy and lead to significant errors in the distance

estimation [174, 175, 176]. Therefore, GoPlaces leverages sensors in smart phones

to solve these problems. There are several studies [177, 178] that use only inertial

sensors to track the path of a user from a known initial position. A significant

drawback of these solutions is the error propagation of sensor readings; even a small

error is magnified through integration, and the localization error accumulates with

increasing walking distance. GoPlaces is unique in its approach to fuse data from

WiFi-RTT distance estimation and inertial sensors. These data together with our

algorithms for segment classification and trajectory matching lead to high accuracy

place prediction. Furthermore, these data can be collected and preprocessed efficiently

on resource-constrained phones.
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Existing place prediction algorithms, based on Markov chains [179], Hidden

Markov Models [180], or Bayesian Networks [143], rely on coordinate-level locations

of the users. Such algorithms can work well only with highly accurate location data,

which requires substantial localization infrastructure. Since our aim is to use minimal

infrastructure (i.e., WiFi-RTT AP), the location data will not be very accurate, and

therefore existing solutions cannot be applied in our settings. Therefore, GoPlaces

identifies trajectories and segments based on the fusion of WiFi-RTT data and inertial

sensor data. By splitting the trajectories in a few segments, instead of many locations

such as in Markov chains or Bayesian networks, GoPlaces avoids problems related to

dimensionality (e.g., state space explosion). Another advantage of GoPlaces compared

to existing place prediction algorithms is its personalization for place naming and

training/inference, which improves prediction accuracy and makes the results more

meaningful to individual users.

In its use of DL models, GoPlaces shares ideas and methods with work on indoor

localization [181, 182, 183], which demonstrated that deep neural networks perform

well despite signal fluctuations and noise effects. DL has also been used to predict

outdoor locations [144], motion mode detection [184], trajectory construction [183],

etc. The main difference between these works and GoPlaces consists in the problem

we address and its specific settings: to perform accurate place prediction with fused

data from a single WiFi-RTT supported access point and inertial sensors, we had to

come up with new algorithms for segment detection, segment classification, and place

prediction.

In terms of privacy, the WiFi-RTT protocol may leak location-sensitive

information, as an attacker can determine the distance between itself and the

user [185]. However, an attacker cannot localize a user without placing multiple

observers in the environment. In addition, as GoPlaces identifies trajectories instead

of coordinate-level locations, it does not require multiple APs, making it more
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Table 2.1 Comparison Between GoPlaces and Related Work

Papers

Does Not Need

to Know the

Initial Point

Deep

Learning

Off-the-shelf

Infrastructure

No Fingerprint

(Less Manual

Effort)

Privacy

Protection

Indoor Place

Prediction

Implementation

on Mobile OS

RSSI Based

[73, 74, 81, 137,

142, 150, 152,

153, 155, 181]

◦ ◦ × ◦ ◦ × ◦

CSI Based

[149, 151, 156,

157, 158, 159,

182]

◦ ◦ ◦ ◦ ◦ × ×

GPS Based
[143, 144, 145,

146, 146]
◦ ◦ ◦ ◦ ◦ × ◦

Inertial Sensors based
[186, 183, 177,

178]
× ◦ ◦ ◦ ◦ × ◦

Multipath Based
[151, 160, 161,

162, 163]
◦ ◦ ◦ ◦ ◦ × ◦

GSM, FM Radio [75, 78] ◦ ◦ ◦ ◦ × × ◦

Others (Visual, UWB, BLE,

Acoustic, Light, Magnetism)

[71, 72, 76, 77,

79, 80, 164, 165,

166, 167, 169,

170, 171, 168]

◦ ◦ × ◦ ◦ × ◦

WiFi-RTT
[172, 173, 174,

175, 176]
◦ ◦ ◦ ◦ ◦ × ◦

Sequence-based (Sequence of

place names or APs)

[137, 138, 139,

140, 141]
◦ ◦ × − − ◦ −

GoPlaces ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ Supported × Not Supported ◦ Supported by some papers in the group − Not Applicable

secure from external attacks. Furthermore, unlike most indoor localization systems,

GoPlaces stores the data and performs all computations locally on the phone, which

helps reduce the privacy risks.

Table 2.1 summarizes the studies related to our work. While there are studies

on indoor localization, the indoor place prediction has been explored by only a limited

number of works. These studies often rely on sequences of place names or access points

(APs), require complex infrastructure, and are not implemented on mobile OS. Other

studies, which utilize various signals (RSSI, CSI, visual data, inertial sensors, etc) aim

to localize the user but cannot be directly applied to the place prediction task using

off-the-shelf infrastructure while ensuring user location privacy.
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2.5 Chapter Summary

This chapter discussed the existing studies related to privacy requirements in the

machine learning pipeline and techniques used to develop systems preserving data

privacy. Firstly, we explored existing works on multi-task learning, as well as

approaches for addressing task heterogeneity and privacy challenges in federated

learning. Next, we presented existing works concerning privacy in ML-as-a-Service

(MLaaS) in the cloud and discussed the challenges associated with supporting graph

neural networks in that setting. Finally, we discussed existing solutions for indoor

place prediction, which suffer from both low privacy and personalization issue.
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CHAPTER 3

FEDMTL: PRIVACY-PRESERVING FEDERATED MULTI-TASK
LEARNING

This chapter presents FedMTL, a novel algorithm to support multi-task learning

(MTL) in the federated learning (FL) setting. FedMTL uses new protocols to enhance

the capabilities of each client model by enabling collaboration among models from

the participating clients based on similarities in the tasks they execute. FedMTL

generates personalized MTL models based on task similarities, which are determined

by analyzing the parameters for the task-specific layers of the trained models.

FedMTL uses novel protocols to enhance performance by encouraging collaborations

among clients based on similarities in the tasks they execute. FedMTL assumes

that the supported tasks have unique IDs and the clients are aware of the task

IDs for which the model has been trained. Furthermore, it uses a hard parameter

sharing-based architecture [21] for local MTL models. This architecture involves

sharing hidden layers for the related tasks while maintaining task-specific output

layers. The architecture enables the MTL model to understand the overall data

structure while gaining expertise in multiple tasks. The aggregator of FedMTL applies

layer-wise aggregation policies and computes different sets of weights on clients’ model

parameters to improve the personalization of the MTL models. FedMTL aims to

develop a low resource-consumption approach, enabling straightforward integration

with established privacy-preserving techniques for secure aggregation. To the best

of our knowledge, FedMTL is the first framework that supports privacy-preserving

MTL in FL settings.

In this chapter, Section 3.1 defines the FedMTL aggregation problem, and

Section 3.2 describes the FedMTL aggregation algorithm. Section 3.3 presents the

privacy-preserving protocols for FedMTL. Section 3.4 shows the system and security
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analysis of FedMTL, and Section 3.5 presents the experimental evaluation of FedMTL.

The chapter is summarized in Section 3.6.

3.1 FedMTL Aggregation Problem Definition

The goal of FedMTL is to design FL aggregation protocols that enhance personalized

MTL models, without imposing heavy computational burdens on devices. We

consider a set of tasks U = {T1, . . . , TK} supported by FedMTL, where the total

number of supported tasks, K = |U|. Each task Tk, k ∈ {1, . . . , K}, has a unique

integer ID. We consider a hard parameter sharing architecture for the multi-task

models, with the model parameters represented as W = {WS,WT}, where WS and

WTk represent the parameters for the shared layers and task Tk, respectively (shown

in Figure 3.1).

In each round, FedMTL picks a set of clients C, where the number of clients is

N = |C|. Each client Ci ∈ C trains an MTL model for a subset of tasks Ui ⊆ U using

data Di = {Xi,Yi}, where Xi represents the input features and Yi denotes the list

of labels for Ki = |Ui| number of tasks, as Yik is the label for task Tk ∈ Ui. The set

of tasks executed by each client can be different. Training on local data, each client

obtains the local model Wi, which consists of the parameters of the shared layer WS
i

and the parameters of the task-specific layers (task layers) WT
i . We use WT

i [j] to

represent the parameters for j-th task and WTk
i to represent the parameters for the

task with ID k, i.e., Tk.

This work focuses on the aggregation protocol employed by the server to

generate personalized MTL models for each client. As shown in Figure 3.1, the

aggregator A collects the model parameters from N clients Wi, i ∈ {1, . . . , N}

and aggregates these parameters to get the personalized model parameters W∗
i =

{WS∗
i ,WT ∗

i }, where WS∗
i is the aggregated model parameters of the shared layer

and W
T ∗
k

i is the aggregated layer parameters for task Tk.
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Figure 3.1 FedMTL problem setup.

In the case of personalized FL, the optimization problem can be represented as

in Equation (3.1), where the function fi : Rd → R denotes the expected loss over the

data distribution of Ci.

∀i,W∗
i = arg min

wi

fi(Wi) (3.1)

To achieve this, we define pi,j as the weights of client Ci to aggregate the

parameters of the shared layers from the local model of client Cj, as shown in Equation

(3.2). Additionally, we define qi,j,k as the weights to aggregate the parameters of task

layers of Ci using the parameters of the local model from Cj for task Tk, as shown

in Equation (3.3). For conventional FL that supports only single-task learning, WS
i

contains WTk
i and Equation (3.2) is similar to the vanilla FedAvg if pi,j = 1.

WS∗

i =

∑N
j=1 pi,jW

S
j∑N

j=1 pi,j
(3.2)

W
T ∗
k

i =

∑N
j=1 qi,j,kW

Tk
j∑N

j=1 qi,j,k
(3.3)

The FedMTL aggregation problem is to determine the weights pi,j and qi,j,k that

enhance personalized MTL models in an FL setting.
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3.2 FedMTL Algorithm

This section first presents our analysis (Subsection 3.2.1) of the characteristics of

the parameters across different layers of the local MTL models and the similarities

of the models trained by the users executing different sets of tasks. This analysis

provides insights into the rationale behind our algorithm’s design by highlighting

the similarities in parameters at different layers of the local models. Then, we

introduce the aggregation algorithm (Subsection 3.2.2) of FedMTL that improves the

personalized MTL models by leveraging similarities between task-specific parameters

to aggregate local models.

3.2.1 MTL model parameter analysis

To inform the design of FedMTL, we consider at MTL model running over the CelebA

dataset [187] and randomly partition it among 60 clients using the symmetric Dirichlet

distribution. We consider four tasks, where each task Tk, k ∈ {1, . . . , 4} consists of

detecting five different face attributes. The clients are grouped into six groups of

equal size, where each group Gi, i ∈ {1, . . . , 6}, trains an MTL model for the i-th set

of tasks from the list: [[T1], [T2], [T3], [T1, T2], [T1, T3], [T1, T4]]. As local MTL models,

we use the LeNet [188] architecture as the base, with a task-specific linear layer for

each task. We then collect the trained model parameters after executing 20 epochs

and visualize those weight updates by t-SNE [189] in Figure 3.2.

We analyze the parameters of the MTL models in terms of (i) task layers and

(ii) shared layers. Figure 3.2(a) shows the parameters of the task layers mapped into

two dimensions, where the label Gi : [Tk] represents the parameters WTk for the task

Tk of the clients in group Gi. We observe that the parameters of the task layers are

very similar for the clients performing the same set of tasks. Such similarity can even

be across task groups; for example, parameters for task T1 from all groups of clients

are very close, even though the task is executed in conjunction with different tasks.
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Figure 3.2 t-SNE visualization of 60 MTL model parameters for: (a) task layers,
(b) top shared layers, (c) bottom shared layers.

We analyze the shared layers WSl , 1 ≤ l ≤ L, of the MTL models, where L is

the number of shared layers. For a linear layer in the LeNet model, which is closer

to the task layer (i.e., l→ L), the parameters exhibit similarity among clients within

the same group (as shown in Figure 3.2(b)), as these models are trained for the same

set of tasks. For some clients in groups G4, G5, G6, these parameters are close to the

parameters of the clients in group G1, since there is a common task T1 in all of these

groups. Figure 3.2(c) shows the parameters of the convolution layer, which is the

bottom layer (i.e., l→ 1) in the shared layers of the LeNet model. For these bottom

layers, the parameters do not show any specific pattern. This analysis leads us to the

following insight for the design of FedMTL: although the shared layers learn generic

patterns of data, some layers are influenced more by the tasks, as these parameters

are significantly updated by the gradients computed based on the losses associated

with each task. Our experimental results in Section 3.5 further demonstrate that the

parameters in task-specific layers are similar across clients performing the same task.

Therefore, FedMTL should treat the shared layers and task-specific layers separately,

prioritizing the parameters in the task-specific layers to evaluate similarity across

clients’ models.
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3.2.2 FedMTL aggregation

When dealing with MTL in FL settings, the model parameters Wi, cannot be directly

aggregated due to the heterogeneity in model architecture arising from variations

in the number and types of tasks executed by the clients. Therefore, we consider

aggregating the shared layers and task layers separately. Although the shared layers

from all clients have the same structure, identical weights pi,j should not be assigned

for aggregation in Equation (3.2), as the shared layers are learned differently by

clients executing different sets of tasks. Regarding the task layers, the i-th client’s

task layers, denoted as WTk
i for task Tk, can be improved by learning from the task

layers WTk
j , j ∈ N (C), where N (C) is the subset of clients executing Tk. Based on

the observations presented in Subsection 3.2.1, we propose employing the FedMTL

algorithm to aggregate the local models, thereby enhancing both the task layers and

the shared layers to create a personalized MTL model for each client. In each round,

FedMTL first computes the similarity score for each pair of clients by analyzing the

task layers of each client’s MTL model, and then uses the similarity scores to compute

the aggregation weights pi,j and qi,j,t to aggregate the shared and the task layers as

in Equations (3.2) and (3.3), respectively.

Computation of similarity scores. To compute the similarity score for a pair

of clients (Ci, Cj), FedMTL compares the parameters of the task layers and identifies

the one-to-one mapping between the task layers of the two clients that maximizes the

overall score. The overall similarity score also captures the similarity in the shared

layers; if the task layers are similar, there is a high likelihood that the shared layers

are as well. FedMTL analyzes the parameters of the task layers instead of relying on

matching task IDs, as data from different domains can be used for the same task, and

thus, does not guarantee similarities in the model parameters.

For a pair of clients, FedMTL first computes the cosine similarities of all pairs

of tasks between these clients, denoted as Ai,j ∈ RKi×Kj , using Equation (3.4). Then,
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FedMTL uses a standard Hungarian algorithm [190], HScore, to find the one-to-one

task mapping with maximum cumulative score Hi,j (Equation (3.5)). The similarity

score for client Ci with respect to clients Cj, denoted as Si,j ∈ [0, 1], is computed by

dividing the score Hi,j by the number of tasks Ki, as shown in Equation (3.6). Here,

Si,j might not necessarily be the same as Sj,i, since the number of tasks executed by

the clients can differ.

Ai,j[m][n] = cos(WT
i [m],WT

j [n]);

m ∈ {1, . . . Ki}, n ∈ {1, . . . Kj}
(3.4)

Hi,j = HScore(Ai,j) (3.5)

Si,j = Hi,j/Ki (3.6)

Aggregation of the MTL models. To obtain the personalized MTL model

for a client Ci, FedMTL assigns varying weights to all clients’ MTL models based on

the similarity score, as calculated in Equation (3.6). To mitigate adverse effects arising

from highly dissimilar models belonging to another client Cj, FedMTL sets Si,j = 0 if

the score Si,j falls below a threshold value Zi, effectively excluding models that differ

significantly from aggregation. The threshold value Zi is adaptable, 0 ≤ Zmin ≤

Zi ≤ Zmax ≤ 1, allowing clients to select their threshold based on the current model’s

(Wi) performance. In our experiments, initially, the threshold value is set low, Zi =

Zmin, to encourage learning from a diverse set of clients. As a client participates in

multiple rounds and achieves improved model performance, Zi is programmatically

increased in each round by (1 − Zmin)/R, where R is the total number of rounds.

This adjustment facilitates learning from more similar models, thereby reducing the

need for substantial changes in the parameters, and can be continued until the model’s
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accuracy converges on the test dataset. The updated score is expressed as in Equation

(3.7).

Si,j =


0 if Si,j < Zi

Si,j otherwise

(3.7)

For Ci, FedMTL computes the aggregation weights pi,j, using Equation (3.8),

and then uses pi,j in Equation (3.2) to compute WS∗
i to aggregate the shared layers

from all clients Cj, j ∈ {1, . . . , N}. Here, Dj denotes the size of the training dataset

of client Cj, and Si,j represents the pairwise similarity scores of the client models,

which are used to compute the aggregation weights. Equation (3.8) is equivalent to

the aggregation weights for FedAvg, if Si,j = 1.

pi,j = Si,j ×Dj (3.8)

Similarly, FedMTL computes the weights qi,j,k using Si,j as in Equation (3.9)

and uses qi,j,k in Equation (3.3) to obtain the parameters of the task layers WTk
i for

task Tk of Ci, by aggregating the parameters of the corresponding task WTk
j from Cj.

qi,j,k =


Si,j ×Dj if Tk ∈ Uj

0 otherwise

(3.9)

FedMTL uses the same aggregation weights for all parameters in a model, such

that the scaled model captures a similar parameter distribution as the local model.

Following this approach, the personalized model of a client is the linear combination

of all the models of users executing a similar subset of tasks.
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3.3 Privacy-Preserving FedMTL

Improved performance through personalization in FedMTL comes with a trade-off

in privacy, as the aggregator needs access to information about the tasks executed

by each client and their local model parameters. To preserve the privacy of client

data in FL, we can use an established cryptographic technique E , such as SMPC or

HE, for secure aggregation. We assume that fundamental operations (e.g., addition,

multiplication, comparison, etc.) are supported in E . However, it is required to

design secure protocols which the clients invoke to protect the numbers/types of the

tasks and the model parameters before uploading them to the server. Furthermore,

server-side protocols must be developed to implement the aggregation algorithm

within the specified cryptographic domain. In this section, we specifically explore

secret sharing [191, 192] in SMPC, as the cryptographic technique to design a secure

FedMTL system. The secret-sharing scheme allows sharing of a secret x among P

servers, such that the servers can use their shares to compute a function, while each

server learns nothing about the secret. Next, we describe the threat model, the

overview of the privacy-preserving FedMTL, and the secure protocols to be followed

at the client and server sides.

3.3.1 Threat model

We consider an honest-but-curious adversary in a P -party SMPC settings, where

each of the P servers honestly follows the protocols, but may individually attempt to

learn clients’ private data. We assume that the application developer is responsible for

setting up the distributed trust, and the parties (client and servers) will communicate

using a secure channel.

In our threat model, we consider that at most P −1 servers can collude to learn

clients’ sensitive data and global statistics. A secure version of FedMTL guarantees

the following privacy properties:
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• Individual model parameters of the clients are not revealed to anyone other than
the source client itself.

• IDs of the tasks executed by each client are protected.

• Size of the training dataset used by each client is protected.

• Secure aggregation of encrypted models produces correct personalized models,
achieving the same level of accuracy as if the aggregation were done using plain
text data.

3.3.2 System overview

Figure 3.3 shows the secure FedMTL system with P aggregators and N clients.

The aggregators communicate with each other to compute the required parameters

encrypted in secret-shared format, ensuring privacy against the threat model. In

additive (or arithmetic) secret sharing (A-SS) [191, 192], P values (x1, . . . , xP )

are chosen uniformly at random, subject to the requirement that
∑P

i=1 xi = x

(mod L), where L = 2l represents l-bit integers. This can be done by choosing

x1, . . . , xP−1 ∈ ZL uniformly at random, and then setting xP = x −
∑P−1

i=1 si

(mod L). The reconstruction algorithm simply adds all the shares modulo L, that

is, x = (
∑

p∈P [x]p) (mod L). We denote the sharing of x across the parties p ∈ P

by ⟨⟨x⟩⟩ =
{
⟨⟨x⟩⟩p

}
p∈P

, where ⟨⟨x⟩⟩p indicates p ’s share of x. Fundamental operations

are already supported in A-SS; certain functions, such as addition, can be performed

locally, while others, such as multiplication and comparison, require communication

between servers.

To preserve the data privacy in FedMTL, each client Ci uploads the parameters

of the shared layers, task layers, and size of the dataset in encrypted format to the

aggregator servers as ⟨⟨WS
i ⟩⟩, ⟨⟨WT

i ⟩⟩ and ⟨⟨Di⟩⟩ respectively. The servers invoke secure

protocols to compute ⟨⟨WS∗
i ⟩⟩ and ⟨⟨WT ∗

i ⟩⟩ which are downloaded and decrypted by

Ci to get the personalized model W∗
i = {WS∗

i ,WT ∗
i } in plain text.

Since each of the P aggregator servers can monitor the computation’s control

flow, it is essential to use oblivious operations that avoid data-dependent control flow.
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Figure 3.3 Secure FedMTL system using SMPC.

This ensures the security of the input, output, and intermediate results throughout

the aggregation process. The secure aggregation protocols in FedMTL provides the

security guarantees described in Subsection 3.3.1 to ensure that honest clients no

longer have to put their complete trust in all servers for privacy. As long as one

server is functioning correctly, privacy is guaranteed.

3.3.3 Secure aggregation protocols

FedMTL employs secure protocols designed to ensure the privacy of client data during

the FL workflow. Next, we present the workflow (Algorithm 1) and the protocols for

the clients and the servers.

Model initialization. To participate in the privacy-preserving FedMTL

workflow, a client requests the aggregator to get the list of supported tasks U, and

the complete MTL model architecture with the shared layers WS and task layers

WTk , 1 ≤ k ≤ K = |U|, initialized with WS(0)
and WTk

(0)
. The maximum number

of parameters for the task layers is dtm = maxTk∈U|WTk |. Since these parameters are

not confidential, a client can connect to any aggregator to receive this data in plain

text.

The client Ci selects a set of tasks Ui ⊆ U, and create the local MTL model

W
(0)
i = {WS(0)

i ,WT (0)

i }, where WT (0)

i contains the initial parameters WTk
(0)

i for Tk ∈

Ui.
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Client side data preparation. At each round, the aggregator randomly

selects a subset of clients C, N = |C|, as in traditional FL. Then, it invokes the

protocol FSU (defined below) for each client Ci, initiating the client to train the MTL

model using its training dataset of size Di. After training the model for a predefined

number of epochs as in traditional FL, Ci gets the model Wi = {WS(r)

i ,WT (r)

i } and

sets the threshold Zi in it’s r-th communication round. Then, Ci follows the steps

below to upload its private data for secure aggregation.

• FSU encrypts the parameters of the shared layers as ⟨⟨WS
i ⟩⟩, thereby securing all

the values in the vector WS
i .

• As WTk
i may vary in size for different tasks Tk ∈ Ui, FSU ensures uniform size dtm

by padding zeros at the end, thereby protecting the type of the task.

• To protect the number of tasks, FSU generates fake task-specific vectors, each of size
dtm with zero value, and appends those vectors to WT

i to generate WT ′
i ∈ RK′

i×dtm ,
where K ′

i = |WT ′
i |, Ki ≤ K ′

i ≤ K.

• FSU generates a mappingMi ∈ {0, 1}K
′
i×K that maps the index of each task-specific

parameter WT ′
i to the ID of that task. Thus, Mi[j][k] = 1, if Ui[j] = Tk, otherwise

0.

• FSU uploads ⟨⟨WS
i ⟩⟩, ⟨⟨WT ′

i ⟩⟩, ⟨⟨Mi⟩⟩, ⟨⟨Di⟩⟩, ⟨⟨Zi⟩⟩.

In this way, FSU protects the dataset size, the actual number and type of the

executed tasks, and the associated model parameters for both the shared and task

layers.

Server side aggregation. At each round, FedMTL computes the task-specific

parameter from Ci for all T tasks,WT ′′
i ∈ RK×dtm by performing matrix multiplication

ofM⊺
i andWT ′

i , whereM⊺
i is the transpose of matrixMi. Using matrix multiplication

in the secret-sharing scheme, the aggregator servers get the share of ⟨⟨WT ′′
i ⟩⟩ for

all clients (Line 5). Then, for each pair of clients (i,j), 1 ≤ i, j ≤ N , it uses

the secret-sharing version of the Hungarian algorithm FH and computes ⟨⟨Si,j⟩⟩

following Equations (3.5), (3.6), (3.7). Next, the aggregator servers invoke: (i) FS,

to securely compute Equations (3.8) and (3.2) to get the parameters of the shared
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Algorithm 1 Secure FedMTL Aggregation

Input: Communication Round R, number of tasks K, initial model parameters

W(0) = {WS(0)
,WTk

(0)}, 1 ≤ k ≤ K

Output: MTL models W∗
i for Ci

1: for r = 1, . . . , R do

2: Randomly selects a subset of clients C, N = |C|

3: for client Ci ∈ C do

4: ⟨⟨WS
i ⟩⟩, ⟨⟨WT ′

i ⟩⟩, ⟨⟨Mi⟩⟩, ⟨⟨Di⟩⟩, ⟨⟨Zi⟩⟩ = Ci.FSU()

5: ⟨⟨WT ′′
i ⟩⟩ = ⟨⟨Mi⟩⟩⊺ × ⟨⟨WT ′

i ⟩⟩

6: end for

7: ⟨⟨S⟩⟩ = FH(⟨⟨WT ′′⟩⟩), where ⟨⟨WT ′′
[i]⟩⟩ = ⟨⟨WT ′′

i ⟩⟩

8: for client Ci ∈ C do

9: ⟨⟨WS∗
i ⟩⟩ = FS(⟨⟨WS⟩⟩, ⟨⟨S⟩⟩, ⟨⟨D⟩⟩)

10: ⟨⟨WT ∗∗
i ⟩⟩ = FT (⟨⟨WT ′′⟩⟩, ⟨⟨S⟩⟩, ⟨⟨D⟩⟩)

11: ⟨⟨WT ∗
i ⟩⟩ = ⟨⟨Mi⟩⟩ × ⟨⟨WT ∗∗

i ⟩⟩

12: W∗
i = Ci.FSR(⟨⟨WS∗

i ⟩⟩, ⟨⟨WT ∗
i ⟩⟩)

13: end for

14: end for

layers ⟨⟨WS∗
i ⟩⟩ (Line 9), (ii) FT , to securely compute Equations (3.9) and (3.3) to

get the parameters of the task layers ⟨⟨WT ∗∗
i ⟩⟩ and mapped into the parameters for

the required tasks ⟨⟨WT ∗
i ⟩⟩ for Ci using the matrix ⟨⟨Mi⟩⟩ (Lines 10-11). FH , FS and

FT are computed securely using standard techniques for addition, multiplication and

comparison operations in A-SS domain.

Retrieving personalized models. Client Ci invokes FSR (Line 12) to

download ⟨⟨WS∗
i ⟩⟩ and ⟨⟨WT ∗

i ⟩⟩ from the aggregator and decrypts them to obtain

the updated model W∗
i = {WS∗

i ,WT ∗
i }. Subsequently, the client can proceed with

training the model for the upcoming round.
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Figure 3.4 Example of privacy-preserving FedMTL aggregation of the MTL
models from two clients C1 and C2.

3.3.4 Secure FedMTL example

Figure 3.4 illustrates the privacy-preserving FedMTL aggregation for 2 clients in a

single round. Client C1 trains the model for tasks T1 and T2, while client C2 trains the

model for tasks T1 and T3. Subsequently, for each client Ci, FedMTL invokes the FSU

protocol to prepare the data for upload, which includes the parameters of the shared

layers WS
i , parameters of the task layers WTk

i , task-mapping Mi, dataset size Di, and

threshold value Zi, as shown in step 1○ (Figure 3.4). For each task layer, clients pad

the parameter vector with zero values such that all task layers have the same number

of parameters, thereby protecting the types of the tasks. Additionally, a client can

add one or more fake tasks to protect the actual number of tasks for which the MTL

model is trained. For instance, C1 adds a fake task WTx
1 in. Figure 3.4. In step 2○,

FSU encrypts all the values and uploads the encrypted data to the aggregator servers.

The FedMTL aggregator invokes FH to calculate the similarities Ai,j between

the task layers of Ci and Cj. It then employs the Hungarian assignment algorithm

and uses the threshold value Zi to compute the similarity matrix S. In step 3○, the

similarity matrix S is employed by protocols FS and FT to calculate the aggregation
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weights pi,j and qi,j,t for aggregating the shared and task layers of the clients’ models,

respectively. Finally, in step 4○, the aggregated model parameters are downloaded

by the clients.

3.4 System Overhead and Security Analysis

This section presents first the overhead analysis of FedMTL without privacy

protection, and then the overhead and security analysis of the privacy-preserving

version of FedMTL.

3.4.1 Overhead analysis of FedMTL without privacy

The FedMTL aggregation incurs similar computation and communication overhead

as state-of-the-art approaches that analyze model parameters at the server to provide

personalized models. We consider N number of clients participating in training, with

the model parameters denoted as d = ds + K × dtm, where ds is the number of

parameters in the shared layer, dtm is the maximum number of parameters in the

task-specific layer and K is the number of tasks. In FedMTL, there is no additional

computational overhead at the client side other than the training of the MTL models.

For aggregation, the computational complexity at the server side is O(N2(d +K2 ×

dtm + K3)). Typically, d ≫ dtm and when T is small, the complexity becomes

O(N2d), which is similar to FedAMP [193]. For FedFomo [107] and MOCHA [23],

the complexity at the server is O(Nd); however, both approaches offload additional

computation onto clients. Other state-of-the-art approaches, such as FedAvg [22],

FedProx [93], and pFedMe [194], have a lower computational cost of O(Nd), but they

do not perform well in the case of task-heterogeneity.

In FedMTL, each client uploads the model parameters, dataset size, task-

mapping, and threshold value to the aggregator. The dataset size, task-mapping,

and threshold value are very small and can be represented in a few bytes. Therefore,

the amount of data (including upload and download) that each client needs to
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transmit per communication round in FedMTL is approximately 2 · ∆, where

∆ represents the size of the model. FedMTL’s overhead is lower compared to

state-of-the-art approaches, such as FedFomo, MOCHA, FedAMP, FedDWA, etc.

The overhead of FedMTL is the same as that of FedAvg, FedProx, pFedMe. However,

FedMTL outperforms them in terms of accuracy while demonstrating the capability

of aggregation even when clients train MTL models on different sets of tasks.

3.4.2 Overhead of secure FedMTL

The overhead associated with the secure aggregation of FedMTL depends on the

cryptographic technique used to protect the privacy of the data. We present the

overhead analysis in the case of using SMPC for privacy-preserving FedMTL as

discussed in Section 3.3.

In secure FedMTL, each client Ci incurs negligible computational overhead in

preparing the data for uploading, as it only involves preparing the task-map of size

K ′
i×K and updating theK ′

i number of vectors of size dtm that contain the parameters

of the task-layers. At the server side, the computational complexity is O(N2 × (d +

K2×dtm+K3)), which is the same as the plain text in asymptotic notation. However,

in a secret-shared domain that utilizes Beaver triples [128] to evaluate multiplication

operations, one multiplication in plain text is equivalent to four multiplications and

three additions in A-SS format.

In secure FedMTL using SMPC, each client needs to transmit approximately

2×P ×∆ of data (including upload and download) per communication round. Here,

∆ represents the size of the model, and P is the number of aggregator servers. The

same amount of data transmission is required for other state-of-the-art approaches,

such as FedAvg, when using SMPC for secure aggregation.

To execute the secure protocols in FedMTL, aggregator servers need to

communicate with each other. For example, when comparing two B-bit numbers,
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the standard implementation requires log(B) rounds of communication. FedMTL

protocols, such as, FS and FT , involve only multiplication operations, and can be

computed in a single round. The computation of similarity scores using the FH

protocol involves calculating the score for each pair of clients; thus, the simple

implementation requires a large number of communication rounds. However, by

processing data in batches, the number of communication rounds can be reduced.

3.4.3 Security analysis of secure FedMTL

FedMTL employs the standard additive secret-shared (A-SS) approach to upload the

clients’ private data to the aggregator servers. Thus, data at rest (model parameters,

dataset size, task-mapping threshold value) is information-theoretically secure [195]

against the threat model following Axiom 1. For aggregation, FedMTL uses existing

A-SS protocols, which are secure following Axiom 2. After the axioms, we present two

theorems to show that Secure FedMTL preserves the privacy of client data throughout

the FL workflow.

Axiom 1. A value x is information-theoretically secure in additive secret-shared

format even if P − 1 out of P parties collude.

Axiom 2. There exist secure protocols for fundamental operations (arithmetic

operations, comparisons, sorting) that preserve the privacy of the input and output

of each operation.

Theorem 1. FSU secures each client’s uploaded data to the aggregator servers,

protecting the parameters of the trained MTL model and the number and types of

executed tasks from attacks described in the threat model.

Proof. In FedMTL, each value in the vectors representing the parameters of

the shared layers and task-specific layers is encrypted in A-SS format. Therefore, the

parameters of the trained MTL model are secure, following Axiom 1. Since the size

of the vectors for each task-layer is the same, the adversary cannot identify the type
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of the task by observing the volume of data. Additionally, since each client can add

fake task-layers, the adversary cannot learn the actual number of executed tasks by

observing the number of task-layers. Thus, the parameters, as well as the number

and types of tasks, are protected against the threat model.

Theorem 2. The private data of each client is protected against the threat

model throughout the execution of the secure protocols (FH , FS, FT ) for FedMTL

aggregation.

Proof. In FedMTL aggregation, FH computes the similarity score for each

pair of clients, involving addition, element-wise multiplication, matrix-multiplication,

and comparison operations in the secret-shared domain. Since the similarity score is

calculated over all possible pairs of tasks, one from each client, it does not leak the

number or types of tasks. Finally, FS and FT compute the aggregated parameters

using the matrix-multiplication operation. Since these operations are secure in the

secret-shared domain following Axiom 2, the clients’ private data is protected against

the threat model throughout the FedMTL workflow.

3.5 Evaluation

The evaluation has several goals: demonstrate the feasibility of FedMTL when clients

execute different numbers and types of tasks, compare the performance of FedMTL

with state-of-the-art approaches, conduct ablation studies to assess the performance

of the proposed algorithm compared to alternative approaches, and demonstrate the

performance of the privacy-preserving version of FedMTL in terms of accuracy and

overhead.

3.5.1 Experimental setup

Dataset description, data and task distribution. We evaluate FedMTL

on two face attribute datasets (CelebA and LFWA) [187] and one indoor scene

dataset, NYUD2 [196], which are commonly used to evaluate MTL models. For
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Table 3.1 Dataset Parameters

Dataset D N K L

CelebA 12,000 60 8 5

LFWA 9,000 60 8 5

FaceA 16,000 80 8 5

NYUD2 1,449 20 4 3

CelebA/LFWA, we consider K = 8 tasks, each involving the classification of L = 5

face attributes. For NYUD2, we considerK = 4 tasks, each involving L = 3 categories

for pixel-wise semantic segmentation. Additionally, to assess FedMTL’s effectiveness

in scenarios with both data and task heterogeneity, we merge CelebA and LFWA to

form a unified face attribute dataset, referred to as FaceA.

For each dataset, we select a number of samples D and distribute the samples

among N clients using a symmetric Dirichlet distribution. We set N = 60, 80 and 20

for CelebA/LFWA, FaceA, and NYUD respectively. Each client Ci splits its dataset

into training, validation, and test sets with a distribution of 70%, 15%, and 15%,

respectively. In FedMTL, Ci can select any number of tasks to participate in the FL

workflow. Then, to choose tasks from the set U, where K = |U|, within the dataset,

each client Ci (where i ∈ 1, . . . , N) selects a random number of tasks Ki such that

1 ≤ Ki ≤ K. Subsequently, the client randomly picks Ki tasks from the task-set U.

The values for N , D, and K for the datasets are shown in Table 3.1.

We consider two different task-distributions: (a) D1: where each client selects

Ki = 2 tasks, (b) D2: each client selects Ki tasks where 1 ≤ Ki ≤ K.

To provide an illustration for one dataset, Figure 3.5 shows the number of

samples per client and task distributions for the CelebA dataset using a random seed.

Implementation details. For the CelebA/LFWA/FaceA datasets, we use

LeNet [188] and MobileNetV2 [197] model architectures. For NYUD2 we use SegNet

model architecture [198]. For client Ci, we replace the last layer of each model with
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Figure 3.5 Sample distribution of tasks among N = 60 clients: (a) number of
samples per client, (b) distribution of clients across different numbers of tasks,
(c) distribution of clients across different tasks.

Table 3.2 Number of Parameters in MTL Models

Model Architecture #Parameters in the Shared Layers #Parameters in a Task Layer

LeNet 1,628,210 2,505

MobileNetV2 2,223,872 6,405

SegNet 24,943,296 37,123

Ki task layers, where each task layer is a linear layer with L number of neurons for

CelebA/LFWA/FaceA and a sequence of convolution layers with L output channels

for NYUD2. Table 3.2 shows the number of shared parameters and task-layer

parameters in each model.

We evaluate the performance of FedMTL by comparing it with state-of-the-art

approaches, implemented using the open source library PFLlib1 and use the

default hyper-parameters. To implement secure FedMTL aggregation, we employ

CrypTen [11], which provides APIs for creating arithmetic shares of private data and

supports P-party SMPC computations. We use 64 bits (B = 64) to represent values

in A-SS format. The experiments are conducted on a 3.4GHz Intel Core i7, with

parties running in separate processes. We implemented the Secure FedMTL prototype

to demonstrate the feasibility of the proposed system using CrypTen’s basic APIs,

without focusing on latency optimizations. It is possible to reduce both the latency

and the overall overhead through pre-computation and parallel data processing.

1https://github.com/TsingZ0/PFLlib
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Comparison methods. We compare FedMTL with the following approaches:

(i) FedAvg [22], which is the vanilla FL technique, (ii) FedProx [93], which employs

a proximal term to formulate the clients’ optimization objectives to mitigate the

adverse influence of heterogeneity on FL, (iii) MOCHA [23], which considers each

client as a separate task and applies MTL with model similarity penalization,

(iv) pFedMe [194], which uses a regularized loss function to optimize the personalized

model w.r.t. each client’s local data distribution, (v) FedFomo [107], which computes

personalized aggregation weights via minimizing the validation loss on each client

based on the model information collected from other clients, and (vi) FedAMP [193],

which employs federated attentive message passing to facilitate collaboration among

similar clients.

Training and aggregation settings. For the experiments, we assume

100% client participation, although FedMTL would still work in the case of partial

participation. The number of local training epochs is set to 1, and the number

of global communication rounds is set to 20. We employ mini-batch SGD as the

local optimizer in all approaches. The batch size for each client is set to 32 for

CelebA/LFWA/FaceA, and 2 for NYUD2. For aggregation, we vary the threshold

Z from 0.75 to 0.95 linearly. We conduct tests for all methods over three runs and

report the average results.

Evaluation metrics. For CelebA/LFWA/FaceA, we report the average test

accuracy of the personalized MTL models across all participant devices. For NYUD2,

we report mIoU and pixel accuracy for the semantic segmentation task.

3.5.2 Results and analysis

Comparison with baselines. We compare FedMTL with state-of-the-art approaches

when clients are executing the same number of tasks (using task-distribution D1).

The model architecture remains the same across clients, which is required for the
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Table 3.3 Comparison of FedMTL with Baselines

Dataset CelebA LFWA FaceA NYUD2

Acc (%) Acc (%) Acc (%) mIoU (%) PixAcc (%)

FedMTL 83.3 70.9 78.3 37.2 74.4

FedAvg 76.0 64.7 68.5 28.9 62.0

FedProx 76.4 64.7 69.3 30.4 63.9

MOCHA 81.7 67.9 76.9 34.9 71.1

pFedMe 76.2 64.7 69.2 30.3 64.2

FedFomo 80.9 68.9 76.1 35.1 72.0

FedAMP 81.9 68.4 77.1 35.4 71.3

baseline approaches. The results presented in Table 3.3 show that FedMTL achieves

better performance compared to other methods for all datasets. FedAvg, FedProx,

and pFedMe achieve low accuracy because they aggregate local models without

considering task heterogeneity, and the accuracy is impacted by the aggregation

of model parameters from conflicting tasks. FedFomo and FedAMP manage to

tackle this adverse effect by applying regularization or personalized aggregation

weights. In contrast, FedMTL assigns aggregation weights based on similarities

in task layers, enabling clients to achieve higher accuracy. FedMTL avoids the

complex client-side analysis in FedFomo and FedAMP, reducing computation and

communication overhead in resource-constrained devices.

Data and task heterogeneity. We consider N = 80 clients, where Ci can use

data samples from either CelebA or LFWA within FaceA. The tasks U, K = |U| = 8,

are distributed among the N clients according to D1. The results for the FaceA

dataset, presented in Table 3.3, indicate that FedMTL outperforms other approaches

by effectively handling both data and task heterogeneity.

To analyze in more detail, we create two groups, where the group G1 and G2

have data from CelebA and LFWA respectively. There are 20 clients in each group.

Each group is divided into four sub-groups where the clients in each sub-group Gig,

i ∈ {1, 2}, g ∈ {1, 2, 3, 4} train MTL model locally for two tasks: [Ta, Tb], where
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Figure 3.6 Similarity scores: (a) task-layers (b) shared-layers.
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Figure 3.7 Test accuracy during training for three datasets: (a) CelebA,
(b) LFWA, (c) FaceA.

a = 2g − 1, b = 2g, 1 ≤ a, b ≤ 8. As shown in Figure 3.6(a), the parameters of the

task layers of the clients in the same group Gig are very similar. Although G1g and

G2g work on the same tasks, the task layers are not very similar since the datasets

are different. Since FedMTL assigns weights based on the similarities of task-specific

parameters, it enables the clients to aggregate models considering task and domain

heterogeneity, thus performing better compared to other approaches.

Efficiency. To evaluate the efficiency of FedMTL aggregation algorithm, we

record the evolution of average test accuracy over global communication rounds for

CelebA, LFWA, and FaceA datasets, with tasks distributed according to the D1

distribution. As illustrated in Figure 3.7, FedMTL achieves higher accuracy than

other state-of-the-art approaches and converges within a few rounds.
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Different numbers of tasks. We evaluate the effectiveness of FedMTL in

the case of task heterogeneity, where each client works on a different number of tasks

(D2 task-distribution). The task distributions are presented in Figure 3.5. We do not

compare the results with existing techniques, as they cannot support this scenario

directly. FedMTL works well in addressing task heterogeneity and achieves 82.5% and

70.5% accuracy for CelebA and LFWA respectively, and 36.7% mIoU for NYUD2.

Ablation studies. We conduct ablation studies to compare different versions

of FedMTL in scenarios where clients execute varying sets of tasks. Specifically, we

consider the following versions:

• FedMTL-X: To aggregate the shared layers from all clients, it computes the
aggregation weights pi,j for Ci by setting Si,j = 1 in Equation (3.8), and ignores
the task layers from other clients by setting qi,j,t = 1 if j = i, otherwise qi,j,t = 0.

• FedMTL-G: To aggregate the shared layers and task layers of task Tt for Ci, it
computes the aggregation weights by setting Si,j = 1 in Equations (3.8) and (3.9).

• FedMTL-T: To aggregate the shared layers from all clients, it computes pi,j for Ci

by setting Si,j = 1 in Equation (3.8), and aggregates the task-layers by computing
the similarity scores following Equation (3.4) to Equation (3.7) and setting qi,j,t
values using Equation (3.9) as in FedMTL.

• FedMTL-J: It computes the similarity between two client’s models based on the
IDs of tasks, instead of task-specific parameters. The similarity score for a pair of
clients (Ci, Cj) is computed by Ji,j =

|Ui∩Uj |
|Ui∪Uj | , Ji,j ∈ [0, 1], where Ui and Uj are

the set of tasks executed by Ci and Cj respectively. It computes the aggregation
weights using Equations (3.8) and (3.9), where Si,j = Ji,j.

• FedMTL-E: For Ci, it only considers the clients executing the same set of tasks.
The similarity score for a pair of clients (Ci, Cj) is computed based on the types
of tasks as Ei,j = (Ui == Uj), Ei,j ∈ {0, 1}. It computes the aggregation weights
using Equations (3.8) and (3.9), where Si,j = Ei,j.

• FedMTL-Z: It applies our proposed algorithm to aggregate the models based on
the similarity scores from the task-specific parameters and uses a fixed threshold
value Z.

Comparison with alternative approaches. Figure 3.8 shows the average accuracy

per round for FaceA with different task distributions. It illustrates that our approach,
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Figure 3.8 Average global accuracy for FaceA dataset with (a) D1 task
distribution (b) D2 task distribution.

FedMTL, utilizing the similarities of task layers, achieves the highest accuracy, 78.3%

and 78.5% for D1 and D2 task distribution, respectively. FedMTL outperforms

FedMTL-X and FedMTL-G since these approaches fail to learn the task layers from

the participating clients effectively. FedMTL-T aggregates the task-layers based on

the similarity score computed using parameters of the task-layers, and aggregates the

shared layers as in conventional FedAvg. However, this approach fails to perform well

because shared layers are generic for all clients and may be adversely affected by client

models trained on dissimilar sets of tasks. While FedMTL-J and FedMTL-E take into

account task heterogeneity, they are adversely affected when clients execute the same

task from a different domain. This occurs because the similarity scores are measured

based on task ID, potentially assigning identical weights to model parameters from

different domains.

Effect of hyper-parameter. We also examine the impact of the threshold value

Z used as a hyper-parameter in our similarity score algorithm. Figure 3.8 shows

the average global test accuracy for FaceA dataset using FedMTL-Z with Z = 0.8

(FedMTL-0.8) and Z = 0.9 (FedMTL-0.9). By setting a constant threshold value,

FedMTL-0.8 and FedMTL-0.9 either allow learning from many clients, potentially

affecting personalization negatively, or limit learning from a few highly similar models.
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Figure 3.8 also shows that FedMTL achieves the highest accuracy as it increases the

threshold Z in each round.

Secure version of FedMTL. In the privacy-preserving version of FedMTL,

we encrypt the model parameters, dataset size, and task mapping before uploading

the data to the P -aggregators. We evaluate the accuracy of the secure FedMTL for

CelebA, LFWA, FaceA and NYUD2 datasets using D1 task-distribution. For each

dataset, we get the same accuracy performance as the plain text version. As shown in

Figure 3.9, the overhead of privacy-preserving FedMTL w.r.t. the plain text version

decreases as the number of clients N or number of tasks T increases. This is due

to the fact that, while both versions incur increased computation overhead as N or

T increases, the number of communication rounds among the computing parties in

the secure version of FedMTL remains constant. For the aggregation of MTL models

using the LeNet architecture, the amount of data transferred from a client to each

aggregator server is around 12.5 MB. However, as the number of aggregator servers

P increases, the communication overhead also rises due to increased communication

among the computing parties. Given that FedMTL aggregation does not require real-

time processing, it remains feasible for real-world scenarios. For example, with P = 3,

N = 80, K = 8, the secure aggregation of MTL models using the LeNet architecture

takes around 45 seconds. About 71% of the total time is spent on aggregating shared

parameters (FS) because there are significantly more shared parameters compared to

parameters in the task layers. However, it is possible to reduce this overhead through

pre-computation and parallel data processing.

To evaluate secure FedMTL considering network delay and bandwidth restrictions,

we performed an experiment with three AWS instances (t2.micro, US-East-1 region)

as the computing parties. For the MTL models using the LeNet architecture, FedMTL

takes around 52 seconds to complete the secure aggregation of models from N = 80
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Figure 3.9 Ratio of aggregation time between the secure and plain-text versions of
FedMTL in P -party setting for varying (a) number of participating clients N and
(b) number of tasks K.

clients. This indicates that network latency has minimal impact on the overall

aggregation time.

3.6 Chapter Summary

This chapter presents FedMTL, a novel FL aggregation technique that enables clients

to collaboratively enhance their personalized multi-task learning (MTL) models.

FedMTL determines aggregation weights for each client by examining the parameters

of task-specific layers in MTL models and employs a layer-wise aggregation strategy

across participating clients. The FedMTL algorithm can seamlessly integrate with

existing privacy-preserving techniques to ensure the security of clients’ sensitive

data during aggregation. The experimental results demonstrated that FedMTL

outperforms state-of-the-art FL aggregation approaches and can work in cases where

clients are involved in different sets of tasks. Additionally, we implemented a secure

version of FedMTL using secret-sharing SMPC, which achieves the same accuracy

performance as plain text while preserving the privacy of client data.
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CHAPTER 4

CRYPTGNN: SECURE INFERENCE FOR GRAPH NEURAL
NETWORKS

This chapter presents the design, implementation and evaluation of a secure inference

service for Graph Neural Networks. Our solution uses novel secure multi-party

computation (SMPC) techniques, works with any number of SMPC parties, does not

require a trusted server, and is provably secure even if P -1 out of P SMPC parties

in the cloud collude with each other. CryptGNN consists of two novel protocols to

enable privacy-preserving inference of encrypted GNN models on encrypted input

graph data in the cloud. CryptMPL executes the message-passing layer (MPL),

while preserving the privacy of input data (i.e., node features and graph structure).

CryptMUL executes the secure multiplication operations required for evaluating

the linear and nonlinear feature transformation layers (FTLs) in GNN models.

CryptMPL and CryptMUL are invoked from the GNN models to guarantee the cloud

providers do not learn partial results of functions executed over secure inputs or the

final inference results. Our theoretical analysis proves that CryptGNN is correct

and secure, as models using CryptGNN achieve the same accuracy as plain-text

models while protecting the input graph and the model parameters. Our experiments

demonstrate that CryptGNN and its protocols achieve lower latency and overhead

than the baseline approaches. In this chapter, Section 4.1 presents the background on

GNNs and the cryptographic primitives used in CryptGNN. Section 4.2 introduces

the threat model and gives an overview of CryptGNN. Sections 4.3 and 4.4 describe

CryptGNN’s novel protocols, CryptMPL and CryptMUL, respectively. Section 4.5

presents the analysis of CryptGNN. The implementation and evaluation of CryptGNN

are detailed in Section 4.6. The chapter is summarized in Section 4.7.
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4.1 Preliminaries

This section covers background information on GNN and Cryptographic Primitives.

As a matter of notation: (i) x
$← ZL denotes that x is uniformly randomly sampled

from ZL, where L = 2l represents l-bit values; (ii) regular and bold characters

represent a scalar and matrix, respectively.

Message-passing layer (MPL) in GNN. This key operation is executed on

graph data G = (X,S,D). X ∈ RN×K represents the node features as a matrix, where

N is the number of nodes in the graph and K is the number of features for each node.

The structure of a graph is often stored via edges, represented as source/destination

indexes S and D, where (S[j],D[j]) represents the j-th edge. We consider the most

common MPL, where the features of neighboring nodes are aggregated at each node.

For the i-th node, the MPL processing is expressed as in Equation (4.1), where N (i)

is the neighbor set of node i, x′
i is the aggregated feature vector, and xj is the current

feature vector of node j. A GNN model often consists of multiple MPLs, with FTLs

in between.

x′
i =

∑
j∈N (i)

xj (4.1)

Feature transformation layers (FTLs) in GNN. A GNN model archi-

tecture incorporates several FTLs, which can involve linear operations, non-linear

activations, and other operations that modify the feature representations of the nodes.

Below, we describe some common types of FTLs in GNNs. We use × and ⊗ symbols

for scalar and matrix multiplication, respectively.

Linear layers. A linear layer uses learned parameters (weight matrix H

and bias matrix B) to transform intermediate feature matrices during inference.

Mathematically, it involves matrix multiplication and addition operations:

X′ = X⊗H+B (4.2)
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Non-linear layers. A non-linear layer modifies the input representation by

employing non-linear functions to each element of the input. For instance, a sigmoid

layer applied to the input vector X computes the sigmoid function for each element

in X. Non-linear functions can be implemented using standard approximations [11].

These non-linear layers do not require any trained parameters to transform the values.

Batch normalization layer. During inference, a batch normalization layer

utilizes learned parameters, including mean and variance calculated from the training

data, along with model-specific parameters (e.g., ϵ, γ, and β), to normalize an input

value x to the value y as defined in Equation (4.3).

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β (4.3)

Cryptographic primitives. A secret sharing [199] scheme shares a secret x

among P parties, s.t. the parties can collectively reconstruct the secret, while learning

nothing about the secret. We use P-out-of-P secret sharing schemes, which require

the shares of all P parties to reconstruct the data. We denote the parties by CPi,

i ∈ {1, . . . ,P}.

Additive secret sharing (A-SS): In our work, we primarily use A-SS approach.

In A-SS, the secret value and its shares are defined over the ring ZL. A real value

xR ∈ R is represented using a fixed-point encoding with a scaling factor B to obtain

x = ⌊BxR⌋ ∈ [−2l−1, 2l−1), where B = 2f for a given precision of f bits. x can

be decoded as xR ≈ x
B
. We denote the shares of x across the parties by JxK =

{JxKp}p∈P , where JxKp indicates CPp ’s share of x. In A-SS, P shares are chosen s.t.∑P
i=1 xi = x mod L. This can be done by choosing x1, . . . , xP−1

$← ZL, and setting

xP = (x−
∑P−1

i=1 xi) mod L. The reconstruction algorithm simply adds all the shares

as x = (
∑

p∈P [x]p) mod L.
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Multiplicative secret sharing (M-SS): We define M-SS over real field R, where

P values are chosen uniformly at random, such that x =
∏P

i=1 xi, xi ∈ R and xi > 0.

We denote the M-SS of x across the parties p ∈ P by ⟨⟨x⟩⟩ =
{
⟨⟨x⟩⟩p

}
p∈P

, where ⟨⟨x⟩⟩p

indicates party CPp ’s share of x.

Beaver triples: Given the additive secret shares of values X, Y ∈ ZL, computing

the shares of X × Y requires interaction between the parties. A commonly used

approach for this secure multiplication is using a Beaver triple [128], which consists

of three elements (A,B,C) such that C ← A×B, and A,B
$← ZL. The additive secret

shares of a Beaver triple (A,B,C) can be used to compute the shares of Z ← X × Y

by following the protocol FBeaverMul(JXK, JY K, JAK, JBK, JCK) shown below:

• Each party gets the share of triples as (JAK, JBK, JCK).

• Each party computes JUK← (JXK− JAK) and JV K← (JY K− JBK).

• All parties interact with each other to reveal U ← (X − A) and V ← (Y −B).

• Each party computes the shares of Z as JZK← U × JBK+ V × JAK+ JCK+U × V .

Matrix multiplication can also be performed using Beaver triples following the

above steps, just by replacing × with ⊗ to represent the multiplication of different

matrices.

4.2 Threat Model and System Overview

Threat model. In our system, there are three key entities:

• Model owner (MO): Its primary concern is safeguarding the parameters of the
trained GNN model, while ensuring accurate results for each inference request.

• Data owners (DO): The system can accommodate multiple DOs (clients), each
making numerous inference requests and concerned about ensuring privacy of the
input graph data for each request.

• Cloud servers (referred to as parties or CP): We consider an honest-but-curious
adversary in the P-party SMPC settings, where each of the P cloud servers honestly
follows the protocols, but may attempt to learn the private data of the MO or DO
individually or through collusion.
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Figure 4.1 (a) GNN computation (b) CryptGNN architecture.

Our threat model TM assumes that at most P − 1 parties may collude to

learn DO’s input data or MO’s model parameters. Within TM , we also consider

the cases where P − 1 colluding parties may collude either with the MO to gain

access to the DO’s input data or with a DO that they control, DOfake, to access

the MO’s model parameters or the input graph data of other DOs. We assume that

parties communicate using a secure channel. As the colluding parties can monitor the

computation’s control flow and analyze data access patterns, we must use oblivious

operations to ensure the input, output, and intermediate results are secured.

System overview. Figure 4.1(a) shows the flow of a typical GNN, where the

initial node features X are passed through GNN layers to get the intermediate node

features X1. An MPL takes the current node features X1 as input and exchanges

messages between the nodes through the edges to compute new node features X∗
1.

The FTL transforms X∗
1 into X2 = f1(X

∗
1; Θ1), where Θ1 summarizes the parameters

in an FTL. In GNN, based on the model architecture, after executing multiple MPLs

and FTLs, the final node features are computed to generate the inference result.
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The CryptGNN system architecture, shown in Figure 4.1(b), has components

at the SMPC parties, the MO, and the DOs. The components at the SMPC parties

execute most of the secure inference protocols. The component at MO uploads the

proprietary GNN model to the P SMPC parties in A-SS format, such that model

parameters Θ are protected (Steps 1 and 2 in Figure 4.1(b)). Θ comprises of the

parameters {Θ1,Θ2, · · · }, where Θi is associated with the i-th FTL of the model.

Following prior work [62, 127], we consider the architecture of the GNN model (i.e.,

type, sequence, and number of layers) to be shared by the MO with the parties and

the clients. Thus, the parties know to invoke the secure versions of the insecure layers

of the model.

CryptGNN’s client-side component allows DOs to upload graph input data to

the cloud as (JXK, JSK, JDK), such that the node features X and the graph structure,

i.e., the list of source indices S and destination indices D, are protected (Steps 3

and 4 in Figure 4.1(b)). We consider directed, unweighted graphs as input, although

CryptGNN protocols can be extended in a straightforward way for weighted graphs.

During each inference request, the parties execute the secure protocols of CryptGNN

to compute the output of each layer of the GNN model (Step 5 in Figure 4.1(b)).

Finally, the client receives (Step 6 in Figure 4.1(b)) the shares of the final output from

all parties to reconstruct the result (Step 7 in Figure 4.1(b)). CryptGNN comprises

of the following two novel protocols:

CryptMPL: This protocol is used for secure message-passing in GNN in a P-

party A-SS setting. Executing MPL in the A-SS domain is difficult, as the encrypted

features need to be passed through edges, while the source and destination nodes

of each edge are encrypted. Our goal is to take the graph structure (S,D) and the

feature matrix A (e.g., X1 in Figure 4.1(a)) as input in A-SS format, and compute

the feature matrix JA∗K = MPL(JAK, JSK, JDK) after the execution of an MPL layer,
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while preserving the privacy of the input graph, intermediate results, and model

parameters.

CryptMUL: The FTLs are computed using additions, multiplications, and

comparisons. In A-SS, addition is cheap and can be computed locally, and comparison

can be implemented using state-of-the-art techniques [200]. To eliminate the need

for a trusted server and the costly online processing step in secure multiplications,

CryptMUL employs a preprocessing step to generate auxiliary data for each client,

which is used for multiple inference requests from the same client.

4.3 CryptMPL

This section presents the CryptMPL stack of protocols, shown in Figure 4.2, for

privacy-preserving message-passing in GNN using a P-party SMPC setting. To

privately exchange messages through edges of a graph, represented as source/des-

tination arrays, we develop novel protocols enabling the SMPC parties to read the

feature vector of a source node, write the feature vector at the destination node, and

update the node features by aggregation of intermediate feature vectors. CryptMPL

also uses a novel data masking technique, where the client collaborates with the

SMPC parties to protect the data against the threat model.

Algorithm 2 presents the pseudo-code for CryptMPL, which consists of invoking

secure read, write, and aggregate functions (Lines 3-5). The details of the

protocols behind these operations are presented in Subsections 4.3.1, 4.3.2, and 4.3.3,

respectively. Read and write require each party to communicate with the other parties
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in a ring-like structure, where the p-th party receives data from the (p − 1)-th and

sends data to the (p + 1)-th party (the P-th party transfers data to the first party).

While executing the read and write protocols, CryptMPL uses a novel data masking

technique to protect the transferred feature matrices, and the indices of source and

destination nodes. To facilitate data masking, the client preprocesses a noise matrix

and helps the parties mask their data with noise (Subsection 4.3.4). The accuracy of

computation remains unaffected because the noise is eliminated from the final result

(Line 7).

Algorithm 2 Secure Message Passing Layer, FCryptMPL

Input: JAK (Feature Matrix), JSK (Source Indices), JDK (Destination Indices), Jξ∗K

(Noise)

Output: Output Feature Matrix, JA∗K

1: JA∗
ξK← FInitMatrix(N,K)

2: for i← 1, . . . ,M do

3: JYK ← FSR(JAK, JS[i]K)

4: JGK ← FSW (JYK, JD[i]K)

5: JA∗
ξK ← FSA(JA∗

ξK, JGK)

6: end for

7: JA∗K ← JA∗
ξK− Jξ∗K

8: return JA∗K

4.3.1 Reading the feature vector of a source node

The index in the source nodes’ array and the feature vector of a source node for an edge

are stored in the A-SS domain. The secure read (FSR in Algorithm 2, Line 3) accesses

the feature vector without leaking the index and the features of the source node. The

main idea of FSR requires each party to rotate their share of the current feature

matrix A and shift their share of the source index by the same random amount, and

63



r1

Target 
Index = 0

r1

j1 + r1

j1

j

j+r1

r2

Target Index 
= j1 + r1

r2

j1 + j2 + 
r1 + r2

j2 rp

rp

j1 + j2 + .. + 
jp + r1 + r2 

+ .. + rp

jp

Target Index 
= j1 + j2 + .. + 

r1 + r2 + ..  j+r1

j+r1+r2

j+r1+r2+..+rp

CP1 CP2 CPp

…….

…………….

……………. …………….

……………. …………….

…………….

j+r1+r2 + ..

(a) Secure Read

j1

0

0+j1

CP1

j2

0+j1

0+j1+j2

CP2

jp

CPp
0+j1+j2+..

0+j1+j2+..+jp

…………….

……………. …………….

…………….

…………….

…………….

…….

(b) Secure Write

Figure 4.3 Flow of a share of a matrix for read (a) and write (b) in CryptMPL
with P SMPC parties.

then share the updated matrix and index with the next party. The random amount

is different at each party. After all the parties have rotated the feature matrix and

shifted the source index, each party reads the vector at the updated index of the

rotated matrix. Since both the rotation and the shift are performed by the same

total amount, each party receives a correct share of the source feature vector.

This procedure is illustrated in Figure 4.3(a) and detailed in the following. For

a source node j ∈ S, its corresponding feature vector is A[j]. The secret-shared

versions of the index and the feature vector are JjK and JA[j]K, respectively. In FSR,

party CPp securely retrieves JA[j]Kp. For example, to retrieve JA[j]K1, the parties

execute these steps:

1. CP1 initializes two variables: a target index j′ = 0 and a target matrix JA′K1 =
JAK1. The target index and the target matrix pass through the parties in the ring
and are updated by the parties (Steps 2-5). In Step 6, CP1 reads the vector at the
updated index of the updated matrix.

2. To protect the share of the source index, CPp adds a random integer rp to JjKp,
and updates the target index j′ as, j′ ← j′ + JjKp + rp.

3. To align the target matrix, CPp rotates the rows of JA′K1 by rp, i.e., JA′K1 ←
rotate(JA′K1, rp).

4. CPp transfers JA′K1 and j′ to CPp+1, which repeats Steps 2 & 3 to update JA′K1
and j′.

5. After the operations at the P-th party, the information is transferred to the first
party CP1.
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6. CP1 gets j
′ =

P∑
p=1

JjKp+ rp = j+
P∑

p=1

rp. Correspondingly, JA′K1 is rotated for
P∑

p=1

rp

times, i.e, JA[j]K1 = JA′[j +
P∑

p=1

rp]K1. Thus, CP1 gets JA′[j′]K1 = JA[j]K1.

All parties follow the same procedure in parallel to retrieve the P shares of

JA[j]K. This procedure protects each party’s share of the source index through the

random shifting of its value. However, this is insufficient to safeguard the graph

data, because: (a) It is possible to reconstruct the feature matrix, as each party gets

all of the shares of A, and (b) Each party can determine the actual value of the

source index by searching the accessed feature vector in A. To solve these problems,

each party adds a random noise (a matrix containing random values) to mask the

shares of A before transferring them to the other parties. Thus, FSR addresses the

aforementioned issues, since: (a) Due to the presence of noise, the feature matrix

cannot be reconstructed correctly; (b) Since the feature matrix is modified by all

parties, the parties cannot determine the source index. Therefore, the parties can

securely access the source feature vector. Eliminating noise from the final result is

discussed in Subsection 4.3.4.

4.3.2 Writing messages to the destination node

This secure protocol (FSW in Algorithm 2, Line 4) creates an intermediate matrix G

of the same dimensions as the output feature matrix, and writes the feature vector

Y at the index in G corresponding to the destination node’s index in the destination

nodes’ array D. Unlike read, which can use rotation operations to preserve index

privacy, write must know the destination index to write the vector at the correct

position. As the destination node of each edge is encrypted, to write a feature vector

Y at the destination index j ∈ D of a matrix G, the parties need to coordinate. In

the secret-shared domain, each party CPp initializes the share of G as JGKp = 0 (i.e.,

initialize G with all entries zero). If party CPp has the shares of Y and j, i.e., JYKp
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and JjKp, our goal is to get JG[j]Kp = JYKp, without leaking the target index and the

feature vector.

The main idea of the write protocol requires each party to write its share of

the feature vector Y at the 0-th index of its share of G and transfer it to the next

party in the ring. Each party rotates the share of the matrix G by its share of the

destination index. Thus, the feature vector reaches the correct destination index of

G. For example, Figure 4.3(b) shows the following steps to write JYK1 at JG[j]K1.

1. CP1 writes the vector JYK1 at index 0 of JGK1 as JG[0]K1 = JYK1. The matrix
JGK1 will pass through the parties in the ring and be updated by other parties in
Steps 2-4. In Step 5, CP1 gets the updated matrix JGK1, where JYK1 is written at
the correct destination index.

2. CPp rotates the matrix JGK1 by JjKp.

3. CPp transfers JGK1 to p + 1-th party for 1 ≤ p ≤ P . CPp+1 repeats Steps 2 to
update JGK1.

4. After the operations at the P-th party, the matrix JGK1 is transferred to the first
party.

5. CP1 gets JGK1 which is rotated by
P∑

p=1

jp = j times. Due to the overall rotation,

JYK1 is moved to j-th index of JGK1, equivalent to JG[j]K1 = JYK1.

All parties follow the same procedure in parallel to write their shares of Y at the

destination index of the matrix G. During write, each party’s share of the destination

index is protected. However, the actual destination index j is revealed from the final

matrix, since the values in the final matrix are zero for all indices other than j. To

solve this problem, CPp adds random noise to mask its share of JGKp while sharing

it with the other parties. Thus, the final matrix is masked by all parties, and the

destination index cannot be determined by observing the values in the matrix. The

procedure to remove the noise from the final result is discussed in Subsection 4.3.4.
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4.3.3 Updating the feature matrix

Unlike read and write, secure aggregation (FSA in Algorithm 2, Line 5) can be

implemented using standard SMPC techniques. The output feature matrix of the

same size as the input feature matrix is initialized by each party as JA∗K = J0K.

Executing one round of read and write protocols process one edge, where the

intermediate result matrix JGK contains the feature vector of node JS[i]K at index

JD[i]K after processing the i-th edge. CPp updates the feature matrix JA∗K with the

result: JA∗Kp = JA∗Kp + JGKp.

4.3.4 Putting things together with preprocessing

The protocols FSR, FSW and FSA process all the edges in the graph. During read

and write, each party masks the shares of the feature matrices to protect the graph

data. Masking a matrix with noise involves adding random values to the original

matrix. Here, we describe the preprocessing stage executed at the client side to help

the parties generate the noise matrices to mask the original data and eliminate the

noise from the output for the correct result of the MPL.

As the client has the graph data structure, it can execute the message-passing

on a noise matrix ξ ∈ RN×K to get a feature matrix ξ∗ and share both ξ and ξ∗ with

the SMPC parties in a secret-shared manner. Each party can mask its feature matrix

with the share of ξ and calculate the feature matrix A∗
ξ by executing MPL on the

masked feature matrix. Finally, it removes the noise ξ∗ from the A∗
ξ to generate the

actual result A∗. The steps of this process are as follows:

• The client calculates the effect of noise on each node after executing an MPL round
(Equation (4.4)).

• Each party executes the MPL to get the output feature matrix on the masked node
features (Equation (4.5)).

• Each party removes the effect of noise to obtain the correct feature matrix (Equation
(4.6)).
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ξ∗[j] =
∑

j∈N (i)

ξ[j] (4.4)

A∗
ξ [i] =

∑
j∈N (i)

A[j] + ξ[j] (4.5)

A∗[i] = A∗
ξ [i]− ξ∗[i] (4.6)

To mask the feature matrices, CPp creates a noise matrix ξp of the same

dimensions as the feature matrix, and adds ξp to the share of the feature matrix

JAKp. However, if the same noise is used to mask JAKp while processing each edge, an

attacker can identify the node degree based on the number of times the same value

is accessed by a party. To prevent this issue, each party needs to generate different

noise matrices ξr at each round r of the read and write operation. In read and write

(Subsections 4.3.1 and 4.3.2), noise is added to the party’s own share, and to the

matrices received from the other parties, such that the matrices cannot be recognized

at the end of the process, and the source and destination indices cannot be detected

by observing the values.

During the initialization stage, the client shares different integer values as seeds

to each party, which are used in a pseudo-random function (PRF) to generate all the

rotation amounts and noise matrices. At the client side, similar noise matrices are

used to compute the effect of noise ξ∗. The client shares ξ∗ in secret-shared manner

with each party. After processing all edges, each party removes the noise ξ∗ to retrieve

the correct feature matrix.

Processing edges in batches. To execute an MPL layer, CryptMPL needs to

process all edges in the graph, which involves M rounds of read and write executions,

where M is the number of edges. To reduce the number of rounds, and consequently

the computation and communication overhead, CryptMPL processes the edges in

batches. Our batching technique executes MPL with low overhead while preserving

the privacy of the graph structure. The number of edges in a batch is configurable. For
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example, a batch of three nodes in secret-shared format Ja1, a2, a3K can be represented

as relative indices [0, a2 − a1, a3 − a1] in plain text with respect to a1, which is still

represented in secret-shared format as Ja1K. Both source and destination indices can

be represented in this way.

For batching, the client divides the edges into batches and calculates the relative

indices with respect to the first index of a batch. The first indices of all batches from

S and D are stored as two vectors JSfK and JDfK. The relative indices for all batches

are concatenated to create two vectors Sr and Dr in plain text. The client uploads

JXK, JSfK, JDfK, Jξ∗K, Sr, Dr and the seed to the SMPC parties.

To further reduce the number of communication rounds, each party concatenates

masked feature matrices for all batches to create a matrix of size (R,N,K), where

the dimension of the feature matrix is (N,K) and the number of batches is R. Each

sub-matrix of size (1, N,K) can be rotated by a different amount and the concatenated

version can be passed to the other parties for read operation. In this way, the

read operations for all batches can be executed in a single round. Similarly, write

operations can be executed in a single round by concatenating G matrices for all

batches.

Finally, let us note that there is a trade-off between performance (fewer batches)

and security (more batches). Using the relative order of the indices in each batch,

the parties may infer the graph structure. The analysis in Subsection 4.5.2 shows

that the probability of correct reconstruction of the graph structure by the parties is

N−2R, where N is the number of nodes in the graph and R is the number of batches.

4.3.5 A simple example

In this example, we consider three computing parties CP1, CP2 and CP3 take an input

feature matrix A and compute the message-passing layer to generate the output

feature matrix A∗. Here, the matrix A represents K = 2 features for each of the
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N = 4 nodes in the graph G. For simplicity, we consider a simple graph and illustrate

the protocols for computing the message passing through an edge from node 1○ to

node 2○. We consider the indices to be 1-indexed. Therefore, for this edge, the

source index S = 1 and the destination index D = 2. In the A-SS domain, CPp

has the shares of node features, source index, and destination index as JAKp, JSKp,

and JDKp respectively. Here, A =
∑P

p=1JAKp, S = (
∑P

p=1JSpK) mod N + 1 and

D = (
∑P

p=1JDpK) mod N + 1.
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Figure 4.4 Input feature matrix A, noise matrix ξ, and masked feature matrix Aξ,
for a graph G with N = 4 nodes and K = 2 features.

The owner of the graph, the client, has the information about the graph

structure, i.e., it knows the source index S and the destination index D. However, the

client doesn’t have any information about the current feature matrix A. Nonetheless,

the client can assist the computing parties in masking their shares and executing the

message-passing layer, ensuring that the node features and graph structure (S and

D) remain protected throughout the execution of CryptMPL.

To preserve the node features, the client shares the seeds sp with the computing

parties CPp. Each party uses its seed to create matrix ξp which is used to mask

its share JAKp as JAξKp = JAKp + ξp (shown in Figure 4.4). The parties follow

CryptMPL read protocol FSR and write protocol FSW to obtain JA∗
ξK by executing
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the message-passing on on JAξK. Finally, the computing parties remove the effect of

noise from JA∗
ξK to obtain the correct result JA∗K.

During the read operation (Subsection 4.3.1), using the seed value sp, CPp

generates matrix Xpi, which is used to mask the share of the feature matrix from

CPi. Additionally, CPp generates random values rpi and rotates the share of the

feature matrix from party CPi by rpi. During the write operation (Subsection 4.3.2),

CPp generates Ypi which is used to mask the share of the feature matrix from CPi.

Additionally, CPp rotates the share of the feature matrix from party CPi by Dp. We

use Xpimn and Ypimn to represent the value Xpi[m][n] and Ypi[m][n] respectively.

Client-side preprocessing. As described in Subsection 4.3.4, the client

executes the message-passing step on the noise matrix ξ to generate ξ∗. ξ∗ is shared

with the computing parties in A-SS format, so that they can remove the effect of

noise from JAξKp. We illustrate the client-side preprocessing step to generate a share

Jξ∗K1 in Figure 4.5. During the read operation, the client simulates the effect of

rotations rp1 and data masking Xp1 on Jξ∗K1. Figure 4.5 shows the final state of Jξ∗K1

after passing the share through all parties, assuming r11 = 2, r21 = 3 and r31 = 2.

Client completes the read operation by reading the vector at index (
∑P

p=1(JSKp+rp1))

mod N + 1 = ((3 + 2) + (2 + 3) + (3 + 2)) mod 4 + 1 = 4 to get the vector

JYξK1 = [2+Z11, 3+Z12], where the cumulative noises, Z11 = X1111 +X2131 +X3121,

Z12 = X1112 +X2132 +X3122. Similarly, the client computes other shares, JYξK2 and

JYξK3.

For the write operation, the client creates a feature matrix Gξ = 0 and writes

the read result at index 0 as JGξ[0]K1 = JYξK1. Then, it simulates the effect of

rotations Dp and data maskings Yp1 on JGξK1. Finally, it gets the share JGξK1 where

JYξK1 is moved to the target index
∑P

p=1Dp = D. Here, all values in JGξK1 are

masked with noise added by all parties. Similarly, client gets other shares JGξK2 and

JGξK3.
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Figure 4.5 CryptMPL: client side preprocessing step.

Thus, the output of message passing on ξ is masked with noise as JξK∗p =

JGKp+Rpp, where JGKp represents the p-th party’s share of the final result if noise were

not added and Rpp are the accumulated noises. To upload the result ξ∗, client creates

different shares of ξ∗ as Jξ∗Kp = JGKp+Tpp, where
∑P

p=1Tpp[m][n] =
∑P

p=1 Rpp[m][n].

CryptMPL protocols in the cloud. The computing parties CPp initialize a

output feature matrix as JA∗
ξKp = 0. CPp perform similar operations on the shares

of Aξ as the clients do on ξ during the preprocessing step.

Figure 4.6 shows the operations on JAξK1 to obtain JYK1 after read operation

and JGK1 after the write operation. After executing the read operation on JAξK1 for

the source index JSK, CP1 reads the vector at the updated target index (
∑P

p=1(JSKp+

rp1)) mod N + 1 = ((3 + 2) + (2 + 3) + (3 + 2)) mod 4 + 1 = 4 to get JYK1. Since

JYK1 is obtained by rotation and masking of JAξK1 with noise from all parties, the

computing parties cannot learn the original index or values, even if there is collusion

among P − 1 parties. Similarly CP2 and CP3 obtain JYK2 and JYK3 respectively.

During the write operation, each party CPp sets JG[0]Kp = JYKp. Then, CPp

adds noise Ypi to i-th party’s share, rotates it by JDKp, and passes it to the next

party. As shown in Figure 4.6, CP1 obtains JGK1 which is modified by all parties.

Due to rotations by
∑P

p=1Dp mod N +1 = (1+1+3) mod 4+1 = 2, JYK1 reaches

at the destination index of JGK1. Due to the rotations and noises, the computing
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Figure 4.6 CryptMPL flow at the computing parties.
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Figure 4.7 CryptMPL - removal of noise to get the output feature matrix.

parties cannot learn the original index or values, even if there is collusion among

P − 1 parties. In parallel, CP2 and CP3 obtain JGK2 and JGK3 respectively. Then,

the matrix JGKp is used to update the output feature matrix for the MPL layer as

JA∗
ξKp = JA∗

ξKp + JGKp.

However, since JA∗
ξK is computed on the matrix JAξK, it is required to remove

the noise. As shown in Figure 4.7, CPp removes the effect of noise by computing

JA∗K = JAξK− Jξ∗K. Thus, the shares constitute the correct JA∗K in A-SS domain as

JAK∗ =
∑N

p=1JAK∗p, since
∑P

p=1(Rpp −Tpp) = 0. Nevertheless, the computing parties

can not determine the actual values from P − 1 shares of JA∗K.

Following this approach, we can compute the message-passing for each edge of

the graph. We can process multiple edges in a batch, since secure read and write

operation does not reveal the actual source and destination indices of the edges. For
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each batch, the client and parties use different sets of noises to protect the node

features and source-destination indices by observing data in different batches. To

obtain the correct result, the client only needs to share the initial noise JξK, overall

noise Jξ∗K and the seeds (to generate rotation amount and noise matrices for each

batch) to the computing parties.

4.3.6 Optimizations

This section explores potential extensions of CryptMPL, including support for

weighted edges in graphs, protection of the number of edges in input graphs, and

advanced message-passing operations in popular GNNs.

Supporting weighted edges. To support the weighted edges, client needs to

upload the list of weights for each edge as W along with the list of edges, where W[i]

is the weight for the edge from source S[i] to destination D[i]. To protect the weights,

the W is list in A-SS format as JWK.

To apply the weights, the computing parties multiply the weight JW[i]K with

the read result for i-th edge JY[i]K. CryptMPL can use CryptMUL’s element-wise

multiplication protocol to execute this operation. This can be done with one

additional round of communication among the computing parties.

In the data-processing step, client also mulitplies the weights to the read result

to compute the overall noise ξ. Considering the weights, the Equations (4.4), (4.5)

and (4.6) can be modified as follows. Here, Equation (4.7) considers the weights

to compute the overall noise, Equation (4.8) computes the message-passing on the

masked feature matrix and applies the edge weights, and finally Equation (4.8)

removes the overall noise to obtain the correct output feature matrix.

ξ∗[j] =
∑

j∈N (i)

W[j]× ξ[j] (4.7)
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A∗
ξ [i] =

∑
j∈N (i)

W[j]× (A[j] + ξ[j]) (4.8)

A∗[i] = A∗
ξ [i]− ξ∗[i] =

∑
j∈N (i)

W[j]×A[j] (4.9)

Protecting the number of edges. If a client wants to protect the number of

edges in the graph, it can use any number of fake edges (Sf , Df ), 1 ≤ Sf , Df ≤ N ,

with weight Wf = 0. In A-SS format, the parties can not learn if the weight is zero

or not. And, these fake edges do not affect the overall result, as the weights are zero.

Supporting complex message-passing. CryptMPL provides secure read

and write protocols that can be used to extend CryptGNN to support complex

message-passing in GNN architectures by incorporating additional operations (e.g.,

node sampling, concatenation, etc.) using standard SMPC techniques or by designing

efficient protocols. For example, in GraphSAGE [39], instead of performing message-

passing on the entire graph, nodes are randomly sampled, and message-passing

is carried out only through the adjacent edges. In the case of secure inference,

this sampling operation must be executed in a way that does not reveal the

graph structure. While oblivious sampling operations in an SMPC setting may be

feasible, they are computationally expensive and significantly increase overhead. An

alternative solution is to perform the sampling operation on the client side, where

the graph structure is already known. After sampling, the client can upload the list

of edges following the CryptMPL protocol, allowing secure message-passing to be

executed on the server side.

Similarly, CryptGNN can support Graph Attention Networks (GATs) [201],

which require the computation of attention coefficients for each edge in the message-

passing layer. Since CryptMPL can securely read the feature vector of any source

node, it can be extended to concatenate the feature vectors of the two nodes connected

by each edge and compute pairwise attention coefficients using standard SMPC

techniques.
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4.4 CryptMUL

Typically, a GNN comprises multiple FTLs, along with MPLs. In A-SS, the primary

bottleneck in evaluating FTLs is the multiplication operation. Linear layers need

matrix multiplications, and non-linear layers require element-wise multiplications.

To generate Beaver Triples (discussed in Section 4.1) for multiplications in A-SS,

previous studies [11] have relied on techniques such as HE, oblivious transfer (OT),

a trusted third party (TTP), or a combination thereof. However, using HE and

OT is costly in terms of both computation and communication. Since CryptGNN

is designed for MLaaS, it must scale to support numerous inference requests from

each client. Consequently, repeatedly employing HE or OT is impractical. While

using a TTP is less resource-intensive, it requires an additional third party that must

not collude with the computing parties. Moreover, communication with the TTP is

necessary for each multiplication operation.

To execute the multiplication operations in GNN, we design CryptMUL, which

offers two benefits: (i) performing multiplications without a trusted server, and

(ii) lower overhead due to preprocessing. Our CryptMUL conducts offline prepro-

cessing to generate auxiliary data, which can be used to easily create a set of Beaver

triples [128] required for multiplication operations in multiple inference requests

from the same client, thereby improving performance while preserving data privacy.

Although our protocols use existing HE- or OT-based techniques in the offline phase

to generate auxiliary data for a client, our contribution lies in efficiently reusing this

data for multiple inference requests from the same client with only one round of

communication among the parties.

In the case of matrix multiplication, CryptMUL generates a new set of triples

considering the properties of matrix operations, where one matrix holds the model

parameters that remain the same for all inference requests. For element-wise multipli-

cation, CryptMUL generates the auxiliary data in a M-SS format, which can be easily
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transformed to create a new set of triples for each inference request. In this section,

we describe the two CryptMUL protocols for: (a) secure matrix-multiplication, and

(b) secure element-wise multiplication, along with an analysis of these protocols.

While we discuss these protocols in the context of GNN inference, they are generic

and can be applied in similar scenarios for other types of model architectures.

4.4.1 Secure matrix-multiplication

In order to compute the linear layers in GNNs, we must conduct matrix multiplication

between the intermediate state matrix JXK ∈ RN×K and the parameter matrix of the

linear layer JYK ∈ RK×K′
to transform K features into K ′ features. While the values

of K and K ′ remain constant in GNN inference, the number of nodes in the graph,

denoted as N , can vary with each inference request for the same GNN model.

To perform matrix multiplication efficiently in the A-SS setting, we employ the

Beaver triple technique, as explained in Section 4.1. By utilizing a Beaver triple (JAK,

JBK, JCK), we can calculate JZK = JXK⊗JYK. However, it is crucial to note that using

the same triple to compute the same linear layer for two different inference requests

may lead to a privacy risk. This is because such a scenario reveals the differences

(U = X − A) and (V = Y − B), and using the same A and B could disclose the

relative changes in X and Y across different requests. Unfortunately, generating a

new Beaver triple for each inference request using state-of-the-art techniques such as

HE or OT is impractical due to their high overhead.

The following observations help us to solve this problem:

• The intermediate feature matrix X is derived from the input feature matrix of the
graph. Revealing U does not disclose X, unless A becomes known to any party.
However, it is infeasible to use the same A for different inference requests, as it
would reveal the relative changes in X across requests.

• The trained parameter matrix Y remains constant for a GNN model, and the same
Y is used for all inference requests. Therefore, we can use the same B in the Beaver
triple for all inference requests. As long as B remains unknown to the computing
parties, revealing V will not disclose Y.
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Based on these observations, we plan to use the same B in all Beaver triples.

However, A needs to be changed in different requests, and consequently, C needs to

be adjusted to hold the property of Beaver triples. To derive a new set of matrices,

denoted as (A′,B,C′), from the initial Beaver triple (A,B,C), we can construct a

row in A′ through a linear combination of the rows of A and use a similar linear

combination of rows from C to compute the corresponding row in C′. Specifically, if

we express A′[j] =
∑N

i=1 kji∗A[i], then C′ can be computed as C′[j] =
∑N

i=1 kji∗C[i].

Following this approach, we propose a secure protocol FMatMul to perform matrix

multiplication in a GNN’s linear layer using the following steps:

1. During the preprocessing stage (Algorithm 3 Offline Phase), FInitBeaver generates
an initial Beaver triple (JAK, JBK, JCK) using HE [202] or OT [203] for each client.
Here, A ∈ RN×K , B ∈ RK×K′

and C ∈ RN×K′
. K and K ′ are fixed and depend on

the number of input features and output features of the linear layer respectively.
N is the maximum number of rows we may need to support and depends on the
maximum number of nodes in a graph.

2. During inference, each party uses the same pseudo-random function FRandComb to
pick a random linear combination of the rows to modify JAK to JA′K and JCK to
JC′K (Algorithm 3 Online Phase Lines 1-2). All computing parties execute the
same operations locally to generate new JA′K and JC′K based on the number of
nodes in the input graph.

3. Use the new Beaver triple (JA′K, JBK, JC′K) to compute JXK ⊗ JYK (Algorithm 3
Online Phase Line 3).

Algorithm 3 Secure Matrix-Multiplication, FMatMul

Input: JXK, JYK Output: Compute JZK = JXK⊗ JYK

Offline Phase, FInitBeaver

1: Generate Beaver triples (JAK, JBK, JCK) for each client

Online Phase

1: JAK, JBK, JCK← FInitBeaver(CID) %CID is the current client’s ID

2: JA′K, JC′K← FRandComb(JAK, JCK, N) %N is the number of rows in X

3: JZK← FBeaverMul(JXK, JYK, JA′K, JBK, JC′K)
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CryptGNN uses FMatMul to execute a linear layer to compute the output feature

states Z from the intermediate feature state X and the trained parameter matrix Y of

the linear layer. The pre-processing step is executed once for each client to generate

the initial Beaver triples. To further reduce communication costs, we can compute

and reveal V once and use the same V (since Y and B are fixed) for subsequent

inference requests from the same client.

4.4.2 Secure element-wise multiplication

Several types of FTLs require support for secure element-wise multiplication JZK =

JXK × JY K, where neither X nor Y are assumed to be constant. In A-SS, we can

compute the result of multiplication using a Beaver triple as discussed in Section 4.1.

The maximum number of element-wise multiplications required for a single GNN

inference request is predetermined by the specific model architecture. One approach

is to pre-compute this specific number of Beaver triples and employ them during

inference. However, as outlined in the preceding subsection, we should not use the

same triple for multiple inference requests due to the potential risk of information

leakage. Therefore, we introduce FElemMul to perform element-wise multiplications

within the GNN layers by generating a fresh set of Beaver triples for each inference

request. The steps followed in FElemMul are described as below:

1. FMsAsPair: At the pre-processing stage, the parties generate a set of numbers both
in A-SS and M-SS format. (Algorithm 4 Offline Phase) which will be used in Step
3.

2. FBeaverM : The parties generate the triples (⟨⟨A⟩⟩, ⟨⟨B⟩⟩, ⟨⟨C⟩⟩) in the multiplicative
format (Algorithm 4 Online Phase Line 1).

3. FBeaverMtoA: The parties communicate with each other and use the data generated
in FMsAsPair to convert the Beaver triple from multiplicative to additive format as
(JAK, JBK, JCK) (Algorithm 4 Online Phase Line 2).

4. The parties use the Beaver triples (JAK, JBK, JCK) to compute JXK× JY K following
the steps in Section 4.1 (Algorithm 4 Online Phase Line 3).
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Algorithm 4 Element-wise multiplication: FElemMul

Input: JXK, JY K

Output: Compute JZK = JXK× JY K

Offline Phase, FMsAsPair

1: Generates a list AM, where i-th (i ∈ |AM|) element of AM is a pair (JRiK,

⟨⟨Ri⟩⟩) representing additive and multiplicative share of value a random value Ri.

Online Phase

1: Generate Beaver triples (⟨⟨A⟩⟩, ⟨⟨B⟩⟩, ⟨⟨C⟩⟩) using FBeaverM .

2: (JAK, JBK, JCK)← FBeaverMtoA(⟨⟨A⟩⟩, ⟨⟨B⟩⟩, ⟨⟨C⟩⟩) using three pairs from AM.

3: JZK← FBeaverMul(JXK, JY K, JAK, JBK, JCK).

Next, we describe the FMsAsPair, FBeaverM and FBeaverMtoA in more detail.

Generating additive-multiplicative pair: FMsAsPair. At the pre-processing

stage, FElemMul generates a list of pairs AM for each client, where i-th (i ∈ |AM|)

element of AM is a pair (JRiK, ⟨⟨Ri⟩⟩), i.e., a random value Ri in A-SS and M-SS.

The size of the list, k = |AM| depends on the maximum number of element-wise

multiplications required for a GNN inference. If the total number of multiplications

is m, then k = 3 × m, since each multiplication operation uses three pairs from

AM in FBeaverMtoA. To protect the relative changes in values between two different

inference requests from the same client, it is necessary to use a different set of pairs

for multiplication when processing an element at the same index of a GNN layer.

This can be done by shifting the elements of AM by three for each inference. In this

way, FElemMul can support m inference requests from the same client.

To generate a number in A-SS and M-SS in P parties, FMsAsPair extends the

algorithm proposed by Xiong et al. [204], which works only for two parties, to make

it work for any number of parties. In this approach, two parties CP1 and CP2

generates random numbers X1 and X2, and convert (X1 +X2) to the multiplicative

secret-shared M-SS format ⟨⟨X1 +X2⟩⟩, without revealing X1 and X2 to each other.
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Following this approach, FMsAsPair can compute JRiK and ⟨⟨Ri⟩⟩ for i ∈ [1, .., P − 1],

where Ri = Xi +Xi+1. Here, the value Xi is known to i-th party only. Since, ⟨⟨Ri⟩⟩

is in multiplicative format, each party can compute ⟨⟨R⟩⟩ =
∏P−1

i=1 ⟨⟨Ri⟩⟩ locally. The

parties can compute the additive share of JRK =
∏P−1

i=1 JRiK using the Beaver triples

generated using a state-of-the-art technique [203]. Thus, FMsAsPair can generate a

pair (JRK, ⟨⟨R⟩⟩), the A-SS and M-SS version of the same value R.

Algorithm 5 presents the following steps required to generate a pair (JRK, ⟨⟨R⟩⟩))

for a random value R.

1. Follows two-party protocol [204] for i and (i + 1)-th parties i ∈ [1, · · · , P − 1] to
generate a pair of containing additive and multiplicative shares of a random value.
Set 0 for additive share and 1 for multiplicative share for the parties that are not
involved in the computation. (Lines 1 - 5). In this way, we get P − 1 pairs.

2. Compute the product of values in additive shares in all pairs to generate a random
value R in A-SS (Line 6).

3. Compute the product of multiplicative shares in all pairs to generate the same
random value R in M-SS (Line 7).

Following this approach, we can generate k pairs to prepare the list AM within

the same communication round.

Generating Beaver triples in multiplicative format: FBeaverM . Each party

CPi generates two random variables Ai and Bi, and computes Ci = Ai × Bi. In this

way, Ai, Bi and Ci constitute the A, B and C in multiplicative share format. Since

C =
∏P

i=1 Ci =
∏P

i=1Ai×Bi =
∏P

i=1 Ai×
∏P

i=1Bi = A×B, the parties can generate

Beaver triples in the multiplicative format without any communication.

Converting Beaver triples in additive format: FBeaverMtoA. FElemMul converts

the Beaver triples from M-SS to A-SS using FBeaverMtoA, which internally calls FMtoA

to convert each value in the triples. To convert a value U from M-SS format ⟨⟨W ⟩⟩

to A-SS format JW K, FMtoA selects a pair (JRK, ⟨⟨R⟩⟩) from pre-computed list AM,

where R is in A-SS and M-SS format as JRK and ⟨⟨R⟩⟩, respectively. Then, each party
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Algorithm 5 Generate additive-multiplicative pair, FMsAsPair

Output: Generate additive share JRK and multiplicative share ⟨⟨R⟩⟩ of a random

value R

1: for i← 1 to P − 1 do

2: CPi and CPi+1 generates two random values Xi and Xi+1. Thus, a Ri =

Xi +Xi+1 is generated in A-SS format JRiK.

3: Two parties communicates to generate multiplicative shares ⟨⟨Ri⟩⟩ ← ⟨⟨Xi +

Xi+1⟩⟩ using [204]

4: JRiKj ← 0 and ⟨⟨Ri⟩⟩j ← 1, for j ̸= i, j ̸= (i+ 1)

5: end for

6: Compute JRK ←
∏P−1

i=1 JRiK using Beaver triples generated using [203], thereby

each party gets a additive share of R.

7: Each party p computes locally ⟨⟨R⟩⟩p ←
∏P−1

i=1 ⟨⟨Ri⟩⟩p, thereby computing the

multiplicative shares of R.

computes locally and communicates with each other to reveal the ratio (α) of W and

R. Next, each party uses α and JRK to compute the additive share of W as JW K.

To convert Beaver triples from M-SS to A-SS format FBeaverMtoA internally uses

FMtoA, which invokes the following steps to convert a value W from M-SS to A-SS

format.

1. Select a pair (JRK, ⟨⟨R⟩⟩) from AM (Algorithm 6 Line 1).

2. Apply Extended Euclidean Algorithm [205] to compute the inverse of R as ⟨⟨R−1⟩⟩
in M-SS format [206] (Algorithm 6 Line 2).

3. Each party computes locally the product of ⟨⟨W ⟩⟩ and ⟨⟨R−1⟩⟩ (Algorithm 6 Line
3) and reveals the ratio α (Algorithm 6 Line 4).

4. Each party computes JW Ki ← α × JRKi to get W in A-SS format (Algorithm 6
Line 5).

FBeaverMtoA converts each value of Beaver triple from M-SS format using FMtoA

as shown in Algorithm 7.
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Algorithm 6 Multiplicative to Additive Shares, FMtoA

Input: ⟨⟨W ⟩⟩

Output: Generate additive shares JW K

1: Pick a pair (JRK, ⟨⟨R⟩⟩) from AM computed in FMsAsPair

2: Each party p computes locally ⟨⟨R−1⟩⟩p using Extended Euclidean Algorithm,

thereby computing the multiplicative shares of R−1.

3: CPi computes ⟨⟨α⟩⟩i ← ⟨⟨W ⟩⟩i × ⟨⟨R−1⟩⟩i.

4: All parties collaboratively recover α.

5: CPi computes JW Ki ← α× JRKi

Algorithm 7 Generate Beaver Triples, FBeaverMtoA

Input:(⟨⟨A⟩⟩, ⟨⟨B⟩⟩, ⟨⟨C⟩⟩)

Output: Beaver Triples in A-SS format (JAK, JBK, JCK)

1: JAK← FMtoA(⟨⟨A⟩⟩)

2: JBK← FMtoA(⟨⟨B⟩⟩)

3: JCK← FMtoA(⟨⟨C⟩⟩)

4.5 Security and System Analysis

This section presents the security analysis, including theorem proofs, as well as the

correctness and overhead analysis of CryptGNN.

4.5.1 Correctness analysis

In CryptGNN, during the execution of secure protocols in inference, parties mask

their shares with random noise to protect the data from adversaries. The protocols

also guarantee the correctness of their results by eliminating the effect of noise. In

this section, we provide the correctness analysis of the protocols in CryptGNN.

Correctness of message-passing layer using CryptMPL. First, we

analyze the correctness of CryptMPL without data masking in a P -party SMPC

setting. As discussed in Section 4.3, to access the feature vector at the source index of
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the feature matrix, each share of the matrix is rotated
∑P

i=1 ri times, and FSR accesses

the feature vector at index
∑P

i=1(JSKi + ri) = S +
∑P

i=1 ri (equivalent to accessing

the value at index S in the original feature matrix). To update the feature at the

destination index, FSW writes the intermediate vector JYK at index 0 of the matrix

JGK, and it is rotated overall by
∑P

i=1Di = D. Thus, JYK reaches the destination

index D of JGK, while the vectors in the other indices are 0. Then, in FSA each party

updates its share of the output feature matrix A∗ with G, which is equivalent to

updating the feature vector at index D. CryptMPL executes the same operation for

all edges, completing the message passing correctly.

Next, to protect the data exchanged with other parties, each party masks the

feature matrix and intermediate results with random noise, such that the final feature

matrix equals A∗ + ξ′, where ξ′ is the error due to the added noise. As the same

operations are performed at the client side on the input noise matrices, the client can

calculate the effect of the overall noise ξ∗ = ξ′ and share it with all the SMPC parties.

Therefore, the noise can be removed to retrieve the correct feature matrix A∗.

Using batching, CryptMPL reads the feature vector at the first index of a batch,

and the feature vectors at the relative indices for the batch. Similarly, CryptMPL

updates the intermediate matrixG at the first index of a batch and the indices relative

to the first index. Since the first index of a batch can be processed correctly, reads

and writes at relative indices give the correct result.

Correctness of feature transformation layers using CryptMUL. To

compute FTLs, CryptGNN uses standard techniques as described in Section 4.1.

In CryptMUL, we propose new techniques to generate Beaver triples for secure

matrix multiplication and element-wise multiplications in additive secret-shared

format (A-SS), which are used to implement the secure versions of the FTLs. Other

operations in FTLs are straightforward and can be used without requiring any

specialized protocol. Here, we demonstrate the correctness of the Beaver triples
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generated in FMatMul and FElemMul for secure matrix multiplication and element-wise

multiplications respectively.

In FMatMul, FInitBeaver follows [203] to generate the initial Beaver triples in A-SS

format as (JAK, JBK, JCK), where A ∈ RN×K ,B ∈ RK×K′
,C ∈ RN×K′

and A⊗B =

C. Next, the parties compute the linear combinations of the rows in the matrix using

FRandComb to generate two new matrices A′ and C′, where JA′[j]K =
∑N

i=1 kji× JA[i]K

and JC′[j]K =
∑N

i=1 kji × JC[i]K for i ∈ [1, N ], j ∈ [1, N ]. The random real values kji

are generated by a pseudo-random function (PRF). Since, B is fixed, modifying A

to A′ and C to C′ using the same linear combination maintains the correctness for

(A′,B,C′).

In FElemMul, FMsAsPair follows [204] to compute the A-SS and M-SS of a random

value Ri for two parties. For other parties, we consider the share of JRiK = 0 and

⟨⟨Ri⟩⟩ = 1, thus the Ri is correct in A-SS and M-SS format for P parties. Following

this approach, we generate P − 1 random values Ri, i ∈ [1, P − 1] in A-SS and

M-SS format. Finally, FMsAsPair takes the products of JRiK =
∏P−1

i=1 JRiK using the

pre-computed Beaver triples (generated using [203]) to compute R in A-SS format.

It also calculates the products of ⟨⟨Ri⟩⟩ =
∏P−1

i=1 ⟨⟨Ri⟩⟩ to get the multiplicative share

of ⟨⟨R⟩⟩. Thus, FMsAsPair gets a random value R which is correct in both A-SS and

M-SS format. For each element-wise multiplication operation, FMsAsPair generates

three random values RA, RB, RC in A-SS and M-SS format following this approach.

As part of FElemMul, FBeaverM generates a Beaver triple (A,B,C) in M-SS

format. Each party CPp generates random values ⟨⟨A⟩⟩p and ⟨⟨B⟩⟩p, and computes

⟨⟨C⟩⟩p = ⟨⟨A⟩⟩p × ⟨⟨B⟩⟩p. In this way, we get the correct Beaver triples in the M-

SS format as (⟨⟨A⟩⟩, ⟨⟨B⟩⟩, ⟨⟨C⟩⟩), since ⟨⟨C⟩⟩ =
∏P

i=1⟨⟨C⟩⟩i =
∏P

i=1⟨⟨A⟩⟩i × ⟨⟨B⟩⟩i =∏P
i=1⟨⟨A⟩⟩i ×

∏P
i=1⟨⟨B⟩⟩i = ⟨⟨A⟩⟩ × ⟨⟨B⟩⟩.

Finally, FBeaverMtoA converts each element of (⟨⟨A⟩⟩, ⟨⟨B⟩⟩, ⟨⟨C⟩⟩) to A-SS format

(JAK, JBK, JCK) using the RA, RB, RC in A-SS and M-SS format following the
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approach in STR [207], which is proved to be correct. Thus, FElemMul gets a correct

Beaver triple as the required format (JAK, JBK, JCK), which can be used for the secure

element-wise multiplication operation.

4.5.2 Security analysis

This section proves the protocol security throughout the execution of CryptGNN,

which preserve the privacy of the client’s (DO’s) input graph and the model owner’s

(MO’s) model parameters against the threat model TM . CryptGNN follows the

standard A-SS approach to store model parameters and uploads graph data to the

computing parties. Thus, data at rest (model parameters, feature matrix, source

and destination index of each edge) are information-theoretically secure [195] against

adversaries following Axiom 1.

Axiom 1. A value x is information-theoretically secure in A-SS format even if

P − 1 out of P parties collude.

To provide the security analysis in a structured way, we consider three different

cases within the threat model TM , (a) TMP : At most P − 1 parties may collude

to learn DO’s input graph data or MO’s GNN model parameters (but they do not

collude with DOs or MO), (b) TMM : The colluding parties in TMP may collude with

MO to gain access to DO’s private graph data, (c) TMD: The colluding parties in

TMP may collude with a data owner DOfake to learn MO’s GNN model parameters

or the input graph the other DOs. To prove the security of our protocols against

TMP , TMM and TMD, we adopt the following security definitions [208]:

Definition 1. Let parties CP1, · · · , CPP engage in a protocol π that computes

function F(in1, · · · , inP ) = (out1, · · · , outP ), where ini and outi denote the input

and output of party CPi, respectively. Let, V IEWπ(CPi) denote the view of

participant CPi during the execution of protocol π. More precisely, CPi’s view is

formed by its input, internal random coin tosses ri, pseudo-random values pri, as
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well as messages m1, · · · ,mk passed between the parties during protocol execution:

V IEWπ(CPi) = (ini, ri, pri,m1, · · · ,mk). Let I denote a subset of at most P − 1

parties that collude in our threat model TMP . V IEWπ(I) denote the combined view

of participants in I during the execution of protocol π (i.e., the union of the views

of the parties in I), and FI(in1, · · · , inP ) denote the projection of F(in1, · · · , inP )

on the coordinates in I (i.e., FI(in1, · · · , inP ) consists of the output of function

F of the colluding parties). We say that the protocol π is secure against TMP

if for each coalition of size at most P − 1 there exist a probabilistic polynomial

time (PPT) simulator SI such that {SI(inI ,FI(in1, · · · , inP )),F(in1, · · · , inP )} ≡

{V IEWπ(I), (out1, · · · , outP )}, where inI =
⋃

CPi∈I ini and ≡ denotes computational

or statistical indistinguishability..

Definition 2. In the case of TMM , we consider the model parameters Θ

are also known to the colluding parties I, and the protocol π is secure against

TMM if there exists a probabilistic polynomial time (PPT) simulator SI such that

{SI(inI ,Θ,FI(in1, · · · , inP )),F(in1, · · · , inP )} ≡ {V IEWπ(I), (out1, · · · , outP )}, where

inI =
⋃

CPi∈I ini.

Definition 3. In the case of TMD, a data owner DOfake’s private input

(Xf ,Sf ,Df , ξf ) is known to the colluding parties, and the protocol π is secure against

TMD, if there exists a probabilistic polynomial time (PPT) simulator SI such that

{SI(inI ,Xf ,Sf ,Df , ξf ,FI(in1, · · · , inP )),F(in1, · · · , inP )} ≡ {V IEWπ(I), (out1, · · · , outP )},

where inI =
⋃

CPi∈I ini.

The following theorems ensure protocol security throughout the execution of

CryptGNN.

Theorem 1. The node features are protected against TM in CryptMPL.

Proof. To execute the message-passing, CryptMPL executes secure read, write

and aggregation protocols for each edge of the input graph data stored in A-SS format
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as (JXK, JSK, JDK). To prove this theorem we consider that the simulator SCryptMPL

calls the simulators SSR, SSW and SSA of FSR, FSW and FSA respectively.

In the secure read protocol with data masking FSR, each party CPi exchanges

the share of feature matrix JAKi with other parties. We consider the case where the

parties do not rotate the feature matrix to prove this theorem. In this case, a party

has all the shares of the feature matrix and can reconstruct the original feature matrix

by taking the sum of the shares as, A =
P∑

p=1

JAKp. To protect the feature matrix, each

party CPi masks data with noise matrix ξi and shares JAξKi = JAKi + ξi with other

parties.

As in Definition 1, I denotes the set of at most P − 1 parties that collude in

our threat models. We build a simulator SSR, which simulates the view of parties in

I. In the simulated view, SSR can compute Aξ =
P∑

p=1

JAξKp =
P∑

p=1

JAKp +
P∑

p=1

ξp, as it

has all the masked shares JAξKi for i ∈ [1, · · · , P ]. However, Aξ is uniformly random

in I’s View, since there is at least one mask matrix ξi (from the non-colluding party)

which is unknown to I. Therefore the distribution over the real Aξ received by the

colluding parties and over the simulated Aξ generated by the simulator is identically

distributed.

Similarly, during the secure write operation, the share of the temporary matrix

JGKi from each party i is masked with a mask matrix. In the simulated view of

FSW , I can compute Gξ =
P∑

p=1

JGξKp =
P∑

p=1

JGKp +
P∑

p=1

ξp, which is uniformly random

in I’s View, since there is at least one mask matrix ξi (from non-colluding party)

which is unknown to I. Therefore the distribution over the real Gξ received by the

colluding parties and over the simulated Gξ generated by the simulator is identically

distributed.

The secure aggregation operation FSA does not require exchanging data with

other parties, as the addition operations on additive secret-shared data can be

executed locally. Since the views produced by the simulator SCryptMPL in the read
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and write protocols are indistinguishable from the parties’ views in the real protocol

execution, the views remain indistinguishable after the simulation of SSA, which

proves that the input and output node features of CryptMPL are secure against

TMP , while processing an edge. CryptMPL follows the same procedure to process all

the edges. Since the collective view of the protocol execution while processing each

edge is computationally indistinguishable from a simulated view, the node features

are protected in FCryptMPL. Finally, each party locally subtracts the noise from their

share of the result. Since no data is exchanged in this step, the node features remain

protected. Processing multiple edges in a batch has no additional impact on the node

features, ensuring their security during batching.

The node features are also protected against TMM , since the model parameters

Θ are not involved in any step of FCryptMPL. In the case of TMD, the input of the data

ownerDOfake is known to the colluding parties I. However, since each client generates

its own mask matrix, knowing the DOfake’s data does not reveal other client’s private

input. Thus, for each client, the views of I produced by the simulator SCryptMPL

remain indistinguishable from the parties’ views in the real protocol execution, which

proves that the input and output node features of CryptMPL are secure against TMD.

Since, the node features are secured against TMP , TMM , and TMD, thereby

protected against the threat model TM .

Theorem 2. The graph structure is secured against TM in CryptMPL.

Proof. To prove this theorem, first, we analyze the protocols followed to process

an edge in CryptMPL. During the read operation, each party CPi shifts the share of

the source node index JSKi by a random amount ri. Thus, the simulator SSR of FSR

gets an aggregated value as S ′ =
P∑

p=1

JSKp +
P∑

p=1

rp. Since at least one ri from the i-th

party is unknown to the view of SSR, the source index is uniformly random in the I’s

view. The destination index for an edge is also protected in the view of the simulator

SSW of FSW , since the parties use the share of the destination index to rotate the
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intermediate matrix locally and do not share the destination index during the write

operation.

Since both source and destination indices are protected, if the colluding parties

I try to estimate the source-destination pair, the probability of correct estimation is

1
N×(N−1)

, where N is the number of nodes in the graph. Processing multiple edges

in CryptMPL does not reveal additional information. Since CryptMPL rotates the

matrices by different amounts and uses different noise matrices for each edge, an

adversary can not learn anything from the access pattern. Similar to processing an

edge in each round, the probability of correct estimation of source-destination pairs

is 1
N×(N−1)

for a batch in case of batch processing. Thus, to process all edges in R

batches in CryptMPL, the probability of correct reconstruction of graph structure is

N−2R. Therefore, increasing the number of batches ensures stronger security against

TMP .

Similar to the logic described in Theorem 1, the graph structure is also protected

against TMM and TMD, thereby it is protected against TM .

Lemma 1. Let A and B be two secrets encrypted using A-SS in a P -party

SMPC setting, represented as JAK and JBK, respectively. Let the linear combination

of JAK and JBK be JCK = a · JAK + b · JBK, where a and b are public coefficients. The

shares of C preserve the information-theoretic security of the original secrets against

TM .

Proof. We analyze the combined view of the participants in I as defined in

Defintion 1. We build a simulator SLC , which simulates the view of parties in I. In

the simulated view, SLC can compute C = a ·
∑P

i=1JAK + b ·
∑P

i=1JBK. However,

since at least one share of A and B is unknown to I, the distribution over the real C

received by the colluding parties and the simulated C generated by the simulator is

identically distributed.
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Theorem 3. DO’s input graph and MO’s model parameters are secured in

CryptGNN against TM .

Proof. Considering the scenario where each client may upload data for

numerous inference requests, to prove the security of DO’s input graph and MO’s

model parameters in CryptGNN, we demonstrate that the protocols employed to

generate a fresh set of Beaver triples for matrix multiplication (FMatMul) and

element-wise multiplication (FElemMul) operations in FTLs are secure.

FMatMul is secure against TM . To prove FMatMul is secure, we consider a

simulator SMatMul that uses the simulators SInitBeaver and SRandComb of FInitBeaver

and FRandComb respectively.

In SMatMul, SInitBeaver generates the initial Beaver triples. We refer to [203] for

the security proof that shows FInitBeaver is secure against TMP . Each element of the

generated triple, A, B, and C is secure in additive secret-shared format according to

Axiom 1.

To compute JXK ⊗ JYK, SRandComb modifies A and C using the same linear

combination of the rows (Step 2 in Subsection 4.4.1). Although, the combination

of the rows used to generate A′ and C′ is known to the view of SRandComb, since the

elements in each row involved in the computation are in the secret-shared domain,

A′ and C′ remain secure against the threat models (as shown in Lemma 1).

Following Step 3 of FMatMul, the matrices U = X − A′ and V = Y − B

are revealed to SMatMul. Since, A′ and B are unknown to the simulator SMatMul,

the distribution over elements in the private inputs X and Y remain identically

distributed. FMatMul uses a newly generated matrix A′ for each inference request.

Therefore, revealing U will not reveal the relative changes in the private input A in

two different requests.

Finally, U and V are used to compute JZK = JXK⊗JYK, which does not involve

any data sharing between the computing parties. Therefore, the simulated view is
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identical to the real view of I. This proves that FMatMul is secure against the threat

model TMP .

In the case of TMM , the model parameters Θ are known, which means the input

Y of the matrix multiplication in the linear layer is known to I. Using V and Y,

the I can learn B. However, since A′ and C′ are protected, the distribution over

the private input X and the output Z received by I and over the simulated matrices

generated by the simulator are identically distributed.

In the threat model TMD, using DOfake’s private input, the colluding parties

I can learn X and consequently A′ from U in the inference requests from that data

owner. However, B and C′ are still protected, and the distribution over a linear

layer’s private input (model parameter) Y and the output Z received by I and over

the simulated matrices generated by the simulator are identically distributed. Since,

FInitBeaver generates a fresh set of Beaver triples for each client, learning A′ using

DOfake’s input by I does not help to learn other DO’s private input. Thus, FMatMul

is secure against TMD.

FElemMul is secure against TM . At the pre-processing stage, FElemMul generates

additive and multiplicative shares of random values for two parties using oblivious

transfer. We refer to [204] for the proof of this step. In FMsAsPair, the parties

CPi and CPi+1 for i ∈ [1, · · · , P − 1] generate P − 1 numbers of Ri values. Then

the additive share JRiK are multiplied using Beaver triples generated using secure

protocol used in Mascot [203]. The multiplicative shares ⟨⟨Ri⟩⟩ are used locally to

compute the multiplicative shares of R. Since at least one Ri value is unknown to I,

the distribution over the real pair (JRK, ⟨⟨R⟩⟩) received by I and over the simulated

(JRK, ⟨⟨R⟩⟩) generated by the simulator is identically distributed.

The simulator SBeaverM of FBeaverM generates the Beaver triples in multi-

plicative format, which does not require any communication among the parties. Since

the parties in I do not receive any data from other parties, the simulated view is
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identical to the real view. To covert multiplicative shares to additive shares, the

simulator SBeaverMtoA of FBeaverMtoA uses the additive-multiplicative pairs generated

in FMsAsPair. We refer to the proof of protocol SecMulResh described in STR [207]

to prove that FBeaverMtoA is secure against TMP . Thus, FElemMul is secure, since its

sub-protocols are proven to be secure.

To compute the element-wise multiplication in different layers of GNN, we pre-

compute the required amount of additive-multiplicative pairs in FMsAsPair. For each

inference request, FBeaverM generates a fresh Beaver triple in multiplicative format

and FBeaverMtoA uses a different pair from FMsAsPair to compute an element-wise

multiplication. Thus, the ratio α recovered in FBeaverMtoA does not reveal any relative

value for two different inference requests.

In the case of TMM , the simulator may learn B in the Beaver triple from V ,

if the model parameter is used as Y in the multiplication step and it is known to

I. However, the elements A and C are still protected, which are related to the DO’s

private input and the result of the multiplication. Therefore, the DO’s private input

and the private output are secure against TMM .

In the threat model TMD, using DOfake’s private input, the colluding parties

I can learn A of the Beaver triple, but the model parameters and the final result

are protected since B and C are unknown. Furthermore, the other DO’s data is also

protected, since we generate a new set of (additive-multiplicative) shares for each

client, which are used to generate the Beaver triples.

4.5.3 Overhead analysis

Overhead analysis of CryptMPL. In this part, we present the overhead analysis

of CryptMPL in terms of: (i) the number of nodes in the graph, N , (ii) the number of

edges M , (iii) the number of features of each node K, (iv) the number of computing

parties P , and (v) the number of batches R to process M edges.
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Table 4.1 Performance Comparison of Secure Message-passing

CryptMPL AdjacencyMatrix

Computation Cost (Client) O(N ×K × P 2 ×R) O(N2 ×K)

Computation Cost (Each party) O(N ×K × P ×R) O(N2 ×K)

Communication Cost (Client to each CP) (N ×K +M × 2 + P )× L (N2 + 2×N ×K)× L

Communication Cost (Each CP to others) (N ×K ×R +M)× P × L (N2 + 2×N ×K)× P × L

If we consider both the graph data and the model in plain text, the message

passing layer of GNN can be computed by processing the edges as shown in Equation

(4.1). If the in-degree of a i-th node is di, then there are
∑n

i=1 di = M additions

of two vectors of size (1, K) in total. However, this approach is not secure, as both

model and graph data are revealed to the computing party.

CryptMPL preserves data privacy, with overhead in terms of computation and

communication among servers. It also introduces overhead on the client side, as

the client computes a noise matrix at the pre-processing stage and uploads the

noise-matrix along with the graph data. The computation cost at the client side

is proportional to the size of feature matrix (N ×K), the number of batches (R), and

the number of the computing parties (P 2), since it requires to compute the effect of

noise added by each party on its own data and on the data of the other parties. To

protect the feature matrix and graph structure, CryptMPL adds noise and rotates

matrices by a random amount. Overall, there are 2 × P × R numbers of rotations

and (P + 1) × R + 1 numbers of addition of matrices of size (N,K) by each server.

Similar to plain text, each party needs to add two (1, K) sized vectors M times. So,

the computation overhead with respect to the plain text version is O(N×K×P ×R).

These computations can be done in a multi-threaded way (or transferred to GPU) to

make them faster. Additionally, each server sends N ×K × P × 2×R +M number

of L = 64-bit values to other servers in total. To process the batches, CryptMPL

transfers all the bits in one round, reducing the propagation and queuing delay [209].
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CryptMPL has significantly less overhead than MPL using an adjacency matrix,

which requires multiplying two matrices of size (N,N) and (N,K). In the adjacency

matrix-based approach, either the client or the trusted server needs to distribute

three matrices A ∈ RN×K ,B ∈ RN×N ,C ∈ RN×K as the Beaver triples to P parties

to support secure multiplication in secret-shared domain following [128].

We summarize the computation and communication cost at the client and server

side for different approaches in Table 4.1. Here, L is the number of bits required to

represent each value.

Overhead analysis of CryptMUL. In this part, we present the overhead

analysis of the sub-protocols of CryptMUL for one multiplication operation during

the inference. We compare the overhead with a trusted server-based approach from

CrypTen [11].

The protocol stack of CryptMUL’s secure matrix multiplication FMatMul is

shown in Figure 4.8. In FMatMul, to compute JZK = JXK ⊗ JYK, X ∈ RN×K ,Y ∈

RK×K ,Z ∈ RN×K′
during inference, the parties compute locally to generate a new

Beaver Triple from the pre-computed Beaver triple. The computation cost in this

process is O(N2 × (K + K ′)). This process does not require any communication

among the computing parties, while [11] requires one round of communication between

the computing parties and the trusted server to get a new Beaver triple. The cost

associated with computing matrix-multiplication using the Beaver triple is the same

(one round of communication and local computation) in both [11] and FMatMul.

Thus, the overall cost of matrix-multiplication using CryptMUL is lower compared

to [11], since the communication overhead is reduced through the local computation

in FMatMul.

Figure 4.9 shows the protocol stack for CryptMUL’s secure element-wise

multiplication protocol FElemMul. To compute JZK = JXK × JY K, FElemMul requires

each party to generate a random Beaver triple (JAK, JBK, JCK). The computation
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Figure 4.9 Secure element-wise multiplication protocol.

cost of this step is constant O(1). Then, one round of communication among the

computing parties is required to convert Beaver triple from multiplicative format

to additive format. CrypTen [11] also requires a round of communication between

the parties and the trusted server to get the Beaver triple. The cost associated

with computing element-wise multiplication using the Beaver triple is the same (one

round of communication and local computation) in both CrypTen [11] and FElemMul.

Therefore, the overhead of both CryptMUL and CrypTen is of the same order.

4.6 Evaluation

We implement a CryptGNN prototype in Python and conduct experiments to

compare its performance with baselines. To create arithmetic shares of the private

data and to implement FTLs, we use CrypTen [11]. In CryptGNN, the model owner

does not require any preprocessing, except for encrypting the model parameters in

A-SS format, which is a one-time process. We implement CryptMPL with client-side

data preprocessing and server-side batching. Additionally, we develop CryptMUL

protocols for secure matrix multiplication and element-wise multiplication. To avoid

using a trusted party, we replace the multiplication operations in the FTLs of CrypTen

using our CryptMUL. We use L = 64 bits to represent the values in A-SS format.

We perform the experiments on a 3.4GHz Intel Core i7, with the parties running in
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Table 4.2 Graph Dataset Statistics

Dataset #Graphs #Nodes #Edges #Features #Classes

ENZYMES 600 32.6 124.3 3 6

PROTEINS 1,113 39.1 145.6 3 2

Cora - 2,708 10,556 1,433 7

CiteSeer - 3,327 9,104 3,703 6

PPI 20 2,245.3 61,318.4 50 121

FAUST 100 6,890 41,328 3 10

separate processes. We also use AWS instances to evaluate CryptGNN in a realistic

distributed cloud setting. We conduct each experiment 30 times and report the

average execution time.

Graph datasets. Table 4.2 summarizes the statistics of the graph datasets we

use in our experiments. To evaluate the performance of the CryptGNN system for the

graph classification task, we use three benchmark datasets: TUDataset (ENZYMES),

TUDataset (PROTEINS) [210], and FAUST [211]. Among these three datasets, the

FAUST dataset has the largest graphs with 6,890 nodes and 41,328 edges. To assess

the performance of the secure message-passing layer CryptMPL, we employed three

additional datasets: Cora, CiteSeer [212], and PPI [213]. These benchmark datasets

are typically well-suited for node classification tasks and have a substantial number

of nodes, edges, and features. We use these datasets to assess the performance of

our secure message-passing layer on large graphs. We also generate synthetic data to

systematically observe the effects of different parameters.

Network architecture. Figure 4.10 shows the architecture of the GIN [40]

model we use to evaluate the performance of secure graph classification tasks. The

network comprises three message-passing layers stacked one after another. The

outputs of the three layers are concatenated and passed through a linear layer with the

ReLU activation function. Finally, another linear layer with the Softmax activation
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function predicts the probability of each class for the sample input graph. A dropout

layer is used in training, which does not have any effect during inference. The model is

trained in private infrastructure and the parameters for linear and batch normalization

layers are stored in the cloud in secret-shared format.

4.6.1 Overall CryptGNN performance

We use FAUST, PROTEINS, and ENZYMES datasets. For each dataset, 70% of the

graphs are used for training the GIN model; the remaining graphs are considered as

the client’s private input graphs. In all experiments, we set the batch size to a value

that allows us to process all edges in 20 batches, and process all the batches in a

single round as described in Subsection 4.3.4.

CryptGNN vs. plain-text performance. We train three GIN models on the

three benchmark datasets, and then compare the results of the plain-text versions of

the models with the CryptGNN versions. The plain-text version utilizes PyTorch

APIs to compute the GNN layers. In CryptGNN, we leverage CrypTen’s API,

which uses numerical approximations to compute non-linear functions. The necessary

multiplication operations are performed using CryptMUL. The fixed-point encoding

to represent floating-point values and the approximation techinques may introduce

some precision errors in intermediate results. For instance, in a graph with 2000 nodes

and 10 features, we observed that the mean difference between the values in plaintext
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Figure 4.11 Execution time ratio of CrypTen over CryptGNN for GIN, while
varying the number of parties.

and the secret-shared domain is 5.1× 10−5. This error is acceptable for deep learning

tasks. Since our focus is on predicting the classification IDs rather than obtaining

the exact float values, the final result remains unaffected. We achieve the same

inference accuracy results for each pair of models (i.e., plain-text vs. CryptGNN).

This demonstrates that CryptGNN works correctly from a machine learning point of

view.

Efficiency. We compare the performance of CryptGNN with an implementation of

the GIN model using CrypTen [11]. For CryptGNN, we measure execution time at the

server after the data is uploaded by the client. The execution time does not include

the server side preprocessing required in CryptMUL, since it is a one time process

for each client that generates the initial Beaver Triples. To execute the operations

required for GNN inference for the Baseline, we use CrypTen’s functions for FTLs and

implement an adjacency-matrix based implementation for MPL. Unlike CryptGNN,

CrypTen uses a trusted server.

Figure 4.11 shows that CryptGNN is significantly faster than CrypTen,

particularly for large-scale graphs in FAUST. This is due to CrypTen incurring higher

computation overhead in MPLs and FTLs, and this overhead increases with the

number of nodes and features in the graph. As the figure shows, the execution

time ratio between CrypTen and CryptGNN also increases with the number of
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parties, since CrypTen requires the parties to communicate with the trusted server for

many operations. In terms of absolute inference time, the models using CryptGNN

work well in practice. For instance, on the FAUST dataset with 6890 nodes and

41328 edges, the CryptGNN model achieved an average inference time of 22.3s in

a three-party setting. Furthermore, in order to evaluate scalability, we employed

a synthetic graph dataset with an average of 20,000 nodes and 200,000 edges.

CryptGNN’s average inference time for the graphs in this dataset is approximately

75s. These results show that CryptGNN can work efficiently in practical situations

where security matters more than inference latency, such as in drug discovery and

automated code analysis. Further reduction in inference latency can be achieved on

powerful servers, instead of a laptop as in our experiments.

To evaluate CryptGNN considering network delay and bandwidth restrictions,

we performed an experiment, where we used three AWS instances (t2.micro, us-east-1

region) as the computing parties. For the graphs in TUDataset, CryptGNN takes

around 2.3 seconds to obtain the inference results for each graph. This indicates that

network latency has minimal impact on the overall inference time.

In CryptGNN, the offline pre-processing time on the client side is low compared

to the overall execution time. For a benchmark dataset (TUDataset), it takes around

0.1s, with the ratio of offline/online overhead being approximately 1:25.

To evaluate the communication overhead during the online phase, we use two

datasets: TUDataset, which consists of smaller graphs with an average of 36 nodes,

and a synthetic dataset with larger graphs averaging 20,000 nodes. For both datasets,

we measure the communication overhead for each inference request using a trained

GIN model with parameters encrypted in a three-party SMPC setting. We report

the number of communication rounds, the size of the data (in MB) uploaded by the

client, and the total amount of data (in MB) communicated per party using the
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Table 4.3 Communication Performance

TUDataset Synthetic Dataset

CryptGNN CrypTen CryptGNN CrypTen

Client Comm. (MB) 0.1 0.4 12 3050

Trusted Server Comm. (MB) - 0.4 - 3050

Each Party Comm. (MB) 1.24 1.31 81.9 6103

Number of Comm. Rounds 120 128 122 130

CryptGNN protocols. Additionally, we compare the communication overhead with

CrypTen, which also requires a trusted party during the online phase.

As shown in Table 4.3, CryptGNN achieves significantly lower communication

overhead compared to CrypTen on larger datasets. It requires fewer communication

rounds and transfers 74 times less data. The high overhead in CrypTen arises

from its adjacency matrix-based implementation, which necessitates large matrix

multiplications. Additionally, the client uploads substantially less data since there

is no need to upload a large adjacency matrix. On smaller datasets, CryptGNN still

outperforms CrypTen, reducing communication overhead by 5%, while being more

secure. For both datasets, the majority of data is transferred in the message-passing

layer, which CryptGNN optimizes using CryptMPL protocols. Furthermore, the

majority of communication rounds occur in the non-linear layers due to the

element-wise multiplications needed for the numerical approximation of non-linear

functions, which can be further optimized through parallelized computations.

4.6.2 CryptMPL results

Overhead. We generate graphs with the numbers of nodes N ranging from 20 to

2000. The average degree Davg is varied from one to max(100, (N − 1)/2), having a

total number of edges M = N ×Davg. We choose a batch size ceil(M/20) to process

the edges in 20 batches. Figure 4.12(a) shows the ratio of the execution time of
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Figure 4.12 Comparison of CryptMPL with existing techniques: (a) plain text
(b) SecGNN.

CryptMPL and the non-secure MPL for different graphs. The results demonstrate

that CryptMPL performs efficiently for medium and large-scale graphs, which are

the types of graphs encountered in real-life scenarios. As the plain text computation

has a linear relation with the number of edges M , the ratio of the execution times

decreases as M increases. Despite the high overhead for small graphs, the execution

time remains low (e.g., 190ms) and does not have a major impact on the inference

latency.

Comparison with SecGNN. This experiment compares the efficiency of CryptMPL

with that of SecGNN (see Section 2.3). We measure the ratio of execution time of the

MPL between SecGNN and CryptMPL for graphs with N = 2000 nodes and K = 10

features, while varying the node degrees. Figure 4.12(b) shows that CryptMPL is

about 1.5× faster than SecGNN. Moreover, the execution time ratio increases linearly

as Dmax/Davg increases, where Dmax and Davg are the maximum and average node

degree in the graph, respectively. This demonstrates that CryptMPL works better

for real-life graphs, as Dmax is usually much higher compared to Davg. In addition,

CryptMPL provides better security than SecGNN, as it works with more than two

parties and does not require a trusted party.
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Figure 4.13 Effect of (a) number of parties and (b) batch size on CryptMPL
(Y-axis is log scaled).

Comparison with adjacency matrix-based MPL. We compare the execution

time of CryptMPL with a hypothetical solution based on representing the graph as

an adjacency matrix. The experiment uses a PPI dataset and varies the number of

parties. Figure 4.13(a) shows CryptMPL is 25 times faster compared to the adjacency

matrix solution when using six parties. This demonstrates that CryptMPL’s choice

of graph representation and its novel SMPC techniques to compute MPL lead to large

performance improvements.

Effect of batching. We use three datasets (Cora, CiteSeer, PPI) in a three-party

SMPC setting. Figure 4.13(b) shows that the execution time of CryptMPL decreases

as the batch size increases, since CryptMPL requires a low number of rounds R =

⌈M/B⌉ to process the edges, where M and B are the number of edges and the size of

each batch, respectively. However, as discussed in Section 4.5, the security guarantees

improve exponentially with R and CryptMPL can use a relatively large batch size

while still guaranteeing a good level of security.

Scalability test on synthetic data. To evaluate CryptMPL with respect

to graph parameters, we use synthetic data and compare the performance with

adjacency-matrix based implementation using CrypTen. In each experiment, we vary
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one parameter. Unless otherwise stated, we use three parties in these experiments

and the synthetic graph has N = 2000 nodes, K = 10 features, Davg = 5 edges per

node.

Effect of the number of nodes. We compare the execution time of CryptMPL with

the Baseline using synthetic graphs with different numbers of nodes. Figure 4.14(a)

shows the execution times at the client and server are not affected much in CryptMPL.

The results show that CryptMPL has superior performance compared to the Baseline

for medium and large-scale graphs with many nodes. The reason is that the Baseline

approach needs to manage a large adjacency matrix of size (N,N) and performs large

matrix multiplications.

Effect of the number of features. We use synthetic graphs with different numbers of

features and compare the execution time of CryptMPL with the Baseline. Figure

4.14(b) shows that CryptMPL performs significantly better than the Baseline.

Although the size of the adjacency matrix in the Baseline does not change, increasing

the number of features increases the number of multiplication operations, which in

turn increases the execution time at a higher rate compared to CryptMPL as shown

in Figure 4.14(b). As N , P and M are constant, the number of addition and rotation

operations remain constant for CryptMPL. However, its execution time increases

slightly with K, as addition is now executed on larger matrices.

Effect of the number of edges. Figure 4.14(c) shows the execution time of CryptMPL

and the Baseline, when we vary the number of edges. The results show the execution

time increases slightly in the case of CryptMPL, while the rate of change is low

compared to the Baseline. For the Baseline, the computation and the communication

costs remain the same at the server side, as the size of matrices is the same. However,

the computation cost at the client side increases to create the adjacency matrix from

the list of edges. Increasing the number of edges in a graph increases the computation

cost on the client side for CryptMPL, as it needs to process more edges on the noise
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matrix to compute the overall effect of noise. Similarly, the server needs to do more

computation to execute the MPL on the masked feature matrix.
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Figure 4.14 Effect of different parameters of graph data (Y-axis is log-scaled).

4.6.3 CryptMUL results

We use CryptMUL to design linear and non-linear layers that work for any number

of parties. In this section, we use synthetic data to evaluate the performance of some

of these layers and compare the performance with similar layers implemented using

CrypTen [11].

Linear layers using CryptMUL. In this experiment, we evaluate the performance

of a linear layer that computes JZK = JXK ⊗ JYK + JBK, where X ∈ RN×K ,Y ∈

RK×K′
,B ∈ RN×K′

. The linear layer transforms the number of features from K to K ′

for the same number of nodes N . To see the effect of different parameters of the data,

we generate synthetic matrices and vary N ∈ [1000, 2000, 5000] and K ′ ∈ [16, 32, 64].

We setK = 3 in this experiment. We measure the ratio of the execution time between

linear layers using CrypTen and CryptMUL by varying the number of parties P ∈

[3, 4, 5]. Our results demonstrate that the linear layer implemented with CryptMUL

outperforms its counterpart using CrypTen. As illustrated in Figure 4.15, the ratio of

execution time between CrypTen and CryptMUL exhibits an increasing trend with P ,

since the communication overhead in CrypTen increases with the number of parties

involved. Moreover, this execution ratio also rises in relation toN andK ′, since higher
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Figure 4.15 Ratio of execution time of a linear layer between CrypTen and
CryptMUL: (a) by varying N and P (b) by varying K ′ and P .

values of these parameters increase the computation overhead at the trusted server

and the communication between the parties with the trusted server. The increase in

N or K ′ raises the computational cost in CryptMUL as well. However, it is worth

noting that the addition operations involved in CryptMUL can be parallelized and

are generally faster than the matrix-multiplication operations.

Non-linear layers using CryptMUL. In this experiment, we compare the

execution time of the Sigmoid function, which requires secure multiplications, between

the implementations using CrypTen and CryptMUL’s protocol FElemMul. We

generate a list of 1000 random values X and measure the overall execution time to

compute JZK = Sigmoid(JXK) for a different number of parties. We observe that the

execution time of CrypTen and CryptMUL is almost the same, since both approaches

have similar computation and communication costs. However, the protocol using

CryptMUL is more secure since it does not require a trusted server as CrypTen.

4.7 Chapter Summary

This chapter presents the system design, analysis, and evaluation of CryptGNN,

a provably secure and effective inference system for GNN in MLaaS scenarios.

CryptGNN has two main protocols, CryptMPL and CryptMUL, to support secure
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MPLs and FTLs in GNN. These novel SMPC protocols preserve the privacy of the

model parameters and input graph data while providing the same results as the

non-secure inference version. CryptGNN works with an arbitrary number of SMPC

parties, and it protects the input data, the intermediate results, and the output, even

if P − 1 out of P parties collude. The experimental results demonstrate CryptGNN’s

correctness and low overhead compared to state-of-the-art approaches.
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CHAPTER 5

GOPLACES: AN APP FOR PERSONALIZED INDOOR PLACE
PREDICTION

This chapter presents the design and evaluation of an indoor place prediction smart

phone app GoPlaces. Compared with existing indoor localization systems, GoPlaces

does not require any infrastructure, except for one cheap off-the-shelf WiFi access

point that supports ranging with RTT. In addition, it enables personalized place

naming and prediction through its on-the-phone data collection and protects users’

location privacy because user’s data never leaves the phone. In this chapter,

Section 5.1 presents the overview of GoPlaces and the problem it attempts to solve.

Section 5.2 describes the system architecture of GoPlaces, and Section 5.3 discusses

several optimizations in the training procedure. Section 5.4 discusses the experimental

results obtained from the prototype implementation. The chapter is summarized in

Section 5.5.

5.1 Problem Definition

Our primary objective is to design a mobile app that predicts the place where a user

may go in an indoor space, using only one WiFi-RTT AP as infrastructure. Next,

we define the concepts required to describe the workflow of GoPlaces and provide a

definition for the place prediction task.

5.1.1 Data block

GoPlaces collects user’s movement data from phone sensors and WiFi-RTT protocol.

Data is collected periodically and stored as a list of data blocks, where a block is

represented as db = (ts, wd, wrtt). Here ts is the timestamp when db is collected, wd

corresponds to the walking direction of the user (in degrees), which is calculated by
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fusing data from the accelerometer and magnetometer, and wrtt is the WiFi-RTT

distance in millimeters from the AP to the user’s position.

5.1.2 Trajectory and segment

When the user walks between two places, GoPlaces collects raw sensor data along the

walking trajectory. A trajectory is an ordered sequence of data blocks, trData =

{dbi}si=1, where s is the number of samples and depends on the travel duration

along the path and the sampling rate. GoPlaces divides each trajectory into shorter

segments for the following reasons: (i) it is easier to classify accurately short segments

than whole trajectories, which ultimately improves prediction accuracy; (ii) the

inference latency is reduced, as segments can be classified as soon as their data

is collected; (iii) it enables inference based on sub-trajectories, as users may start

walking from any position of a trajectory used in training.

To create the segments, GoPlaces analyzes the direction values in the data

blocks of the trajectory, and determines the change-of-direction events during walking.

A segment contains the data between two change-of-direction events, and it is

represented as sg = (trID, dbS, dbE), where trID is the ID of the trajectory, and

dbS and dbE are start and end indexes of the data blocks for that segment. Thus,

each trajectory is represented as a sequence of segments, tr = {sgi}pi=1, where p is

the number of segments that form the trajectory.

5.1.3 Semantic place

Users can define indoor places and label them with semantic names, as each user may

have different places/trajectories in a shared indoor space. These semantic places (SP)

can be in the same room or in different rooms of an indoor space, as long as they are

separated by a minimum distance derived from the measurement accuracy of WiFi-

RTT [175]. The size of the place is also determined by this accuracy (i.e., 1.5m×1.5m

in our experiments). GoPlaces maintains a list of places and assigns a unique ID to
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Figure 5.1 Trajectories and data blocks among four semantic places (SP).

each place. During the training phase, it records the trajectory data trData from

one place to another. This data is represented as spTM = (sSpID, eSpID, trID),

where sSpID is the ID of the start place and eSpID is the ID of the end place of the

trajectory.

After data collection, GoPlaces has a list of IDs of semantic places spList =

{spi}ni=1 and trajectories for different pairs of SPs spTMList = {spTMi}mi=1. Here, m

is the total number of trajectories for n places. Figure 5.1 shows trajectories between

4 different places and sample data blocks collected along the trajectory, where d is

the distance from the AP to the position where the data block is recorded on the

phone.

5.1.4 Place prediction

During the inference phase, GoPlaces analyzes the sequence of data blocks along the

user trajectory, divides the trajectory into segments, and uses two Attention-BiLSTM

classifiers (Subsection 5.2.4) to infer the IDs for the segments visited so far during

the current walk. Thus, GoPlaces gets a list of segment IDs (sgIDl) by processing

a batch of segments sgDBl using the segment classifiers attBiLSTMl as shown in

Equation (5.1).

sgIDl = attBiLSTMl(sgDBl), l ∈ [1, 2] (5.1)

Then, GoPlaces traverses the prediction tree (Subsection 5.2.5) that stores

historical segment ID sequences from one semantic place to another, and calculates the
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probability of each place being the destination (Subsection 5.2.6). Finally, GoPlaces

predicts the ID of the place with the highest probability.

5.2 System Architecture

Since GoPlaces uses a single access point, it is not possible to accurately locate

users (i.e., at coordinate level) in indoor environments. Therefore, we design novel

algorithms and deep learning models for trajectory data collection, trajectory segment

detection and classification, and place prediction. The system architecture shown

in Figure 5.2 illustrates the training and the inference phases of GoPlaces. Data

collection and preprocessing are similar for both phases. The data is stored on the

phone as a sequence of data blocks, and then it is preprocessed to remove noise,

especially from the WiFi-RTT distance sequence. Next, the trajectories are divided

into segments using a change point detection (CPD) algorithm that analyzes changes

in the walking direction. Since the same segment can be identified in different

overlapping trajectories, the next module identifies duplicate segments and assigns

the same segment ID to all of them. At this stage, GoPlaces has a list of segments,

identified by unique IDs. These segments are used as input by the Attention-BiLSTM

segment classifier and by the prediction tree.

During inference, user data is collected while walking and data blocks for the

last t seconds are analyzed by the CPD algorithm to divide trajectories into segments.

Then, the classifier will get the ID of each segment, and the prediction tree will match

trajectories consisting of a sequence of segments and predict places. The details of

each module are described in the rest of the section.

5.2.1 Data collection and preprocessing

GoPlaces collects accelerometer and magnetometer data at a fixed sampling rate,

and calculates the cross product of the gravity vector from the accelerometer and

the magnetic field vector from the magnetometer [214]. The rotation of the resulting
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Figure 5.2 Architecture of GoPlaces app.

vector is then measured and stored as the walking direction in angle degrees (wd).

To detect if the user is walking, GoPlaces uses Android’s Activity Recognition API

which periodically reads short bursts of data from multiple sensors in the device and

reports walking events. At the same time, GoPlaces also submits requests to the

AP to get the WiFi-RTT distance between the phone and the AP. In this way, we

have a sequence of data blocks, as described in Section 5.1. In our experiments, we

assume that the user holds the phone in their hand. However, our approach can

be easily extended to everyday scenarios where data can be collected from various

placements [183], such as in a pocket, handbag, or on a trolley or stroller.

The WiFi-RTT measurements are noisy, and the errors in measurement are

not Gaussian, not always unimodal, have outliers, and are position-dependent [215].

GoPlaces applies a moving average to smooth out the short-term fluctuations and

outliers. We experimentally determined that a window size of 10 data blocks works

well, and it does not introduce a significant delay for segment classification and place

prediction.

GoPlaces collects data until each trajectory has a minimum number of samples

for successful training, which we determined experimentally to be seven. By selecting

a minimum number of samples, we avoid wasting resources on the phones to collect
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Figure 5.3 Direction and SD patterns for two trajectories.

too much training data. To reduce the manual effort required for data collection, we

proposed several optimization techniques in Section 5.3.

5.2.2 Creating trajectory segments

GoPlaces analyzes the time series of walking direction data (wd) to find the point

where it changes by a significant amount. For this purpose, we use a change point

detection (CPD) algorithm [216] that divides a time series into pieces, where each

piece has its own statistical characteristics. In our case, we know the range of values,

angles in [0, 360), and also know that humans do not change their walking direction

with high frequency. Therefore, the CPD algorithm can apply an approach based on

a sliding window through the data points. Given a window of size szw, the CPD

algorithm uses a cost function to obtain a cost value, and if the cost exceeds a

predefined threshold value, the midpoint of the window is marked as a change point.

The cost function and the threshold value are determined experimentally based on

data and the requirements of an application.
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GoPlaces uses standard deviation (SD) of wd as the cost function. The SD

values are low if there is no change in direction, and they rise if there is a significant

transition in the direction pattern. We create a new segment when the change in

direction is at least 45 degrees, which we choose as a threshold for a significant turn.

Experimentally, we found that most of the segments can be detected using 20 as

the threshold value for SD. During the preliminary experiments, we noticed that one

fixed-size sliding window might miss some change points because a smaller sliding

window fails to capture transitions which take a long time, while a larger sliding

window might miss short transitions. Therefore, GoPlaces uses several window sizes

(szw in [60,180]) and executes the CPD algorithm for each window to capture both

short and long transitions. This design introduces an acceptable overhead while

ensuring accurate segment detection. Figure 5.3 shows the variations in the SD

patterns for two different trajectories, and it demonstrates that GoPlaces can detect

the change points accurately.

After dividing the trajectories into segments based on the direction patterns,

GoPlaces analyzes the segments based on duration (i.e., number of data blocks). If

the size of a segment is less than 50 data blocks (equivalent to one second), it merges

the segment with the next one. If the size of a segment is very large, the segment is

divided into equal-sized segments of less than 500 data blocks each. This allows for

faster segment classification in real-time. Finally, each segment is assigned a unique

ID, and the sequence of segments for each trajectory is stored in a database.

5.2.3 Identifying duplicate segments

Some of the trajectories in an indoor space will likely overlap and share segments.

As shown in Figure 5.4, segments sg2 and sg5 are identical segments shared by

two trajectories, AB and CD. GoPlaces identifies the segments that are duplicated

in different trajectories and assigns them the same ID. For training, GoPlaces has
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Figure 5.5 RTT distance trends for different samples of two segments (b, c), where
each line shows a trial. Segments and router position shown in (a).

multiple samples for each segment of a trajectory. Although the WiFi-RTT distance

measurements are noisy, we observe similar trends for measurements of the same

segment. For example, Figure 5.5 shows the WiFi-RTT data trends for two segments:

AB and CD. There are four samples for each segment, and their patterns are the same

for each segment.

To check if two segments from different trajectories are identical, we follow

three steps: First, we check all possible pairs of samples by taking one sample from

each segment. The complexity of this part is O(m2n2), where m is the number of

segments and n is the number of samples for each segment. The number of segments,

m, depends on the size of the indoor space and the number of trajectories covered.

The number of samples, n, is a constant, as GoPlaces uses a fixed number of samples

for each trajectory. While this step is expensive, it is executed offline only once before

training.
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Second, we consider two samples to be matched if: (a) the difference between

the mean wd of two samples is less than 10 degrees and direction is constant or

follows a similar (increasing or decreasing) trend. This step is required because the

segments are not necessarily straight; (b) the statistical measures describing the shape

of their distributions are similar. GoPlaces calculates the skewness and kurtosis of

two samples, and considers them similar if the absolute differences are less than

20% of actual values; and (c) the similarity score between the WiFi-RTT distance

sequences of two samples is less than a predefined threshold (simth). We apply the

Dynamic Time Warping (DTW) algorithm [217] to measure the similarity score on the

normalized WiFi-RTT distance sequence. DTW compares sequences with different

lengths by calculating the Euclidean distance between data blocks. This is done

by building one-to-many and many-to-one matches to create a warping path, such

that the total distance can be minimized between the two sequences. The average

distance of the warping path is reported as the similarity score, and we consider two

samples to be identical if the similarity score is less than simth, which is defined as

the normalized distance value for average WiFi-RTT error divided by the maximum

WiFi-RTT distance in a given indoor space. We take this value as the threshold,

since we define a place as a square with the sides equal to the WiFi-RTT error.

Third, if a certain percentage (dth) of samples for two segments are matched, we

consider these segments identical and assign them the same ID. The effect of setting

different dth values is discussed in Subsection 5.4.10.

5.2.4 Segment classifier model

Due to the capacity of deep learning techniques to extract information from time series

in a quicker and more thorough manner than traditional methods, we choose to apply

them for segment classification. The segment classifier model in GoPlaces takes the

segment data blocks as input and infers the ID of the segment. Segments that have
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different WiFi-RTT distance trends and different walking direction trends are easy to

identify. However, there are three cases where either the WiFi-RTT distance trends

or the walking direction trends are similar between different segments, and these cases

make classification difficult. Figure 5.6 illustrates these cases. In Figure 5.6(a), we

see two segments with the same direction, but different WiFi-RTT distances. As

long as the difference between the two WiFi-RTT distances is higher than the typical

error of WiFi-RTT ranging (1.5m in our experiments), the classification is expected

to work due to the difference in distance from the AP. In Figure 5.6(b), we see two

segments with the same WiFi-RTT distance, but different walking directions. In

this case, the classification is expected to work due to the difference in the walking

direction. In Figure 5.6(c), we see two segments, AB and CD, that have the same

WiFi-RTT distance trends and the same walking direction trends. A classifier can

differentiate between these segments if it analyzes the segments with which they are

connected. In our example, if the user moves from AB to BX, and from CD to DY,

then the WiFi-RTT distance patterns of ABX and CDY will be different, even though

the walking direction patterns are the same. Due to this case, we decided to build

classifiers for both individual segments (L1 segments), called L1 classification, and

segments consisting of two connected segments (L2 segments), called L2 classification.

We do not need to consider three or more level segments, as our experiments showed

they do not improve place prediction accuracy significantly, while requiring more

training, increasing the number of branches in the prediction tree (Subsection 5.2.5),

and increasing the inference time.

The next question we face is whether to train a single classifier for both L1 and

L2 classifications or one classifier for L1 and one for L2. The experiments presented

in Subsection 5.4.10 show that having two different classifiers works better because

a common classifier can misclassify an L2 segment as one of the two segments that

form it.
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Deep learning-based systems [183] avoid the classic accumulation errors of rule-

based methods (e.g., dead reckoning [218]) by focusing on features extracted from

data, rather than directly integrating sensor signals. To classify segments, we designed

a BiLSTM model with an attention layer (attention-BiLSTM), as shown in Figure 5.7,

where the output of the BiLSTM layer is used as the input of a self-attention layer

with a sigmoid activation function. The input of the model consists of the sequences

of data blocks associated with the segments. Multivariate time series classification,

such as the classification of the sequences of data blocks in our case, has been broadly

examined in diverse domains over the past decade. Recurrent neural networks (RNN)

have been used to solve such problems, and we experimented with several types of

RNNs, such as gated recurrent units (GRU), long short term memory (LSTM), and

bidirectional LSTM (BiLSTM) for segment classification. Compared to the other
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Figure 5.8 Trajectories for four places (a), and their associated prediction tree
showing the segments, the place nodes, and the abstract nodes (b).

models, BiLSTM captures more contextual information, which helps to perform better

and learn faster. A specific benefit of BiLSTM is that it processes data in both the

forward and the backward directions and, thus, it learns the sequence of data blocks

in both directions, even if the training data contains data for only one direction. We

augmented the BiLSTM layer with an attention layer because previous studies [219]

have shown that this combination helps to boost performance in the case of sequential

data since the attention layer is able to focus on important information such as the

rate of pattern changes. In order to avoid potential over-fitting problems, a dropout

layer is used between these two layers. The output of the attention layer is fed into

a dense layer with softmax as an activation function. The final output of the model

is the probability for each segment ID. To predict the destination place, GoPlaces

considers the segment with the highest probability score. GoPlaces uses the same

framework to train both L1 and L2 classifiers.

5.2.5 Prediction tree

GoPlaces stores trajectories in a tree data structure, where each segment of a

trajectory is a branch and each place is a node. A place node stores the place ID and

visit frequency for a trajectory, indicating the number of times the user has visited it.
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In addition to place nodes, the tree also contains the root and internal nodes, which

are abstract entities that do not store any information but serve as points to connect

segments in the data structure. During the tree construction, GoPlaces uses both L1

and L2 segments to create the possible paths from the root to the destination places.

A sample prediction tree is shown in Figure 5.8 for four trajectories tr1 =≺

sg1, sg2, A ≻, tr2 =≺ sg1, sg3, B ≻, tr3 =≺ sg1, sg2, sg4, C ≻ and tr4 =≺

sg1, sg2, sg5, D ≻. The prediction tree stores all the possible paths for these

trajectories as a combination of L1 and L2 segments. In Figure 5.8(b), sgab represents

a L2 segment that joins sga and sgb. If there are k L1 segments in a trajectory to

a place, we have at most f(k) paths from the root to the place nodes, including the

IDs for both L1 and L2 segments in the prediction tree, as shown in Equation (5.2).

f(k) = 2 + f(k − 1) + f(k − 2), wheref(1) = 1, f(0) = 0 (5.2)

The place nodes of the prediction tree store the visit frequencies vi following a

trajectory tri. For example, the nodes for place A and C store the visit frequencies

v1 and v3, respectively.

The depth of the prediction tree treed for a given indoor space depends on the

maximum number of segments in a trajectory. To avoid extensive computation during

inference, if the maximum number of segments is very high, GoPlaces can limit treed

to a certain value kmax, and analyze just the last kmax segments, as these segments

are most likely to determine the destination.

There are several benefits of storing trajectory data in this format: (i) As we

have paths from any segment of a trajectory to the destination place, GoPlaces can

predict well even if the user does not start from the original place of the training

trajectory; (ii) some incorrectly classified segments can be handled by the prediction

tree because incorrect segment IDs from the classifiers typically lead to an invalid path

in the tree. However, there are situations when an incorrect segment ID may lead to
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a valid, but incorrect path, which will result in an incorrect prediction. Nevertheless,

the classifiers can detect most segment IDs correctly, and the prediction will work

well. Thus, storing all possible paths in the tree helps to check multiple options

and improves the probability of traversals through correct paths that increases the

accuracy of place prediction; (iii) if there are several paths to different destinations

from the same segment, these paths can be represented in the prediction tree without

creating multiple branches (e.g., sg1 in Figure 5.8 is a common branch for four

destinations); (iv) keeping track of visit frequencies allows predicting a place with

the highest probability when multiple places follow the same trajectory.

5.2.6 Inference

During inference, GoPlaces collects and analyzes sequences of data blocks while the

user is walking. As discussed in Subsection 5.2.2, the maximum length of the data

block sequence of a segment is 500. Therefore, GoPlaces analyzes the last t = 500×

treed data blocks. Algorithm 8 presents the pseudo-code for the inference phase. First,

the trajectory data for the last t data blocks is divided into segments using our CPD

algorithm (Algorithm 8 Line 2). Then, the last k = treed segments are analyzed to

create both L1 and L2 segments, and the classifiers are used to predict the ID for each

segment (Algorithm 8 Lines 3-4). Using k segments, GoPlaces can create sequences

as described in Equation (5.2), and it traverses the sequences following the paths in

the prediction tree (Algorithm 8 Line 5). The sequences created by the correctly

predicted segment IDs follow the correct path to the place nodes. On the contrary,

incorrect segment IDs will lead to invalid sequences, which can be discarded as they

fail to follow the branches of the prediction tree. Incorrect classification may rarely

result in a real, but incorrect path, too.

To predict the destination place, GoPlaces calculates the probabilities (Algorithm 8

Line 6) for the places by (a) counting the possible paths that lead to that place,
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following a predicted sequence of segments; and (b) assigning higher weights to longer

paths and paths with L2 segments. If there are p possible places in a testbed, the

weight for each place sp is assigned by Equation (5.3), where r is the number of paths

that lead to sp, and n1i and n2i are the numbers of L1 and L2 segments in each path.

GoPlaces calculates the visit probability for a place spi using Equation (5.3), where r

is the number of paths that lead to spi, P (spi|pathj) is the visit probability of a place

spi following a path pathj, and n1j and n2j are the numbers of L1 and L2 segments

in pathj. GoPlaces measures P (spi|pathj) using the visit frequencies associated to a

place node in the prediction tree following a path pathj, and assigns higher weights

to longer paths and paths with L2 segments.

P [spi] =

∑r
j=1((n1j + 2× n2j)× P (spi|pathj))∑r

j=1((n1j + 2× n2j)
(5.3)

Finally, GoPlaces outputs the place with the highest probability as destination

places. (Algorithm 8 Line 7)

Algorithm 8 Inference Pseudo-code

Require: data blocks

Ensure: Predicted Place ID

Analyze(data blocks)

1: segment list← CPD(data blocks)

2: L1 IDs← L1 Classifier(segment list)

3: L2 IDs← L2 Classifier(segment list)

4: valid paths← prediction tree(L1 IDs, L2 IDs)

5: place probabilities← predict place(valid paths)

6: return Place ID with max(place probabilities)
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5.3 Training Optimizations

In this section, we propose several optimization techniques to reduce the manual effort

required for training data collection. We introduce a data collection technique wherein

a few samples are manually collected and labeled, which can be used for labeling the

data collected automatically in the background. Additionally, we present a data

augmentation technique to increase the training sample size, which in turn can be

utilized to train the segment classifiers. Furthermore, we propose a design where a

global user shares labeled data with individual users, eliminating the need for them

to collect training data explicitly.

5.3.1 Automatic training data collection

To reduce the manual effort required for data collection, we propose an automatic

training data collection technique. Initially, the user collects a few samples for

a trajectory by selecting the origin and the destination places explicitly. The

manually collected samples are labeled by the user and added to the trajectory

list, denoted as trLM . Once a trajectory has a few such samples, GoPlaces starts

collecting and labeling additional training samples for this trajectory automatically

(in the background), while the user is walking. Finally, GoPlaces concatenates the

automatically labeled trajectory list (denoted as trLA) with trLM to prepare the

trajectory list trL as the training dataset.

To label the automatically collected trajectories, GoPlaces matches them with

the trajectories collected manually by the user. Two trajectories are matched if

their similarity score is less than a predefined threshold value. We apply the

DTW algorithm (Subsection 5.2.3) to measure the similarity score on the normalized

WiFi-RTT distance sequence and the direction sequence. We consider two trajectories

to be identical if the similarity score for the direction pattern is less than dirth

and the similarity score for the WiFi-RTT distance pattern is less than simth. We
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experimentally determined the value for dirth to be 0.001, which is fixed for all indoor

environments. For simth, we use the same logic as in Subsection 5.2.3. This algorithm

discards incomplete or invalid trajectories, since they get similarity scores exceeding

the threshold values. We use low threshold values to reduce false positives, at the

expense of discarding some data. GoPlaces also discards the trajectories matched

with more than one trajectory to ensure a uniquely labeled trajectory list.

5.3.2 Segment data augmentation

GoPlaces further minimizes the manual effort for training data collection by

augmenting the training dataset collected manually and automatically with synthetic

training data, which helps the classifiers (Subsection 5.2.4) to learn faster and

improves generalization performance [220]. To generate synthetic data, we add

random noise to the original sequences of walking direction and WiFi-RTT distance

data blocks. Since both types of sensor data are noisy, including new samples drawn

from the vicinity domain of known samples can smooth the structure of the input

space. We also expand or shrink the sequences to simulate data blocks generated at

different walking speeds. Also, we extract partial trajectories from the original ones

and add them to the dataset, which can improve the segment classification for partial

segments (i.e., the user travels part of a segment).

5.3.3 Global data collection

To reduce the effort of explicit data collection by each user, we propose an approach

where the initial global data GD is collected by the owner G of the space (e.g., a public

space) and shared with the users. During the global data collection process, G labels

the semantic places and collects at least two samples for each potential trajectory in

the indoor space. Thus, the trajectory data can be used as a global prediction tree,

as described in Subsection 5.2.5. However, the prediction tree does not include visit
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frequencies. The global prediction tree, together with the trajectory data, is then

shared with users within the indoor space.

At the user level, trajectory data is automatically collected and compared with

trajectories in GD, as detailed in Subsection 5.3.1. At this stage, visit frequencies for

each trajectory are counted, as GoPlaces identifies matches with trajectories in GD.

Thus, the user-level prediction tree holds personalized information that can be used

for personalized prediction.

It might be possible that the user may visit new trajectories that are not in

GD. These data are stored separately as GU . GoPlaces computes the similarity of

the current trajectory with trajectories in GU as in Subsection 5.3.1. If a trajectory

has been recorded a sufficient number of times, users can be prompted to label it by

providing the start and destination places.

5.4 Evaluation

Since GoPlaces aims to provide a practical solution for place prediction on smart

phones, with minimal infrastructure support, our problem settings are different from

those of other place prediction systems. We do not attempt to compare against

them quantitatively, as those systems cannot work with the data model of GoPlaces.

However, we provide a qualitative comparison in Section 2.4.

The evaluation has several goals: (i) quantify the overall performance of place

prediction in indoor spaces of different sizes, (ii) evaluate the automated data

collection technique, (iii) analyze the performance of segment classifiers, (iv) quantify

the benefits of model personalization, (v) evaluate the prediction accuracy for new

users who did not collect data or trained the model, (vi) perform ablation studies

to understand the effects of different parameters, and (vii) test the app latency and

resource consumption on phones.
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Figure 5.9 Indoor testbeds, showing the places, the AP positions, and the
trajectories between the places.

5.4.1 Implementation and experimental settings

We implemented GoPlaces in Android using DL4J [15], which supports a wide range

of neural network architectures for both training and inference on the phones.1

We used Google Nest Wifi, as an AP which supports WiFi-RTT. During training,

GoPlaces stores the collected WiFi-RTT and sensor data on the device under the

App’s container. Since WiFi-RTT (i.e., 802.11-2016 FTM standard) is supported on

phones running Android 9 (API level 28) or newer, we chose to use this Android

version for implementation. The Android prototype of GoPlaces has been tested

using Android Google Pixel 3 & 4 phones.

We also implemented training and testing in Keras and used it to optimize the

algorithms and evaluate their performance offline, using data collected on the phones.

The best algorithm parameters in Keras were used in the Android implementation.

Since GoPlaces needs to distinguish between short trajectories and nearby

places, we test it in relatively smaller spaces with many places, rather than in larger

spaces with few places. We used three indoor environments for testing with areas

of 170 m2, 167 m2, and 300 m2, respectively. Figure 5.9 shows the setups for these

indoor spaces: Testbed#1, Testbed#2 and Testbed#3, with 10, 16 and 10 semantic

places, respectively. Each place is labeled with one character and one digit, where

the character represents a room and the digit represents a place ID in the room.

1TensorFlow Lite [16] has recently become available for on-device training, and therefore it
could also be used to implement GoPlaces.
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We considered walls and large objects in our experimental setups and tested places

that are both in LoS and NLoS. We found that the RTT distance patterns remain

consistent as long as there is no change in the environment, such as alteration in

indoor layouts or wall materials. We tested GoPlaces in the presence of multiple

users.

5.4.2 Data collection

For training, GoPlaces needs to collect trajectory data that cover all the segments

and all the places. However, GoPlaces does not need to collect training data for

every pair of places. We experimentally determined that collecting seven samples for

each segment (as part of the same or different trajectories) works well. For manual

training data collection2, the user has to select the origin and destination places, and

then start walking. In all experiments, the user holds the phone in hand, including

for automatic data collection or inference. The segments are identified and labeled

automatically by our CPD algorithm. We use the sampling rate of 50 samples/second

for inertial sensors to ensure change of direction is detected well, and a sampling rate

of 10 samples/second for WiFi-RTT measurements. We store the data locally as a

sequence of data blocks at a rate of 50 data blocks per second. Since WiFi-RTT

sampling rate is lower than this rate, the WiFi-RTT distance collected at a certain

timestamp is copied to consecutive data blocks until GoPlaces gets the next RTT

measurement. Our results in Subsection 5.4.11 demonstrate that lower WiFi-RTT

sampling rates can be used effectively to save battery power, with a minimal decrease

in the prediction accuracy.

For training, two samples for each trajectory are collected explicitly by the user,

and other samples are collected and labeled automatically following the technique

discussed in Subsection 5.2.1. All automatically collected trajectories that pass the

identification threshold are used in training, even if some of them are misidentified, in

2Data was collected by the members of our team.
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Table 5.1 Statistics of the Training and Test Datasets

Testbed#1 Testbed#2 Testbed#3

Places 10 16 10

Trajectories 30 24 18

Samples (Training, Testing) for trajectories (236, 40) (178, 40) (126, 53)

L1 segments 48 48 57

L2 segments 62 28 41

Samples (Training, Testing) for L1 segments (856, 148) (388, 83) (368, 151)

Samples (Training, Testing) for L2 segments (620, 108) (211, 43) (242, 98)
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Figure 5.10 Distribution of number of segments per trajectory.

order to provide realistic results. The statistics of the trajectories and segments in the

experiments are presented in Table 5.1. These statistics do not include the synthetic

data used for training data augmentation. Figure 5.10 shows the percentages of

trajectories in the experiments that have n segments, where n ∈ [2..6] for Testbed#1,

n ∈ [1..5] for Testbed#2 and n ∈ [1..6] for Testbed#3.

5.4.3 Deep learning models

For the segment classifiers, we experiments with different sequence-based neural

network models, each designed for multi-class classification task. Each model begins

with a masking layer, which ignores padding values (set to 0.0) in the input sequence,

allowing the model to focus on the relevant parts of the data. A recurrent neural

network layer (GRU, LSTM, or BiLSTM) with 20 or 40 units follows, capturing

temporal relationships within the sequences while applying dropout for regularization.

In some configurations, the models also include a self-attention layer with a sigmoid
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activation, which highlights important sequence elements and enhances the model’s

ability to learn meaningful patterns over time. After flattening the output, a final

dense layer with softmax activation produces a probability distribution across the

classes (i.e., segment IDs). The models use categorical crossentropy as the loss

function and the ADAM optimizer with a learning rate of 0.001, and it tracks

accuracy as a performance metric. This architecture is well-suited for tasks that

require context-based sequence classification. The results for different models used as

the segment classifiers are presented in Subsection 5.4.10.

5.4.4 Metrics

To evaluate the segment classifiers, we use accuracy, precision, recall, and F1 score

metrics. We use the notation L1-C and L2-C to denote the accuracy of L1 and L2

classifiers. We also report the place prediction accuracy at a certain percentage p%

of the current traveled trajectory. Specifically, p% is computed based on the total

number of data blocks of a trajectory. For system performance on the phone, we

report training and inference latency, memory, and battery consumption.

5.4.5 Overall classification and prediction results

The experiment measures the effectiveness of our segment classification and place

prediction algorithms. For this experiment, each segment collected by the user was

augmented with 30 synthetic samples, as we discussed in Subsection 5.2.1. The

model contains a BiLSTM layer with 40 neurons and 25% dropout rate, followed by

the attention layer. We use the same architecture to train both L1 and L2 classifiers.

We train the networks for 80 epochs, with early stopping.

Table 5.2 shows the results of segment classification. Both the L1 and L2

segments in all testbeds are classified with more than 87% accuracy. Although

segments from all classes are not represented equally in the training dataset, which

represents a realistic scenario where users walk some trajectories more often than

129



Table 5.2 Performance of L1 and L2 Classifiers

Testbed#1 Testbed#2 Testbed#3

L1-C L2-C L1-C L2-C L1-C L2-C

Classes 48 62 48 28 57 41

Accuracy(%) 89.2 90.8 91.1 92.3 87.6 90.0

Precision(%) 91.0 91.0 91.0 91.0 87.3 90.0

Recall(%) 89.0 91.0 91.0 92.0 87.9 90.0

F1 Score(%) 88.0 90.0 90.0 90.0 87.6 89.0

others, we achieve a high F1 score for both classifiers. This means the classifiers work

well for realistic imbalanced multi-class datasets. The L2 classifier performs slightly

better than the L1 classifier, as it is easier to distinguish between different classes for

L2 segments.

Using both segment classifiers, Table 5.3 presents the place prediction accuracy,

with respect to the percentage of progression towards destination (p). GoPlaces

achieves competitive results when p is at least 70%-75%. The accuracy for place

prediction is over 86% when p > 90%. The accuracy for Testbed#3 is higher

compared to the other testbeds, as the places are sparsely distributed in a larger

area and trajectories are longer compared to the trajectories in the other testbeds.

The accuracy at low values of p is relatively low because, at that stage, there are

multiple possible trajectories, leading GoPlaces to identify more than one destination

with equal probability. This accuracy can improve over time as GoPlaces collects

more data automatically and uses the visit frequencies to predict the most likely

destination with higher probability. Additionally, the application developer can set a

threshold probability to meet specific application requirements.

5.4.6 Performance of automatic data collection

This experiment evaluates the performance of the automatic training data collection

technique in the three testbeds. As shown in Figure 5.11, more than 76% of

trajectories are correctly identified in all testbeds, while the false positive rate is
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Table 5.3 Place Prediction Accuracy for Different Percentages of Progression
Toward Destination (p)

p Testbed#1 Testbed#2 Testbed#3

65 51.8 69.0 71.0

70 56.9 71.8 72.9

75 66.8 73.7 75.1

80 74.6 76.5 78.5

85 81.5 78.7 83.2

90 84.0 82.0 86.2

95 87.0 87.2 88.1

100 90.7 91.0 90.9
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Figure 5.11 Accuracy of automatically collected datasets.

less than 2%. More than 95% trajectories in Testbed#1 are labeled correctly, as

all of the trajectories in this testbed have two or more segments, which means that

changes in the orientation patterns of the trajectories help to match them uniquely

with manually labeled trajectories. We discard the trajectories which are (a) not

matched with any trajectory or (b) matched with more than one trajectories. All the

other trajectories are included to the training dataset, including the false positives

(i.e., the system would not know they are false positives).
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Table 5.4 Performance of Global Data Collection, Where Data for 24 Unique
Trajectories Are Collected Globally and Shared with Two Users

User ID Number of Unique Trajectories Total Number of Samples Percentage of Samples Detected Correctly

U1 15 80 75%

U2 18 94 82%

5.4.7 Performance of global data collection

In Subsection 5.4.6, we evaluated the performance of automatic data collection,

wherein both manual and automatic data are collected by the same user. In this

experiment, we assess the performance of global data collection across M different

trajectories, where k samples per trajectory are collected by a global user G. These

samples (GD) are then shared with individual users to enable them to continue data

collection automatically for a subset of trajectories, without explicitly selecting the

start and destination places.

In Testbed#2, G collects k = 2 samples for M = 24 trajectories and shares

the data with two users U1 and U2, who subsequently collect samples for a subset of

trajectories, M1 = 15 and M2 = 18 respectively. Our results in Table 5.4 show that

75% and 82% of trajectory samples are detected correctly for U1 and U2 respectively.

This demonstrates a significant reduction in the effort required for individual data

collection. Each user can then train their own segment classifiers and prediction trees

to obtain personalized predictions from the automatically collected dataset.

5.4.8 Performance of personalization

GoPlaces allows users to collect data and train personalized prediction models that

work for their place labels and trajectories. To quantify the benefits of personalization,

this experiment compares the place prediction accuracy of the personalized model

against a global model that includes data from all users in the indoor space. This

experiment ignores the potential privacy problems of a global model that uses data

from multiple users. Specifically, we conducted the experiment in Testbed#1, where
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Figure 5.12 Place prediction accuracy (a) for personalized and global models
(b) for new users.

two users (User 1 and User 2) collect data and train their personalized models

individually. Both users collect data for 20 unique trajectories covering 10 places,

train the personalized segment classifiers, and build the prediction trees. Then, the

data from both users are combined to get 30 unique trajectories (some trajectories

are common for both users) and the global classifiers and the global prediction tree

are constructed. For each user, we use both the personalized model and the global

model to predict the destination places. The average prediction accuracy for both

models is reported in Figure 5.12(a), which shows the place prediction accuracy with

respect to the percentage of progression toward destination. The results demonstrate

that the personalized models for User 1 and User 2 perform better compared to the

global model in all cases. Also, the personalized models can predict earlier than the

global model with good accuracy because the individual users’ historical data helps

the models and the prediction tree to reduce the search space, whereas the global

model does not work well when there are multiple possible destination places on the

current trajectory.
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5.4.9 Performance for new users

This experiment evaluates if GoPlaces trained by one user (reference user) works

without retraining for other users in the same space. If it does, it means new users

can easily use GoPlaces in new indoor spaces by re-using already trained models. At

a later time, they can add new personalized semantic places and retrain the model.

In this experiment, we assume that the new users’ movement habits are the same as

the reference user. However, if new users exhibit different movement patterns, such

as varying frequencies in visiting specific trajectories compared to the reference user,

then the prediction tree will need to be updated. This update can be performed

automatically through our automatic data collection module.

The experiment trains the segment classifiers and constructs the prediction tree

using a dataset collected by a reference user (Ref User) in Testbed#2. Then, we

report the place prediction accuracy with three different test datasets collected by

(a) Ref User, (b) New User 1, and (c) New User 2. Here, similar trajectories are

followed by all users in the same environment. Figure 5.12(b) shows that GoPlaces

trained by Ref User works well for the new users, with only a slight decrease in

performance. For example, both new users achieve over 70% accuracy when p ≥ 80%.

These results show that, although the new users’ walking speeds may differ, the

segment classifiers perform well in detecting trajectories and GoPlaces can use the

reference user’s prediction tree to predict the destination places for the new users.

5.4.10 Ablation study

This set of experiments uses the Keras implementation to analyze the effects of several

parameters on classification and prediction. We report the results only for Testbed#1

because other testbeds show similar behavior.

Effect of classifier type. GoPlaces uses L1 and L2 segments to predict

destination places, which requires to construct the prediction tree and train the
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classifiers using both types of segments. This experiment compares the place

prediction performance when GoPlaces uses only the L1 classifier vs. L1 and L2

classifiers together. The results in Figure 5.13(a) show that GoPlaces with both

classifiers achieves better accuracy, as the L2 classifier helps to detect connected

segments and mitigate misclassifications by the L1 classifier.

Effect of short history. Figure 5.13(a) also shows the place prediction

accuracy results when the prediction is based only on the last segment (LS) or the

last two segments (LS2), instead of all the segments of the trajectory up to the

point of prediction. The aim of this experiment is to see if GoPlaces can speed up

its inference time and reduce its overhead, while still achieving competitive accuracy.

The results show that LS performs poorly in most of the cases, as it fails to utilize the

user walking patterns learned from the historical data of trajectories. LS2, however,

achieves competitive performance, as it uses both classifiers to detect individual and

connected segments; in addition, it can use the prediction tree to predict places based

on slightly more historical data than LS. Therefore, if latency or resource constraints

on the phone are important factors for certain applications, GoPlaces can balance

accuracy with these two factors and can still achieve competitive performance.

Effect of training data augmentation. We evaluate the effectiveness of our

data augmentation technique by comparing different amounts of synthetic data in the

training dataset. Figure 5.13(b) shows the accuracy of both classifiers and the overall

place prediction when the classifiers are trained on: the dataset without any synthetic

data (S0), the augmented dataset that includes S0 and 10 or 30 synthetic data samples

(i.e., S10 and S30) for each original data sample in S0. The results demonstrate the

substantial benefits of data augmentation, especially on place prediction. We also

observe that at shorter percentages of progression toward the destination (i.e., 70%),

larger amounts of data augmentation lead to significantly better performance. Finally,

we observe that the best performance in place prediction is obtained for the training
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Figure 5.13 (a) Place prediction accuracy when using one classifier (L1-C), two
classifiers (Both-CL), only the last segment in the trajectory (LS), and only the last
two segments in the trajectory (LS2); (b) accuracy of classifiers and place prediction
for different percentages of progression toward destination (70%-90%), when varying
the amount of synthetic data in training.

dataset with 30 synthetic data samples (S30L) for each original sample, which includes

parts of each sample with different lengths (i.e., x% of data blocks from the beginning

of the original sequence, where x ∈ [50, 100]). By adding more synthetic data, the

overall performance does not improve, while training time increases.

Effect of parameters and algorithms on segment classification. We

studied the performance of segment classifiers using different ML algorithms and

numbers of neurons to find the most suitable classifier for our problem. Table 5.5

shows results for GRU, LSTM, and BiLSTM with or without the attention layer

(Atn). The results show that the accuracy for classifiers with BiLSTM is better

compared to those using LSTM and GRU. The accuracy does not improve much by

increasing the number of neurons from 20 to 40. The performance of the models is

further enhanced by the addition of the attention layer. This benefit comes at the

cost of a substantially larger number of parameters, which affects the training latency,

but not the inference latency. In general, the performance of a L2 classifier is slightly

better than that of the L1 classifier, as it can distinguish between different segments

by utilizing the information about changes in orientation and WiFi-RTT distance
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Table 5.5 Performance of Different L1 and L2 Classifiers

Network Type L1 Classifier L2 Classifier

#Parameters Acc (%) #Parameters Acc (%)

BiLSTM(40)+Atn 786,993 89.19 1,011,007 90.82

BiLSTM(20)+Atn 390,353 88.34 502,367 90.40

LSTM(40)+Atn 393,553 87.40 505,567 87.76

LSTM(20)+Atn 195,233 84.87 251,247 86.78

GRU(40)+Atn 391,953 77.45 503,967 80.44

BiLSTM(40) 17,648 87.76 18,782 88.78

BiLSTM(20) 5,648 86.84 6,222 87.76

LSTM(40) 8,848 83.87 9,422 75.51

LSTM(20) 2,848 82.47 3,142 69.39

GRU(40) 7,248 82.90 7,822 84.26

patterns of a longer sequence of data blocks. Finally, we decided to use BiLSTM with

40 neurons followed by an attention layer, as this attention-BiLSTM model provides

the best performance.

Effect of CPD algorithm inaccuracy. This experiment assesses the effect of

parameters in the CPD algorithm, which divides the trajectories into segments. Due

to noisy sensor data, the number of segments detected for the same trajectory can be

different across several samples of the trajectory. In total, there are 2148 segments

in the testbeds, and more than 92% of these segments are identified correctly by our

CPD algorithm.

To understand what happens when CPD does not identify segments correctly

during inference, we evaluate the performance of place prediction using the training

dataset from Testbed#1. In this experiment, we use a different test dataset with

29 trajectories, where the number of segments for each trajectory differs by m ∈

[1, 2] from the number of segments in the training dataset. The result shows that

accuracy of GoPlaces does not degrade significantly. For example, GoPlaces achieves
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Table 5.6 Segment Classification and Place Prediction Accuracy for Different
Threshold Values in DTW Algorithm

Threshold L1 Classifier L2 Classifier Place Prediction

#Segments Acc(%) #Segments Acc(%) p=80%

50 40 92.1 55 94.3 71.3

60 48 89.4 62 90.8 74.9

70 64 86.2 69 88.8 71.8

80 78 81.9 75 82.2 70.4

90 89 77.4 78 78.5 69.6

an accuracy of more than 77% at 85% of the traveled trajectory. The effects of lower

or higher number of segments in the test trajectories are handled by the classifiers

and the prediction tree. For example, a segment from A to B can be divided into two

segments, AC and CB, which are not in the training dataset. However, as we use L2

segments, the concatenated version of AC and CB can be detected by L2 classifier.

If some segments are misclassified, the prediction tree can still predict well because

it considers all the possible combinations of segments to create paths from the root

to the leaves.

Effect of threshold value for DTW algorithm. GoPlaces applies the DTW

algorithm to detect identical segments. We experimented with different values of the

threshold dth, which result in different sets of similar segments. Table 5.6 shows the

number of unique segments in the training dataset of Testbed#1 and the accuracy

for different values of dth. We observe that classification accuracy is higher for lower

values of the threshold. This is because a higher threshold value sometimes fails to

detect identical segments, which increases the number of segments unnecessarily. The

place prediction accuracy, however, may suffer if the threshold value is too low because

some segments can be wrongly considered duplicates and removed. This increases

classifier accuracy, but drops the overall place prediction accuracy. Therefore, we

choose dth = 60 for the other experiments.
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5.4.11 Performance on smart phones

We used GoPlaces to conduct data collection, training, and inference on two Android

phone models (Google Pixel 3 and 4), and we measured latency, memory, and battery

consumption. We also report the effect of ranging request frequency on segment

identification and the effect of sampling data rates on classification and prediction

accuracy. We report the results only for Testbed#1 because the differences between

the testbeds are not significant.

Training performance. Before training, GoPlaces preprocesses the data,

divides the trajectories into segments, and removes duplicated segments. Then, it

assigns unique IDs to each segment, maps the trajectories onto a list of segments,

and constructs the prediction tree. GoPlaces stores all these data locally in JSON

format, which takes less than 600 KB. These steps take about three seconds. Next,

GoPlaces trains the segment classifiers for L1 and L2 segments. To measure the

training performance of the classifiers, we record the training time, memory and

battery usage by training over 26536 samples for 10 epochs. We take 10 measurements

and report the mean and standard deviation in Table 5.7. The training latency for one

epoch is less than 10 minutes. The maximum RAM usage of the app during training

is less than 300 MB. It takes 15% of battery to train both classifiers on Google Pixel

4 (with 2800 mAh Li-ion battery). The size of the models is less than 200 KB. These

results show that training is feasible in terms of resource consumption. It is also

worth noting that training is a one-time process, and the user needs to retrain the

model only if they want to add new places or collect more data to improve accuracy.

Inference performance. In this experiment, we measure the inference time

and resource usage to predict IDs for 5000 segments and report the mean value of

10 measurements, as shown in Table 5.8. The overall place prediction task takes

around 142 ms and uses less than 125 MB RAM. These results are usable for most

practical app scenarios. We also observe that the most expensive operation during
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Table 5.7 Training Resource Consumption and Latency

Phone Model Training Time (seconds) RAM (MB) Battery (mAh)

L1 Classifier
(per epoch)

L2 Classifier
(per epoch)

Google Pixel 4 260 ± 25 175 ± 20 < 280 < 450

Google Pixel 3 590 ± 32 410 ± 21 < 300 < 550

Table 5.8 Inference Resource Consumption and Latency

Phone Model Inference Time (milliseconds) RAM (MB) Battery (mAh)

L1
Classifier

L2
Classifier

Overall Place
Predictor

Google Pixel 4 140 ± 3 136 ± 4 142 ± 4 < 125 < 30

Google Pixel 3 146 ± 2 141 ± 5 150 ± 3 < 125 < 35
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Figure 5.14 WiFi-RTT distance patterns for different ranging request frequencies.

inference is segment classification, with L1 and L2 classifiers taking 140 ms and 136

ms, respectively. Both phones can execute around 0.5 million predictions with a full

battery.

Ranging request frequency for data collection. This experiment aims

to set the sampling rate for WiFi-RTT to ensure accurate segment and trajectory
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identification, while not consuming too much battery power. Figure 5.14 shows

the raw and the smoothed WiFi-RTT measurement patterns for a trajectory

ABABABABA between two places SPA and SPB for ranging frequency from one

request/sec to 20 requests/sec. We observe that a frequency of 10 requests/sec is

optimal, and we use it in all the other experiments. A lower value adds noise, and

a higher value leads to more power consumption. At 10 requests/sec, GoPlaces uses

< 0.5% of the battery per hour for Google Pixel 4 to collect data.

Data sampling rate for training and inference. Once the data is collected

at the sampling rate necessary for accurate segment and trajectory identification,

GoPlaces could downsample a sequence of data blocks for training or inference in order

to save battery power during these processes. The aim of this experiment is to find

a balance point for the data sampling rate where GoPlaces achieves good prediction

accuracy, while saving battery power. Figure 5.15 shows the results, when varying

the sampling rate from one sample/sec to 10 samples/sec. The results demonstrate

that a sampling rate of four samples/sec achieves the best balance: the inference is

substantially faster, which also means less battery consumption, while the accuracy is

just slightly lower than the one achieved for the standard rate of 10 samples/sec. By

lowering the sample rate, we are using fewer data blocks for a segment, which reduces

the training and inference time. For example, GoPlaces takes 430 seconds per epoch

for 10 samples/sec, whereas it requires 175 seconds per epoch for four samples/sec to

train the model.

5.5 Chapter Summary

This chapter presents the design, implementation, and evaluation of GoPlaces,

an app for personalized indoor place prediction. GoPlaces fuses inertial sensor

data with WiFi-RTT estimated distances to predict the indoor places visited by a

user. GoPlaces provides personalization by design to improve user experience and
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Figure 5.15 Inference time (bars) and accuracy (lines) of classifiers and place
prediction for different sample rates.

prediction accuracy. Due to its use of a single AP and processing of all data on the

user’s phone, GoPlaces does not pose any privacy risks. GoPlaces is implemented as

an Android app, and extensive experiments have demonstrated its feasibility in real

life due to its low latency and resource consumption.
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CHAPTER 6

CONCLUSIONS

Privacy-preserving machine learning holds great promise for enabling the development

of machine learning models that can be applied to sensitive data. However, there are

several challenges that must be addressed for the approach to be effective. These

challenges include balancing privacy and accuracy, balancing privacy and usability,

and the need for data collaboration. Addressing these challenges is crucial for ensuring

that privacy-preserving machine learning can be used effectively and responsibly in

a range of applications. In this dissertation, we discussed privacy risks in existing

approaches across three scenarios and propose systems that enhance privacy, utility,

and efficiency.

Firstly, we introduced FedMTL, a novel FL aggregation technique that enables

clients to obtain improved personalized MTL models for their sets of tasks by

collaborating with other clients. FedMTL computes aggregation weights for each

client by analyzing the parameters of task-specific layers in MTL models and applies

a layer-wise aggregation policy on the models from participating clients. The FedMTL

aggregation can be integrated with established privacy-preserving techniques for

secure aggregation, thus guaranteeing the privacy of clients’ private data. The

experimental results demonstrated that FedMTL outperforms state-of-the-art FL

aggregation approaches and can work in cases where clients are involved in different

sets of tasks. We also implemented a secure version of FedMTL using secret-sharing

SMPC, which achieves the same accuracy performance as plain text while preserving

the privacy of client data.

Secondly, we described CryptGNN, a provably secure and effective solution for

GNN models in the cloud. CryptGNN uses novel SMPC protocols to preserve the
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privacy of the model weights and of the graph input data of the clients, including

the graph structure, while providing the same results with a non-secure inference

version. CryptGNN works with an arbitrary number of SMPC parties, and the

input data, the intermediate results, and the output are protected in secret-shared

format even if P − 1 out of P parties collude with each other. We evaluated the

performance of CryptGNN with different types of graphs and configurations. The

experimental results demonstrate its correctness and low execution time compared to

other approaches. In the future, CryptGNN can be extended to support the message

passing of GNN with different aggregation and update mechanisms.

Finally, we presented GoPlaces, a privacy-preserving app that predicts the user’s

next location in indoor spaces by fusing phone sensors and WiFi-RTT data. GoPlaces

does not require complex infrastructure for accurate localization and, therefore, can

work in many places and can easily be deployed on smart phones. GoPlaces is also

designed to provide personalization and mitigate privacy risks, which further enhances

its practicality. The experimental results demonstrate good accuracy, low-latency, and

low resource consumption on the phones. The prediction accuracy of GoPlaces can be

further improved by incorporating the user’s behavioral and temporal data like wait

time at some place, day of the week, or time of day in the prediction tree, as it can

capture the user’s trend information. By employing techniques such as personalized

federated learning, model accuracy can be improved in a way that uses data from all

users, while still performing personalization and protecting location privacy. In the

future, we will investigate the possibility of using GoPlaces in spaces that are larger

than the transmission range of one AP, which is a limitation of the current solution.

This can be done in buildings with multiple APs by assigning one space for each AP

and designing a transition algorithm among adjacent places.
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