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Abstract—The widespread adoption of smart phones allows
for the seamless capture of social interactions on a scale that
was once impossible. Co-presence, collected using Bluetooth
on the phones, faithfully represents such real-world social
interactions. This social information can be transformed into
communities, which can be leveraged into applications such
as recommender systems and collaborative tools. However,
correctly identifying communities is difficult.

This paper presents TIE, a visualization tool that enables
effective review of detected communities. With TIE, we can
visualize the social interaction of a set of people over time.
Also, TIE can overlay detected community events in a usable
way over the underlying social interactions. Further, it allows
us to investigate specific social interaction events and see how
well detected communities match those events. Lastly, it enables
the comparison of different sets of detected communities by
interactively switching between overlays. TIE has proven useful
in evaluating our community detection algorithms and has been
invaluable in identifying strengths and weaknesses of these
algorithms. Beyond our needs, TIE is usable for other data
sets that can be reduced to temporal interaction events such as
multiplayer game communities, SMS interactions, and paper
co-authorship.

Keywords-visualization of co-presence communities; smart
phones; time-series events

I. INTRODUCTION

The widespread adoption of smart phones allows for the
seamless capture of physical world social interactions in
the form of co-presence events. These phones come from
different vendors and have a wide variety of interfaces and
capabilities, but most support some form of short-range radio
such as Bluetooth, and Internet-capable radios like 3G or
WiFi. The ubiquity of these interfaces enables large-scale
collection of co-presence events, and thus potential social
interactions, with an immediacy and correctness that was
once impossible.

Using a short-range radio such as Bluetooth offers many
advantages, as its maximum effective range of ten meters
ensures any interactions captured indicate co-presence. Its
small power footprint is especially attractive for situations
where social information capture is desired, but device size
and weight must be restricted. As well, it helps overcome
some privacy implications of GPS or other location-specific
interfaces. Bluetooth does not indicate absolute position, it
just captures co-presence events in the immediate vicinity.

This is an attractive consideration for those concerned with
revealing their actual location. Bluetooth is an established
method for capturing co-presence data, as exemplified by
the Reality Mining [1] project, Mtibaa et al. [2] and more
recently by Kostakos et al. [3] and the Mobius [4], [5]
project.

These co-presence events can be used to discover com-
munities of mutually co-present individuals. Such results are
interesting from a sociological perspective, but also from
a social computing point of view. This type of physical
community (as opposed to on-line community) can be used
in many socially-aware applications such as recommender
systems for social events, tools for collaborative work, or
opportunistic data forwarding in ad hoc networks.

A variety of techniques exist to identify these commu-
nities or groups, ranging from investigating the data by
hand to using complex algorithms. Manually identifying
communities is prohibitively time consuming; yet algorithms
often produce results that are difficult to verify or that are
inadequate. This is due to the inherent difficulties of finding
groups from co-presence events, especially with the larger
problem of communities that meet over time.

Various techniques exist for verifying collected social
information. Experience sampling methods [6] allow inves-
tigators to query participants about their neighbors during
the day. This can be useful, but surveys are often ignored or
may disrupt the community. End-of-day journaling provides
a way to avoid frequent disruptions, but can suffer from
forgotten events or interactions. Surveys taken after the com-
pletion of the entire study are also commonly used, but suffer
amplified effects similar to the prior method. One other com-
plication is that the mobile phones can discover strangers
often socialized with—known as familiar strangers [7]—
which a survey cannot confirm as their identity is unknown
to the participant.

The use of such validation techniques is demonstrated
by Mardenfeld, et al [8], where an after-study survey re-
vealed the GDC algorithm finds measurably better groups
than another popular community detection algorithm, K-
Clique. This survey does not help evaluate alternative group
detection algorithms, illustrating the need for some other
way to evaluate these results.

In surveying existing methods for social information



review, a number of shortcomings related to our problem
domain were identified 1. Some tools clearly show com-
munities, but hide the underlying co-presence events used
to detect those communities. As well, the nature of the
community over time is hidden, as most of the social infor-
mation tools lack temporal representation. While the tools
display the end result of the group detection algorithms and
may allow direct comparison between methods, comparison
against the social information used in the detection process
is impossible. An investigator cannot verify that a detected
community adequately expresses the membership of a group
over time.

This paper presents Temporal Interaction Explorer (TIE),
a tool designed to investigate co-presence and related com-
munity events. We began our design from a simple observa-
tion about the nature of the social information we collected.
As it was derived mechanically, it is devoid of the mem-
ory bias that might be introduced from human journaling
or other methods of record. Nearby communities will be
present in the record, as will familiar strangers [7]. Based
on this observation, the raw co-presence record represents
sufficient ground truth for detected community verification,
if a tool was developed to efficiently explore it.

TIE leverages the social information from which commu-
nities are discovered to enable easy verification of detected
groups. At the core of TIE is the ability to explore the raw
co-presence events independent of community information.
Communities are easily explored through a configurable
overlay system. Multiple overlays can be pre-configured,
allowing comparison of different detected community sets
against the same source data. TIE also enables deeper
exploration of specific co-presence events as recorded by
particular people; these reported records and the aggregate
opinion of all contributing records on member participation
in an event are featured, with the community overlay appear-
ing in a consistent fashion across all visualizations. These
interactive and powerful capabilities make TIE a valuable
tool in evaluating the results of community detection algo-
rithms.

In our own research, TIE has proven useful in evaluating
our community detection algorithms. We have used it to find
algorithm output errors that had otherwise evaded discovery,
and to identify strengths and weaknesses of detected com-
munities using the event exploration and overlay features of
TIE. It has also enabled us to compare the results of slightly
different detection methods.

Besides the communities of people that are the focus
of our research, TIE could be useful in the more general
case of data reducible to interactions over time between
entities. It can be applied to SMS or email interactions
to explore ‘communities’ of correspondents. Website visits

1These tools and their shortcomings are addressed in section II-B, Related
Work

could also be a form of interaction, as websites become
more focused on enabling user interaction. Online games
are a fast emerging medium that often involve significant
social interaction; there are a wealth of communities to
discover and validate within this venue. Alternatively, TIE
could be helpful in ornithological surveys of bird migration
and flock habits, or other animal community studies such as
ZebraNet [9] using data collected from tiny wireless sensors.

The rest of the paper is organized as follows. In Sec-
tion II, we provide background information for our research,
including data collection and community detection. We
also discuss similarities and differences of our tool from
existing social and temporal information exploration tools,
as well as related research on collecting and utilizing social
information. Section III presents the format of data TIE
expects. In Section IV, TIE’s design and implementation
are presented and discussed extensively. Section V describes
use-case experiences we have had using TIE, including
specific ways it has helped during the development of new
community detection methodologies. Finally, Section VI
presents conclusions and a few remarks on the future of
TIE.

II. BACKGROUND AND RELATED WORK

Before describing TIE in more detail, we will discuss
the nature of our work, including its social and temporal
aspects. This will serve as a background to the design and
implementation of TIE and help facilitate understanding of
our research area.

A. Background

The incorporation of social information into online and
mobile applications or services has become mainstream in
the past several years. Capturing information about social
groups formed through face-to-face interactions can enable
new and improved types of applications, like recommender
systems, collaborative tools, or socially aware content shar-
ing.

One way to identify this type of social group is to lever-
age information collected automatically from smart phones
carried by mobile users, such as location or co-presence.
Correspondingly, a group can be defined as a collection
of users who spend a significant amount of time together
and meet for a significant number of times. Discovering
such groups, however, is difficult: (i) group members do not
necessarily attend all group meetings, (ii) guests or people
who pass by the meeting location can appear to be part
of groups, (iii) group members spend different amounts of
time at meetings, (iv) the collected data is incomplete due to
sampling frequency and mobility, and (v) users may collect
different data for the same group meeting.

Our GPI algorithm [10] used location traces to identify,
with high accuracy and low false positives, groups and
their associated places. However, GPI requires a localization



system on every mobile device which may not be avail-
able (especially indoors), may have questionable accuracy,
requires significant battery power, and exposes significant
privacy concerns.

With this in mind we designed a new algorithm, Group
Discovery using Co-location Traces (GDC) [8]. It uses co-
presence traces to identify groups. A co-presence trace for a
user is a set of records of other users that are within a certain
proximity at the same time. GDC leverages the Bluetooth
discovery protocol to collect these traces. We also define
a user’s co-presence trace as their perspective, as two users
will ultimately produce a slightly different, although similar,
perspective on their overall co-presence, even when nearby.

To validate GDC, we collected one month of Bluetooth
co-presence data for a set of 141 students at NJIT. The
study took place on our medium size urban campus, and the
subjects were representative of the various majors offered on
campus; 75% were undergraduates and 25% were graduates.
Also, 28% were women and 72% were men.

Mobile phones were distributed to students, and a program
quietly recorded the Bluetooth addresses of nearby devices
using the Bluetooth discovery protocol. Discovery queries
occurred on each device at a random interval between 1 and
3 minutes. The randomness was introduced to minimize the
potential delays due to wireless collisions (which could lead
to losing records). Each discovery query took approximately
20-30 seconds to finish, and the local records were uploaded
to a server periodically. Note that this randomness, as well
as other environmental concerns (such as radio interference),
leads to the differences in perspective on co-presence men-
tioned previously.

With these co-presence records, we used GDC to dis-
cover a set of groups. These groups entail specific meeting
events, and are generated from the co-presence perspectives
contributed by the set of users. We presented the detected
communities to participants for validation, and our results
received positive feedback.

GDC ran on data collected at a central location. We
modified the design of GDC to run distributed over mo-
bile phones, which store co-location traces and calculate
groups locally. Phones exchange data directly with other
phones, and a localized GDC runs on available collected
records. This alternative formulation is called Distributed
GDC (DGDC).

DGDC benefits users with increased privacy; although
users share records, in general this is not private information
as the users physically saw each other. However, local record
exchange results in each user developing her own perspective
on communities. This can lead to significant difficulties in
evaluating DGDC results, as not all communities are fully
represented by all perspectives. Also, too much time has
passed to re-survey the original participants about the new
results. These challenges helped motivate the creation of
TIE, and guided our design and implementation.

B. Related Work
Besides our own work in community detection, there are

other well-known graph algorithms, such as K-Clique [11]
and WNA [12], that can be employed to detect communities
based on co-presence. They work by putting an edge in
the graph between any two users who have spent a certain
amount of time together. Unfortunately, since they use only
pair-wise information, there is no guarantee that their de-
tected communities actually spent any time together. Further-
more, the actual meeting times (events) of the communities
are lost.

The data we collected to evaluate GDC and DGDC
does not represent the only co-presence data available. The
Reality Mining project [1] collected some nine months of
co-presence data on nearly 100 subjects using Bluetooth.
They augmented their analysis of resulting communities by
incorporating other social information such as location and
phone call logs. A different study by Mtibaa, et al. [2]
collected Bluetooth co-presence of 28 subjects over the
course of a conference. They compared the resulting social
information against a declared list of social contacts, in
contrast to our interest in community discovery.

Another approach is introduced with Cityware [3], where
several thousand users voluntarily contribute Bluetooth
meeting information by running an application on their
mobile phones. Although for the purposes of the study
in [3] they were only interested in the presence or absence
of an encounter, their collection methodology (Bluetooth)
warrants interest.

Beyond human interactions, the ZebraNet [9] project
involved using radio and GPS sensors in a sparse sensor
network to accurately track the movement, interactions,
and migrations of zebra in Kenya. There is interest in the
biological research field concerning the social behaviors of
animals, and as such presents an interesting opportunity for
community detection algorithms and validation techniques.

A significant body of research has occurred concerning
tools and techniques for visualizing social information, gen-
erally as a graph or network. Vizster [13] is one such tool,
designed to allow interactive visualization of social networks
both large and small. For social information lacking a
temporal component, it is an effective tool; beyond this, it
falters.

Graph interaction libraries such as igraph [14] and
JUNG [15] also provide powerful tools for visualizing
and analyzing social information when in the context of a
network or graph, but again lack temporal expressiveness
without significant manipulation.

General frameworks for visualization such as Proto-
vis [16] and Prefuse [17] allow the creation of excellent
interactive data exploration environments. However, in our
case creating visualizations from programmatic primitives
proved simpler than using the interfaces of these frameworks
and finding ways to fit our data to their more general models.



We also believe that it is better to have a tool tailored for
reviewing co-presence communities given the rising interest
in social networking and social computing.

More closely related to TIE are tools for temporal data
visualization. A number of taxonomies exist [18], [19]
regarding the breadth of techniques and approaches for tem-
poral representation of information. While these taxonomies
give good general guidance in terms of best practices and
current practices, they do not address our specific domain,
that of visualizing co-presence social interaction information
over time.

An important distinction should be made here. Some
visualization tools exist that enable exploration of spatio-
temporal data, such as TimeMap [20], city-wide crime
investigation [21], and geovisualization mashups [22]. Yet
these tools and the data they visualize are fixed in space. Our
data lacks spatial characteristics; it involves relationships
between people and people, not between people and spatial
locations.

ActiviTree [23] provides an interesting approach to vi-
sualizing temporal information as a sequence of events,
mining such sequences from underlying ‘activity journal’
data common to the social sciences and enabling exploration
of significant events recorded in these journals. However,
bridging the gap between ActiviTree’s approach to its data
model and the far less clearly event-associated data model
of opportunistically recorded co-presence is difficult.

III. TIE DATA

In discussing TIE, it would be remiss not to describe in
more detail the data it is designed to visualize. There are
two components to the data; the first is a set of co-presence
events called the source data, and the second is a set of
communities or groups (of users) and their events called the
overlay data.

A. Source Data

Co-presence is simply defined as two entities being very
near each other at a particular moment in time. A co-
presence event is an expansion of this definition from a
particular moment to a span of time, with a clear start time
and clear stop time. Expanding from moments to spans is
easily achieved. All of the co-presence event data used with
the tool thus far was generated using a simple threshold
approach; if successive co-presence moments of two entities
occur within a particular time limit, these moments are
joined into a continuous event. This is done over all co-
present entities’ records of moments to form a set of co-
presence events.

These events can be recorded very simply as a comma
separated value file (.csv), and this is the format read by
TIE. Each co-presence event is recorded on a separate line,
and each line is formatted as follows:

Perspective ID, ID One, ID Two, POSIX Event
Start, POSIX Event End

Perspective ID refers to the string label identity of the
entity—person or device—contributing the event record.
Generally, the entity contributing is also one of the enti-
ties involved in the event reported, although occasionally
DGDC’s record exchange results in a reported co-presence
event where neither entity is the reporting entity. ID One
is the string label identity of the first entity involved in the
event. Similarly, ID Two is the string label identity of the
second entity involved in the event. The POSIX Event Start
is the Unix time encoded—expanded in this case to be the
number of milliseconds since January 1, 1970—start to the
event, and the POSIX Event End is the Unix time encoded
end to the event.

One aspect of this definition for input data is that it can be
expanded for any data source that fits the model described
above. Numerous other applications are conceivable as the
model needs only events shared between sets of two entities
with definite starts and definite ends in time. In fact, this in-
teraction dimension could be arbitrarily redefined to involve
any one dimension progression.

B. Overlay Data

The second aspect of input data involves groups (in
this context, equivalently called communities) of entities
in overlays. Groups are defined as a set of entities that
are mutually co-present for at least one event but possibly
more. As such, their representation as data is somewhat more
complicated, but still quite easy to describe. First, a set of
entity IDs indicates the members of the group. Second, a
set of start-end time pairs denotes the one or more events
associated with the community.

These records can be represented in a comma separated
value file (.csv) by a series of fields, with each complete
group and all group time events together on a single line.
Distinct communities should be represented on separate
lines, with each line formatted as follows:

Perspective ID, # of Entities (n), # of Events
(m), Entity 1, ..., Entity n, Event Start 1, Event
End 1, ..., Event Start m, Event End m

Perspective ID is often a moniker for the algorithm used
to generate the groups, but it can refer to the entity who
reported this community as relevant. The # of Entities field
controls how many entities are members of the group. The
# of Events field controls how many meetings, or events,
this community entertained. The remaining fields should be
numerous enough to fulfill the expectation of the ‘# of’
fields.

Note that the relative simplicity of this encoding model
means it is simple to construct overlays of any clustering
or community data related to the underlying co-presence
event data. For instance, with SMS and email, detected or



known communities of correspondents could be overlayed
for comparison against the underlying message record. Ex-
isting gaming communities—such as ‘clans’ or ‘alliances’—
could form an overlay to see how well the self-formed
communities of players correspond to their actual interac-
tions. Alternatively, known flocks of birds or algorithmically
reconstructed flocks for ornithological data could be set as
an overlay.

IV. DESIGN AND IMPLEMENTATION

While designing TIE, we had several considerations. Our
first consideration was that the information we wanted to
visualize involved at its core pairs of people interacting over
time. Whatever tool we built needed to involve people and
their temporal interactions. Next, we had to consider the
structure of communities formed from these people and their
interactions. We would need to find a solution to intelligently
display communities alongside the interaction timelines that
were leveraged to find them. Finally, we needed a way
to compare sets of communities discovered by different
detection methods for the tool to be useful.

This led us to three major objectives and visualization
goals in designing TIE. They are as follows:

1) Visualize the complete co-presence level interactions
of a set of people

2) Intelligently overlay distinct sets of communities and
their discovered interactions to allow visual investiga-
tion and comparison

3) Inspect more closely particular co-presence events
(social interactions reported by multiple people)

a) View all contributing records of a co-presence
event and show the people who contribute social
information about an event

b) View event record inverse by showing how many
people agree on a person’s presence at the event

These design objectives guided the implementation of TIE
and the data which it visualizes. All coding was done in
Java, and all graphical interfaces were built using Swing
(with some elements from AWT). What follows is a discus-
sion of how each objective is met through the design and
implementation of three visualizations and through a set of
simple user interactions.

A. Visualizations

The design for an effective visualization of co-presence
interactions is non-trivial due to its nature. For every user,
there are at least three considerations: when interactions
occur, who the interaction occurs with, and if the interaction
is mutually perceived. Mutual perception is not assured in all
cases, as it is possible for one person’s recording to detect
some individual, while that individual does not detect the
person in return.
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Figure 1. This figure shows how TIE represents social information con-
tributed by specific entities in the primary visualization. (A) the contributor
identity labels. (B) the ticks that fix events in time. (C) a particular co-
presence event. (D) a selected event perspective, colored in shades of gray.
(E) a related event perspective to the one highlighted by (D).

To clarify, as we discuss our visualization constructions,
it is worthwhile defining exactly what an event and a
perspective are in this context.

Event is a span of time where three or more people are
co-present
Perspective is the recorded perception by a single
person of who was nearby during an event

Further, two people who were present at an event may have
different perspectives on the event, differences that may
include when it began, when it ended, and who participated.
This is why only by viewing and investigating all perspec-
tives of people present at an event can a true understanding
of the event be formed, and is also at the heart of why
discovering communities from events is challenging.

In the following, we present the three main TIE visual-
izations. The primary visualization shows all perspectives
of all people over all events at once, and addresses the first
objective of showing the complete co-presence record. The
isolation visualization accomplishes the first part of the third
objective by enabling investigation of all the perspectives
that contribute to a particular event. The intensity visualiza-
tion shows, instead of contributed perspectives, the aggregate
opinion on a particular person’s presence at an event over
all moments of the event. It shows how recorded presence
opinion can change over the course of an event. This
achieves the second part of the third objective. Finally, the
second objective is achieved by a community overlay feature
that consistently appears across all three visualizations. The
relationship between communities and the event perspectives
that generated them can be investigated with the same detail
as the events and perspectives already described.

1) Primary: The primary visualization of TIE shows all
perspectives on when all interactions occur and how many
people were involved in each interaction according to each
perspective. This is a subset of the three objectives, and can
be achieved in a compressed three dimension space. The



vertical axis is used to stack perspectives, the horizontal axis
shows events in time, and color intensity of points within
perspective timelines indicates the number of involved peo-
ple at that moment. With this construction, we achieve our
first objective of visualizing the complete co-presence level
interactions of a set of people.

Figure 1 illustrates the implementation of this design.
Each contributing user is represented as a separate row. Each
row visualizes the timeline of co-presence events recorded
by an entity, known as a perspective. All rows show the
same period of time, with events inside the timeline given
a specific color. A two-person co-presence event is colored
light yellow, to illustrate it only. Events observed involving
three or more people are colored by shades of red—indicated
as (C) in Figure 1. Full red indicates the maximum number
of people observed at any one time within that perspective,
while lightest red indicates three person co-presence. In this
way, all perspectives of all entities are clearly shown, with
individual perspectives separated vertically and a unified
timeline of events color-coded horizontally.

The primary visualization’s construction gives insight into
who the most active users are, which events are repeated in
time, and what times of day or week are more active than
others. This kind of exploration into overall co-presence data
enables deeper understanding of recorded interactions.

To review, this first window is named the primary visu-
alization; it displays all perspectives on events together for
consideration. On selection of an event, two new windows
are generated. First is the isolation visualization, which
displays perspectives related to the selected event and all
surrounding events of contributing users. Second is the
intensity visualization, which displays an aggregation of
people’s perspective-based opinion on the presence of each
person at every moment in time (Figure 2 shows these
visualizations together).

2) Isolation: The isolation visualization is a focused
subset of the primary visualization. Data is represented the
same way visually; additionally, the isolation visualization
displays the identities with whom interaction occurs via a
‘tooltip’ overlay, accessible moment-by-moment on a per
perspective basis. The perspective subset is hinged around a
single event from the primary visualization, and all perspec-
tives related to that event—both in time and in presence—
will be included in the isolation visualization. This achieves
the first part of the third objective, which is to show the
perspectives of the people who contribute social information
about an event.

In the implementation, a particular co-presence event
is investigated by clicking on the event in the primary
visualization. Figure 2 illustrates the result of selecting an
event. Beyond generating two new visualization windows,
the primary visualization is also modified slightly to indicate
which events from the overall timeline are involved in
the isolation and intensity visualizations. Specifically, the

(E) Blind Set

(D) Side Events(B) Max Set

(F) Silent Set

(G) Momentary(H) Cumulative

(C) Related Events

(A) Selected Event

(G) Momentary

Strength-of-Presence

(H) Cumulative

Strength-of-Presence

Figure 2. This figure illustrates the various classifications of event
perspectives and how they are represented in TIE. (A) a selected event
perspective. (B) all the identities that contribute perspectives related to
the selected event. (C) related events, shaded in green. (D) events part
of contributing perspectives but not related to the selected event. (E)
perspectives with no related events but were observed in related events. (F)
observed identities that offer no perspective on the selected event. (G) the
moment-by-moment aggregate opinion of all perspectives on a particular
identity’s observed presence. (H) the summation of all momentary opinions
as a percentage scaled against total viewed time.

selected event is re-colored in shades of gray, as shown by
label (D) in Figure 1. The selected event is used to find three
sets of entities related to this event.

The first set is known as the max set, and it includes all
those whose perspectives include events that are related to
the selected event (see (B) in Figure 2). We define a related
event as one that shares at least one observed identity with
the selected event and overlaps it in time. Those related
events recorded by users in the max set are colored in shades
of green in both the primary and isolation visualizations.
Reference Figure 1’s label (E) and Figure 2’s label (C) to
see how they appear.

Once all related events and the perspectives that con-
tributed them are identified, a complete time range can be
denoted. Other events within this extent that are not strictly
related but are within the perspectives of the max set are also
displayed in the isolation visualization. To set them apart,
they are colored in shades of blue, as shown in Figure 2’s
label (D).

A second set is known as the blind set. These are entities
who were recorded in max set events, but who do not
themselves contribute any events to the max set. They do
however, have recorded events within the extent; these are
colored in shades of blue in both the isolation and primary
visualizations (see Figure 2, label (E)).

The third set is known as the silent set. These are users
who were seen, but neither contribute to the max set, nor
have any recorded events within the extent, as demonstrated
in Figure 2’s label (F).

Perspective timelines are sorted by contributing event sim-
ilarity to the selected event, where similarity is a measure of



observed identity set overlap and time overlap. Perspectives
that do not contribute are arbitrary ordered subsequent to
those that do.

The isolation visualization makes it simple to see how
perspectives overlap in creating a unified perspective on
a particular event. It also highlights the differences in
perspectives that make identifying shared or global per-
spectives difficult. In evaluating DGDC, it allowed us to
identify when a community has been discovered but lacks
mutual confirmation from other perspectives. The moment-
by-moment ‘tooltip’ overlay shows that the identities seen in
one perspective appear as members of the blind or silent sets,
demonstrating any communities detected from this event are
flawed (as seen in Figure 6).

3) Intensity: The intensity visualization, instead of re-
producing what is reported by each perspective, shows the
level of agreement of those perspectives. The vertical axis
is used to stack event participants, rather than perspectives
as previously. The horizontal axis still represents time, but
the color intensity of points within that timeline indicate
the number of contributing perspectives who agreed on the
presence of the participant at that moment. The identifiers
of the perspectives that contributed to this agreement are
visible through an interactive, moment-by-moment ‘tooltip’
overlay. The remaining goal of the third objective is achieved
by this design, to show how many people agree on a person’s
presence at an event.

This final visualization is dynamic and interactive, al-
lowing a tuned set of event perspectives within a specific
time frame to alone form the display of aggregate opinion.
This intensity of agreement, called ‘Strength-of-Presence’
and shown as label (G) in Figure 2, on an entity’s presence
at a particular point in time is shown in shades of red. If
all contributing perspectives agree on an entity’s presence,
it will appear as full red. If only one perspective records
a particular entity as present, it will be lightest red. Fi-
nally, the aggregated cumulative strength-of-presence of an
entity’s presence over the selected time frame is shown as a
percentage bar and number surrounding each identity label
(highlighted by label (H) in Figure 2).

B. Overlay

The second objective is achieved through a consistent
overlay displayed in each visualization. When enabled, the
overlay will show community event information as color
coded bars drawn in the timelines of each participant who
is a member of the community. Since each participant
may be a member of multiple communities whose events
overlap, these color coded bars are vertically stacked within
each participant’s timeline. This is done in a consistent
fashion throughout all three visualizations, so that individual
communities can be clearly identified and compared.

In the isolation and intensity visualizations, the overlay
functionality shows where in the timeline and for which

(B) Overlay of Identities Seen(A) Complicated Event Selected

(D) Restricted in Time(C) Restricted in Perspectives

Figure 3. This figure demonstrates a sequence of actions. Quadrant (A)
shows the three visualizations after an event is selected. (B) illustrates
the ‘tooltip’ overlay of who was seen at the moment in the perspective
underneath the mouse cursor. (C) shows the effect of middle-clicking
a moment in a perspective, which restricts the isolation and intensity
perspectives to who was seen in that moment. (D) demonstrates the impact
of selecting a time span in the isolation window. The three mutually co-
present individuals and the event they share are confirmed in the intensity
visualization.

perspectives community events were identified. This allows
simple comparison of the overlay communities to the raw
co-presence perspective data. These features and highlights
enable the isolation and intensity displays to be very useful
in comparing ground truth data with detected groups.

With this relatively simple, but clear and uncluttered
design, all three major objectives of TIE are accomplished.

C. Shared Features

All three visualizations share certain features for consis-
tency. First, there is a border on the far-left of each visu-
alization that lists the identity attached to each perspective
time-line (see Figure 1, label (A)). Second, there is a top
border of ticks indicating significant marks in time, labeled
in the figure as (B) (it is automatically adjusted for zoom
level in the primary visualization to prevent crowding when
zoomed out). Third, the time-line perspective space of each
visualization has scroll bars which appear if necessary to
allow all visualization data to be accessible. Lastly, in the
middle of each perspective time-line is a very light gray line
to assist investigators in visually matching events within a
timeline to the contributing identity.

In addition, the isolation and intensity visualizations have
in the top-left corner a text label indicating the length of time
represented by the time-line perspective space. It is displayed
as hours and minutes; seconds precision is not included
due to space considerations. Note that for the primary and
isolation visualizations, selections are indicated by applying
a gray mask to all unselected data and inverting the colors
on unselected identities in the identity list (see Figure 4).
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(C) Clear
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Figure 4. This figure shows a small set of perspectives selected in the
primary visualization. All unselected perspectives are grayed out, and only
event perspectives that involve the selected identities are drawn.

D. Advanced Interactions

The tools to control the intensity visualization set of
contributing perspectives and time frame are quite simple.
Initially, all perspectives and the entire time-extent as shown
in the isolation visualization are included in the intensity
visualization, as shown by quadrant (A) in Figure 3. Left-
clicking on an identity in the identity list of the isolation
perspective restricts the contributing perspectives to that
entity alone. Clicking additional identities includes their per-
spectives in the visualization. Alternatively, middle-clicking
on a particular perspective’s event restricts the intensity vi-
sualization to the entities seen in that event, demonstrated by
quadrant (C). Hovering the mouse over the perspective event
shows which identities were recorded by that perspective in
that event, shown in (B). Left-clicking in the timeline sets
the starting extent of the intensity visualization to that point
in time. Right-clicking similarly sets the end of the extent.
In this way, a few clicks allows the intensity visualization
to be restricted to just a particular set of perspectives over
a carefully selected time-frame, as shown in quadrant (D).

Such control allows a much more dramatic confirmation
of groups contributed by overlays, by selecting the enti-
ties whose perspectives involve the overlay group and by
restricting the time-line to match the overlay group. This
confirmation of mutual agreement on entity presence is a
powerful resource in investigating overlay groups, which are
also shown on the intensity visualization. Such confirmation
is demonstrated in quadrant (D), where three overlay com-
munities (one for each identity) are clearly validated by the
restricted intensity visualization.

There is a simple set of controls for manipulating the
display in the primary visualization. Left-clicking the mouse
on a red-colored event marks that as the selected event,
and the isolation and intensity visualization displays are
reset as described previously. Left-clicking on an identity
from the list redraws the primary visualization to show only
events that involve the selected entity. Clicking on additional
identities expands the restriction to events that involve any

Figure 5. In this figure, a zoomed-out perspective on the data set is shown.
The relatively sparse nature of our dataset can be seen from this view.

of the selected entities, as can be seen in Figure 4.
There are two buttons located in the top left of the primary

visualization that manipulate the selection. The left button
clears the current selection (identified as (C) in Figure 4).
The right button adds to the selection all identities whose
events involve the entities that are already part of the
selection (identified as (B) in Figure 4). Note that clicking
an identity that is already part of the selection removes it
from the selection.

These controls for manipulating selected identities allow
an investigator to explore the interactions between perspec-
tives on a data-set scale. For instance, one could click on
a particular identity, and as all other identity information
is visually suppressed, only the selected identity and those
other identities who directly interacted with the selected
identity appear, giving insight into the overall interaction
behavior of that individual.

Right-clicking the mouse in the main display cycles
between configured overlays. This allows very simple com-
parison between group detection algorithms, as well as the
capacity to investigate particular overlays by themselves. As
these overlays pervade each visualization, switching between
overlays allows comparison at each level of co-presence and
community interaction.

For mice with a middle button, clicking it on the main
display cycles the zoom. By default each horizontal pixel
represents a minute; each click modifies this ratio. The
second zoom level is one pixel represents two minutes; the
third level is one pixel for five minutes, and so on. By
cycling through the zoom levels, it is possible to see the
entire span of time-line data in one screen. This gives TIE
users unparalleled ability to analyze the whole dataset at a
glance, as demonstrated in Figure 5.

V. EVALUATION

In our own research, TIE has proven useful in evaluating
our community detection algorithms. Using TIE, we rapidly
identified a significant algorithm implementation problem
that went undetected for quite some time. A coding error in
one version of DGDC resulted in groups that spanned several
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Figure 6. In this figure a selected event perspective reports three people
seen, but two are silent as shown in the isolation visualization. The intensity
visualization reinforces this, as the person claiming the event is absent from
this visualization.

weeks of continuous time. These spurious groups appeared
as color coded bars that spanned the entire visualization
timeline without break when the overlay was active. As
typical overlay communities represent constrained events
(often less than three hours in length), events spanning
weeks of time made identifying the error’s presence very
simple. Prior to TIE, this small number of affected groups
remained undetected in spite of numeric analysis and manual
inspection of the raw comma separated data. With TIE,
setting the distributed algorithm results as an overlay allowed
us to identify the existence of an error, which we quickly
correctly.

Validating the results of DGDC provided further insights.
In DGDC, each person generates groups based on informa-
tion they have collected. These groups are not confirmed
by other people, which can result in groups that are only
observed in a single perspective. As TIE distributes overlay
group events over all the identities claimed to be in the
group, the absence of confirming perspective information
can be seen when only one perspective is shown but three
identities are listed in the isolation visualization. The other
two identities are silent, lacking any confirming perspective
information. This situation can be seen in Figure 6.

In some cases, confirmation of results is clear from
quickly referencing the data shown in the isolation and
intensity visualizations against an overlay, as shown in
Figure 7. Here, all four perspectives claim to see the three
other identities involved in the group, and the group from
the overlay correspondingly appears in each perspective,
meaning the algorithm correctly identified this group event.
The one person appearing to ‘pass by’ was not included in
any overlay group here, as one might expect of a proper
community detection algorithm.

In other cases, confirmation is not so clear. As shown
in Figure 8, multiple overlay groups cover what appears
to be a single event in the source data, but an event that
is not mutually confirmed by all claimed participants (as

Primary Visualization

Isolation VisualizationIsolation Visualization

Intensity Visualization

Figure 7. This figure demonstrates a straightforward confirmation of
mutual co-presence. Four people contribute significant perspective infor-
mation in the isolation visualization, and their perspectives confirm each
other’s mutual presence as demonstrated by the high cumulative strength-
of-presence in the intensity visualization.

Primary Visualization

Isolation VisualizationIsolation Visualization

Intensity Visualization

Figure 8. Unlike Figure 7, the event seen in this figure involves five
contributing perspectives but only three of the five perspectives mutually
confirm each other’s presence. Two people, probably at opposing edges
of the group, did not detect each other. This is reflected by their 75%
cumulative strength-of-presence in the intensity visualization.

demonstrated in the intensity visualization). Two people
were unable to see each other but saw all other members
of the group. Likely they are one community, but somewhat
distant from each other during detection.

Generally, the intensity visualization is helpful in deter-
mining the overall opinion about the presence of a particular
entity at a particular event. This is useful for identifying
which users may have been just at the edge of co-presence
detection, or perhaps were near the middle of two groups of
entities unable to clearly detect each other.

The combination of tools within TIE gives an investigator
many resources for evaluating the strengths and weaknesses
of particular community detection methods and implemen-
tations, and forming improvements or tweaking thresholds
while designing new or improved methods.

VI. CONCLUSION

Due to people mobility, unpredictable meeting patterns,
and co-presence recording issues, detecting co-presence
based communities with high accuracy is difficult. Currently,



there is no simple way to verify the accuracy of algorithms
for co-presence community detection or to compare the
results of such algorithms.

The Temporal Interaction Explorer (TIE) is a powerful
companion in the search for clear confirmation of commu-
nity detection results. Using the three distinctly purposed
visualizations, an investigator can quickly examine how
well a particular group or set of groups compares with the
ground truth of actual recorded co-presence data. This allows
existing methods to be efficiently evaluated for strengths and
weaknesses, and allows new methods to undergo equivalent
scrutiny without falling to the ambiguity of a lack of
participant confirmation.

TIE, while useful in its current incarnation, has the
potential for many future improvements. Adding more tools
to manipulate the overlay within the application is one
goal, as this would help reduce the potential for error
introduced by manually manipulating the overlay input files
to restrict which portions of the overlay to display. As
well, enabling session saving, results marking, and dynamic
loading/unloading of overlays and source data will greatly
enhance the usability of the tool.

Our hope is that this tool becomes useful in more contexts
than just our field of interest. Social scientists, ornithologists,
and other researchers working with data that fits the models
described could benefit from this tool and the ease it lends
to dataset exploration and results confirmation.
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