
PAMPAS: Privacy-Aware Mobile Participatory Sensing
Using Secure Probes

Dai Hai Ton That†, Iulian Sandu Popa†,‡, Karine Zeitouni†, Cristian Borcea?

†DAVID Laboratory - University of Versailles Saint-Quentin, Versailles, France
‡INRIA Saclay-Ile-de-France, Palaiseau, France

?Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA
{dai-hai.ton-that,iulian.sandu-popa,karine.zeitouni}@uvsq.fr, borcea@njit.edu

ABSTRACT
Mobile participatory sensing could be used in many appli-
cations such as vehicular traffic monitoring, pollution track-
ing, or even health surveying. However, its success depends
on finding a solution for querying large numbers of users
which protects user location privacy and works in real-time.
This paper presents PAMPAS, a privacy-aware mobile dis-
tributed system for efficient data aggregation in mobile par-
ticipatory sensing. In PAMPAS, mobile devices enhanced
with secure hardware, called secure probes (SPs), perform
distributed query processing, while preventing users from
accessing other users’ data. A supporting server infrastruc-
ture (SSI) coordinates the inter-SP communication and the
computation tasks executed on SPs. PAMPAS ensures that
SSI cannot link the location reported by SPs to the user
identities even if SSI has additional background informa-
tion. In addition to its novel system architecture, PAMPAS
also proposes two new protocols for privacy-aware location-
based aggregation and adaptive spatial partitioning of SPs
that work efficiently on resource-constrained SPs. Our ex-
perimental results and security analysis demonstrate that
these protocols are able to collect the data, aggregate them,
and share statistics or derived models in real-time, without
any location privacy leakage.

CCS Concepts
•Information systems→Mobile information process-
ing systems; •Security and privacy → Security in
hardware;

Keywords
Location privacy; secure protocol; distributed architecture;
mobile participatory sensing; spatial aggregates

1. INTRODUCTION
There is an increasing interest in mobile participatory

sensing for urban monitoring, which appears to be a bet-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’16, July 18-20, 2016, Budapest, Hungary
c© 2016 ACM. ISBN 978-1-4503-4215-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2949689.2949704

ter alternative to traditional infrastructure-based sensing to
cope with the high installation and maintenance costs, as
well as the coverage limitation. Many projects have been
conducted recently around the world - or are still ongoing -
in the area of environmental participatory sensing [15], such
as Citi-Sense in Oslo, CamMobSens at Cambridge, Met-
roSense at Dartmouth, and OpenSense in Switzerland. Also,
many applications that exploit the sensing features of smart-
phones are already available. Examples include community
based traffic monitoring (e.g., Waze1, or Navigon2), finding
available parking spaces or noise mapping [9]. In addition,
the emerging lightweight low-cost sensors are changing the
paradigm of environmental and health monitoring3, and al-
low measuring in real-time the individual exposure to envi-
ronmental risk factors or the propagation of an epidemic.

In these scenarios, the community members act as mo-
bile probes and contribute to spatial aggregate statistics,
which in turn, benefit the whole community, e.g., dynamic
traffic navigation or air quality mapping and alerts. Vari-
ous statistics are of interest: basic count and density, av-
erage of reported measures by location and time, or more
complex geo-statistical operations such as spatial interpo-
lation [14]. Unfortunately, most current mobile participa-
tory sensing systems (MPSS) require users to reveal their
locations to trusted monitoring servers, which raises seri-
ous privacy concerns because user identity could be deter-
mined based on several locations that are linked to the same
user [7]. We should stress that, even if users might trust a
centralized service, privacy violation examples are legions
(see for example DataLossDB.org) coming from negligence,
abusive use, internal or external attacks, and such violations
affect even the most secured servers. In addition to location,
sensing data reported by users could be privacy-sensitive as
well. These privacy issues prevent a wide adoption of MPSS.

Several works consider the MPSS privacy problem such
as [9], [5], [8], [17], [18]. However, most approaches re-
quire trusting a proxy server [8], [18], while others are too
costly [9], [5], or sacrifice sensing accuracy for privacy [17].

Hence, providing a high-quality MPSS, while protecting
the users’ privacy, is still a challenge. Recently, the emer-
gence of personal secure devices has opened new perspectives
in personal data protection. Be it a secure portable token [1],
[19] communicating with the user’s smartphone or plugged
inside it (e.g., Google Vault4), a tamper-resistant hardware

1http://www.waze.com
2http://navigon.com
3http://www.epa.gov/heasd/airsensortoolbox/
4http://www.cnet.com/news/googles-project-vault-is-a-

security module securing the on-board computer of a vehi-
cle [10], or the secure TrustZone CPU [2] of the ARM cortex-
A series equipping most of mobile devices today, all such
secure devices offer tangible, hardware-based security guar-
antees. We leverage their secure data processing capability
in a distributed, privacy-by-design architecture, providing
an alternative to the traditional server-centric architecture.
Our belief is that, similar to TrustZone CPU, such secure
devices will become ubiquitous in the near future, equip-
ping by default users’ mobile devices. As such, there will be
no need for users to buy and connect external hardware to
participate in MPPS applications.

This paper presents PAMPAS, a Privacy-Aware Mobile
Participatory Sensing system for efficient mobile distributed
query processing in the context of MPSS. The novelty of
PAMPAS is two-fold: (1) it provides a system architecture
that protects users’ location privacy by preventing location
tracking from any third-party server; and (2) it provides effi-
cient aggregation protocols that satisfy the MPSS real-time
constraints in spite of the resource limitations of secure de-
vices. The privacy guarantee gives users strong incentives for
participation [11], in addition to the benefits they get from
MPSS applications. In PAMPAS, all participants have a mo-
bile device enhanced with secure hardware (i.e., any of the
types described above), called a secure probe (SP). SPs act
as probes for the target phenomenon, perform distributed
query processing, and share the results with the users. The
secure hardware prevents users from accessing other users’
data during the distributed computation. Secure probes ex-
change data in encrypted form with help from a support-
ing server infrastructure (SSI). To provide real-time results,
PAMPAS employs efficient, parallel, location-based aggrega-
tion protocols which partition the probes according to their
geographic distribution. The construction and the mainte-
nance of these partitions aim at reducing and balancing the
workloads on worker SPs, while precluding the SSI from do-
ing location-based inference attacks against the participants.

We implemented and validated PAMPAS using represen-
tative secure hardware platforms. We used two applications
for experiments, traffic and noise monitoring, with both real
and synthetic datasets representing small and medium-size
cities. Using these applications, we compared PAMPAS
with a state-of-the-art secure aggregation protocol described
in [19]. The experimental results show that PAMPAS out-
performs this protocol in terms of latency and scalability,
which translates to much lower resource utilization at the
user side.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 describes the system
architecture of PAMPAS, the threat model, and the protocol
requirements. Section 4 presents the location-based global
aggregation protocol, and Section 5 describes the privacy-
aware probe partitioning protocol. The security analysis is
presented in Section 6, while the experimental results are
shown in Section 7. We conclude the paper in Section 8.

2. RELATED WORK
Traditional system architectures used in MPSS such as [8],

[18] rely on a centralized server to collect data from mo-
bile participants, process it, and publish the results. This
server-centric model is straightforward and easy to deploy,

security-chip-disguised-as-an-micro-sd-card/

run, and maintain. However, this basic approach also raises
serious privacy concerns and prevents a wide adoption of
MPSS. An attacker who is able to link several location re-
ports to the same user can then determine the identity of
the user by leveraging, for example, background information
(e.g., user home address). Thus, an attacker can identify the
MPSS participants and infer their personal habits and activ-
ities [7]. In addition to location which is normally included
in MPSS reports, the sensing data reported by users could
be privacy-sensitive as well. The works that address this
issue belong to three classes: (1) server-centric architecture
and (2) cryptographic protocols for MPSS, and (3) secure
hardware devices in other contexts.

Server-centric approaches. Virtual trip lines (VTLs) [12]
deal with the privacy issue by distributing the traffic moni-
toring service implementation across several specialized servers
and by providing a spatio-temporal cloaking of the users
under the VTLs. Although the attack of a single system
component prevents linking the identity and location of the
users, choosing privacy-insensitive locations for VTLs is tricky
and limits the traffic information to a part of the road net-
work. Also, the problem of multi-component attack (or col-
lusion) remains, as well as the high cost of building such a
complex system distributed over several components. SpotMe [17]
proposes a different approach consisting in mixing real user’s
location with fake locations before posting them to a central
server. Then, the server estimates the aggregated user loca-
tions by using probability theory. However, the estimation
errors can be important (around 20%), while the number of
observed spatial units cannot exceed a few hundreds. Also,
SpotMe involves higher communication costs because of the
large number of fake locations, while linkability may still be
a problem for users who send many consecutive location up-
dates, which limits the usability of this approach to sporadic
updates.

By employing a fully decentralized architecture for com-
putation, PAMPAS avoids all the above listed problems.
Moreover, the trust is enforced by using cheap but highly
secure, tamper-resistant hardware at the user side.

Cryptographic approaches. Another way to protect
the users’ privacy is to use secure cryptographic protocols [5],
[9], [16]. Typically, the cryptographic solutions are based on
homomorphic encryption schemes allowing a central-server [16]
or the users [9] to aggregate the samples directly on the
cyphertext. However, the cryptographic methods have to
face two major limitations. First, homomorphic encryp-
tion only allows the computation of basic aggregate func-
tions (e.g., count, average, standard deviation), while more
advanced functions require fully homomorphic encryption
schemes, which are not computationally feasible today. Sec-
ond, even with the basic aggregate functions, the crypto-
graphic protocols can incur a large computation and com-
munication cost [5], [16]. Hence, the existing works typi-
cally limit the size of the monitored space (e.g., the number
of roads) and the monitoring frequency. Therefore, such
solutions cannot meet the scalability and the real-time re-
quirements of MPSS at the same time, and are not generic
w.r.t. the type of aggregate function.

Secure hardware approaches. Recent works have also
proposed the use of secure hardware at the user-side [1],
[19]. The trust in such a distributed architecture in which all
computation is done by user devices arises from two sources:
(i) the decentralization, i.e., there is no central-server to be

trusted or to be exposed to attacks having a large bene-
fit/cost ratio; (ii) the (tamper-resistant) secure hardware at
the user-side, which protects the devices against physical
attacks (even from the device holder).

In [1], Allard et al. propose METAP, a privacy-preserving
data publishing protocol in the context of an architecture
composed of low power secure devices and a powerful but
un-trusted server in order to release sanitized data to third
parties. However, this data publishing protocol does not
consider the case of spatiotemporal sensed values and cannot
be used in participatory sensing aggregations. To et al. [19]
propose a similar architecture, but consider the problem of
executing SQL queries over a distributed database without
revealing any sensitive information to central servers. Con-
sidered in our context, this protocol incurs high computation
and communication costs because of the specificity of MPSS
aggregates (e.g., the aggregate groups are locations, there is
a high number of such groups, the computation is contin-
uous and should follow the data generation frequency, the
aggregate functions can be complex such as spatial interpo-
lation).

PAMPAS shares the idea of employing a user-centric de-
centralized architecture with the above mentioned works.
However, unlike existing protocols, its secure aggregation
protocol is adapted to MPSS requirements, i.e., high dynam-
icity of the participants, real-time constraints for computa-
tion, complexity of the aggregate statistics, and low resource
utilization.

A centralized solution based on secure hardware could
also be devised using recent proposals to ensure shielded
application execution over untrusted servers. For example,
Haven [3] extends the hardware level protection features pro-
vided by the Intel SGX architecture from code snippets to
the entire OS. But there are limitations: this solution slows
down the computation substantially; the entire security ar-
chitecture depends on the chip manufacturer’s ability to pro-
tect the secret keys; programmers will miss certain features,
such as process creation, that are not supported.

3. SYSTEM OVERVIEW
This section presents the system architecture of PAMPAS,

the threat model in our system, and the data and compu-
tation model of the system. Based on these elements, we
derive the requirements for the PAMPAS protocols.

3.1 System Architecture
PAMPAS relies on a hybrid architecture combining secure

elements at the user side (secure probes – SP) and a sup-
porting server infrastructure (SSI) that enables secure ex-
change of messages between the mobile users. SPs and SSI
jointly run two protocols to exchange sensed sample updates,
continuously compute the spatially aggregated results, and
periodically partition SPs according to their location. This
architecture fully protects the users’ privacy w.r.t. the SSI.
Figure 1 shows the general architecture of our system in the
context of traffic monitoring.

Compared to a purely decentralized peer-to-peer (P2P)
architecture, this hybrid architecture has the salient advan-
tage of not consuming any resources from the participants to
maintain the P2P overlay, which is important given the low
resources and availability of the user devices. In addition, it
exchanges messages between SPs in O(1) hops as opposed
to the typical O(logN) hops in P2P networks.

Figure 1: System architecture

Secure Probe (SP). Each user holds a secure portable
device, which can be implemented by any type of (tamper-
resistant) secure devices flourishing today (see Figure 2) and
described in Section 1. Whatever its commercial name and
form factor, a secure device, called secure probe (SP) here-
after, embeds at least a secure micro-controller (MCU) for
computation (e.g., a smart card chip) connected to a large
NAND Flash memory for data storage (e.g., an SD card).
An SP plays three roles: (i) mobile probe, (ii) processing
node, and (iii) query issuer. The SP sends encrypted sam-
ples (containing spatiotemporal sensed measures) to SSI,
participates in the data aggregation, and receives the final
results from other SPs with the help of SSI. Given their high-
level of security, SPs are considered trusted in our system.
However, this feature comes at a price. The MCU usually
has a low power CPU and a tiny RAM (a few tens of KB).
In addition, SPs have low availability since they can be con-
nected/disconnected as required by the users. Therefore, all
the computation and communication with the SPs have to
be highly optimized.

Figure 2: Examples of secure tokens

Supporting Server Infrastructure (SSI). Different
from the typical server-centric architecture, the SSI in our
system acts only as a coordinator for exchanging messages
between the SPs and for temporary storage purposes. Since
the SSI is not trusted, all the temporary results stored in
the SSI are encrypted using non-deterministic encryption.

In conclusion, the security and privacy in PAMPAS arise
from the combination of secure hardware with a high degree
of distribution of the architecture (i.e., all computations are
executed by some of the SPs). The challenge is then to be
able to continuously compute any type of aggregate func-
tions in real-time in this user-centric architecture given the
low resources of the SPs.

3.2 Threat model
The attackers in PAMPAS could be either users or the

owners of SSI. Their goal is to collect private user infor-
mation (e.g., location or sensing data). Using this private
information, attackers can determine the user identities and
learn their activities and behaviors. Our goal is to ensure
that users cannot read the raw data reported by other users.
The SSI must not be able to read the user raw data. Also,
the SSI must not be able to infer any additional location in-

formation about the participants more than it already knows
or could be inferred from the aggregate result. Hence, the
scope of PAMPAS is to fully protect the raw data and the
aggregation process, and does not consider the privacy ex-
posure risks that arise from analysing the aggregate results,
which is a complementary aspect of this work.

Even though the users are untrusted, we assume that all
the SPs are trusted, which is reasonable considering that
the tamper-resistance of the MCU provides a high level of
protection against physical and side-channel attacks, and
in particular for the data residing in RAM since the RAM
memory is located inside the MCU. We also assume that the
hardware manufacturer is trusted and protects the secrets
embedded in SPs. In addition, all the persistently stored
data in the NAND Flash is cryptographically protected.

Furthermore, we assume an honest-but-curious threat model,
i.e., the SSI obeys the protocol it is supposed to do, but
may try to infer anything it can from the data or behaviors
is sees. Considering a malicious SSI (i.e., the server tam-
pers with the protocol, e.g., by dropping messages to infer
more information) is of little interest, since a malicious SSI
can be easily detected (e.g., the SPs that aggregate the data
verify if their own samples are present in the data sent by
the server) leading to critical financial/legal consequences
for the service.

Finally, we assume that the communication between SPs
and SSI is anonymous, e.g., by using a proxy forwarder or
an anonymization network (e.g., Tor) We assume such sys-
tems are able to hide the packet origin from an adversary, so
that privacy cannot be compromised by a malicious server
searching to recognize the origin of the uploaded messages.
Let us emphasize that IP anonymity is not enough to pro-
tect the user privacy in MPSS because identity information
could be determined from the location and sensing data.

3.3 Data and Computation Models
Data model. PAMPAS is designed to be generic with

respect to the type of computation required by participa-
tory sensing applications. In most cases, such applications
require the aggregation of geo-localized and time-stamped
sensed values collected by the sensing devices of the partic-
ipants. Therefore, a participant’s device periodically gener-
ates an update in the form sample = (location, time, value),
which is encrypted and sent to the SSI. PAMPAS does not
impose any restriction on the generation frequency of sam-
ples, which may depend on the application sample genera-
tion policy. However, the system should be efficient and scal-
able for a large number of participants and a high generation
frequency of samples. Also, the participants’ privacy should
be fully protected independent of the number and spatiotem-
poral distribution of the samples. Furthermore, PAMPAS
considers two types of locations corresponding to the two
typical types of movements of users: (i) free movements in
the two-dimensional space, i.e., location = (x, y); (ii) move-
ments constrained by a transportation network (e.g., road
or railroad network), i.e., location = (rid, pos), where rid
is the road identifier and pos is the relative position on the
road. Finally, the value corresponds to the sensed measure
(e.g., traffic speed, noise level, etc.).

Query model. Given a stream of samples and an aggre-
gate function, PAMPAS produces a spatiotemporal aggrega-
tion of the sample stream such as the stream-SQL-like [13]
query formulation in Figure 3. The aggregation is tempo-

ral since the result is computed continuously over time as
long as it is required or whenever the number of partici-
pants exceeds some predefined threshold. In this way, the
spatiotemporal evolution of the measure of interest is mon-
itored over time. To this end, PAMPAS divides the stream
using a sliding time window (see Figure 3) and computes
an aggregate result based on all the samples generated in
the time window. The final aggregation result is a spatial
function representing the evolution in space of the observed
measure in the respective time window. For instance, the re-
sult can be the noise heat-map in the covering area of a city
or the average travel time in a road network. As with the
duration of observation, we do not impose any restrictions
regarding the extent of the observed space.

Figure 3: Spatial-temporal aggregates in PAMPAS

Spatial units. As shown in the above query, spatial ag-
gregates are based on a discrete referential space, i.e., a fi-
nite set of spatial units. Without loss of generality, we con-
sider two types of referential spaces corresponding to the two
types of users’ movements. In the case of free movement, we
consider a uniform grid and each grid cell corresponds to a
spatial unit. The size of the units is determined based on the
application requirements, space size, number of participants,
etc. In the case of constrained movement by a transporta-
tion network, we consider that a spatial unit corresponds to
a network (road) segment, i.e., the network path connecting
two adjacent network nodes (e.g., the road segment between
two intersections). In both cases, the number of spatial units
can be large (e.g., hundreds of thousands). The COUNT in
the query model is optional and is required in the aggrega-
tion protocol to check the probes partitioning.

Aggregate functions. PAMPAS can compute most types
of aggregate statistics required by participatory sensing ap-
plications. Practically, our system can compute in real-time
any type of function having reasonable time and space com-
plexity given the relative low CPU power and little RAM
of the SP. For illustrative purpose, we consider three classes
of functions in this paper: (i) Typical algebraic functions:
count, sum, average, standard deviation. Such aggregate
functions are the most popular in the works related to par-
ticipatory sensing [9], [5], [16]. These functions allow for
example to compute the average travel time or the traffic
density in a road network; (ii) Specific functions: inverse dis-
tance weighting (IDW). For instance, an application mon-
itoring the noise pollution in the city could use the IDW
function to compute a heat-map of the noise level in the en-
tire space [14]; (iii) Holistic functions: median, percentile,
top-k. Such functions are also frequently used in statistical
computations. Their particularity is that the computation
of the result requires accessing the entire sample set and
cannot be achieved incrementally by accessing only subsets
of samples as with the previous two classes of functions.

An important observation is that cryptographic solutions
based on homomorphic encryption cannot be applied for spe-

Table 1: Notations used in the algorithms

Notation Description
Gi Identifier of probe group i
Ek Symmetric deterministic encryption
nEk Symmetric non-deterministic encryption

E−1
k Symmetric deterministic decryption

nE−1
k Symmetric non-deterministic decryption

P fake
Gi

Probability to send a fake message in
group i

N Number of spatial units
NG Number of probe groups

QIcomm
Degradation factor of the
communication time

QIcomp
Degradation factor of the computation
time

Comp timei Computation time for the group i

cific or holistic functions (see Section 2). Also, the holistic
functions cannot be computed efficiently in a distributed ar-
chitecture by the secure protocol proposed in [19] (as shown
in Section 7).

3.4 Protocol Requirements
In the light of the above description of the proposed user-

centric architecture, the PAMPAS protocols have to deal
with the following challenges: (i) Privacy : By keeping all
the sensitive data in the SPs, the adopted user-centric archi-
tecture matches this requirement in contrast with a server-
centric architecture. In short, the computation protocol
should not reveal to the SSI any additional information about
the participants’ paths besides what the SSI can infer from
the aggregate result. (ii) Generality : the protocols should be
able to compute any type of function over the spatiotempo-
ral sensed measures by the mobile users and covering a large
observation space. This is different from the works based
on cryptographic approaches in which, typically, only basic
computation (e.g., simple aggregates like sum, average) can
be achieved and only in specific locations over limited peri-
ods of time. (iii) Efficiency : the protocols should be highly
efficient to be able to continuously compute the aggregate
results in real-time with very limited resources. Indeed, for
economic and security reasons, the SPs used for data pro-
cessing have low resources and limited availability. Hence,
it is necessary to minimize the computation and communi-
cation costs of the PAMPAS protocols. (iv) Scalability : the
protocols should allow PAMPAS to scale to a large number
of participants (e.g., up to millions of users), high sampling
frequencies, and very large regions. (v) Accuracy : PAM-
PAS should continuously reflect the sensed measures with
good precision. In other words, protecting the users’ pri-
vacy should not impact the accuracy of the aggregate result
computed by the protocols.

4. GLOBAL AGGREGATION PROTOCOL
The global privacy-preserving protocol in PAMPAS con-

sists in three phases that are repeatedly executed in pipeline
(see Figure 4). First, the SSI collects all the sensing updates
sent by the participants for a period equal to the sliding
time window (i.e., the collection period). Each update is
encrypted using symmetric non-deterministic encryption so

Algorithm 1: PAMPAS Protocol at the SSI-side

1 collection period():
2 /* Receive encrypted updates from SPs */
3 while (true) do
4 message = (Ek(Gi), nEk(sample))
5 store(message)→

list[Ek(Gi)][currentT imeWindow]

6 processing period():
7 foreach i in {Ek(Gi)} do
8 /* feed in parallel the randomly selected SPs */
9 randomly select SPi ∈ Ek(Gi)

10 while
message← list[Ek(Gi)][lastT imeWindow] do

11 send(message, SPi)

12 foreach i in {Ek(Gi)} do
13 /*Receive the final results from worker SPs*/

14 enc resultfinal
i = (Ek(Gi), nEk(result))

15 delivery period():
16 foreach i in {Ek(Gi)} do
17 /*Push resulti to all requesting SPs*/

18 multicast(enc resultfinal
i , {SPk})

that the SSI cannot gain any knowledge from these updates.
All the SPs share a secret key, which is renewed periodi-
cally to increase security. The key is generated randomly
by a randomly chosen SP. To distribute the secrete key, we
assume the users authenticate using a typical PKI infras-
tructure, i.e., a certificate is embedded in each user secure
hardware. Whenever a new SP connects to the system, it
authenticates using its certificate. Then, the SP randomly
contacts another connected SP, which sends back the cur-
rent shared secret key encrypted with the public key of this
newly connected SP.

The shared secret key is used by the SPs to symmetrically
encrypt the update messages (e.g., by using AES encryption)
so that any SP can decrypt messages and aggregate the data.
Note that, although an SP can decrypt the updates, a user
is not allowed to access the decrypted data in her SP and
that the tamper-resistant hardware protects the transiting
data from the user. Therefore, as for the SSI, the users have
access only to the final results and not to the raw data.

At the end of the collection period, the SSI triggers the
processing period. In this phase, only a small subset of SPs,
which are randomly selected by the SSI, are involved. The
SSI partitions the collected samples such that the number
of updates in a partition can fit the RAM resources of an
SP (otherwise, the persistent Flash storage of the SP has to
be used incurring a much higher computation cost). Then,
each sample partition is sent to an SP, which computes a
partial aggregate result for the received updates. The en-
crypted results are sent back to the SSI. Finally, the deliv-
ery period consists of delivering the current partial aggregate
results to the queriers. Each querier needs to perform the
final aggregation of these partial results, which is merely a
concatenation of the demanded partial results.

Algorithms 1 and 2 give the detailed description of the
operations executed by the SSI and the SPs respectively.
In the following, we denote by Ek and nEk the symmetric

Figure 4: Workflow representation of the global protocol in PAMPAS

Algorithm 2: PAMPAS Protocol at the SP-side

1 collection period(): /* for all SPs */
2 /* Generate and send the sensing update:

update(Gi, sample) */
3 message = (Ek(Gi), nEk(sample))
4 send(message, SSI)
5 /* Send a fake sample to the SSI with probability

P fake
Gi

*/

6 if rand(0, 100) >= P fake
Gi

then
7 fake message = (Ek(Gi), nEk(fake sample))
8 send(fake message, SSI)

9 processing period(): /* only for the selected SPs,
one for each Gi */

10 while message = receive(SSI) do
11 sample = nE−1

k (message)
12 result = result⊕ sample

13 enc resultfinal
i = (Ek(Gi), nEk(result))

14 send(enc resultfinal
i , SSI)

15 delivery period(): /* for all SPs */
16 /* Pull the results for required {Gi} from the SSI */
17 foreach i in {Ek(Gi)} do
18 send request(Ek(Gi), SSI)

19 resultfinal
i = nE−1

k (receive(SSI))

deterministic and non-deterministic encryption with the key
k, and by E−1

k and nE−1
k the opposite decryption operations

while Gi indicates the identifier of group i. All the notations
used in the algorithms are listed in Table 1.

To address the performance limitations of the existing
protocols [19] (see Section 2), the aggregation protocol in
PAMPAS groups the participants based on their location,
which permits processing together the generated samples in
a group by a single SP. To this end, the users also send the
deterministically encrypted value of the spatial unit they are
currently located in, in addition to the non-deterministically
encrypted value of the sample, i.e., message = (Ek(groupID),
nEk(sample)) (Algorithm 1, lines 4-5 and Algorithm 2, lines
3-4). Consequently, the SSI can group the messages based
on the encrypted unit number and then send each group of
samples to a different SP for aggregation (lines 7-11 in Al-
gorithm 1 and lines 10-12 in Algorithm 2). By doing so, the
advantage is manifold. First, the processing period is guar-

anteed to terminate in a single iteration, since each involved
SP produces directly the aggregation result corresponding
to a spatial unit. This greatly improves both the computa-
tion and the communication cost of the aggregation process.
Second, data processing by an SP is also efficient since only
one aggregate is computed, which greatly reduces the RAM
requirements and avoids/reduces the usage of the persistent
storage. Third, the final aggregate result is also partitioned
and the queriers can demand the results only for specific spa-
tial units, which further improves the communication cost.
Furthermore, in order to avoid leaking information regard-
ing the spatial distribution of users, the SPs also generate
and send fake messages to the SSI (see Algorithm 2, lines 6-
8). The rational and detailed explanation for this technique
are discussed in the next section.

However, despite all these benefits, the above approach
has one fundamental shortcoming originating from the skewed
spatial distribution of the participants. Although the exact
location of the updates and the unit ID are hidden, the SSI
knows the number of participants in each spatial unit. If the
SSI has access to side information about the spatial distribu-
tion of the users (e.g., global traffic density information), it
may use this information to infer the (approximate) location
of the participants and compromise their privacy.

5. PROBE PARTITIONING PROTOCOL
To counter the privacy threats that are rooted in the

skewed spatial distribution of the participants, PAMPAS
continuously partitions the set of probes based on their cur-
rent location and the spatial units of the query. Similar
to the global aggregation protocol, this privacy-aware par-
titioning protocol is executed by SPs. The idea is to group
SPs located in adjacent spatial units such that the resulted
probe groups have approximately the same size. Therefore,
in PAMPAS a group Gi covers several spatial units (as de-
fined in Section 3.3) and includes all the SPs in these units.

The probe partitioning has to be recomputed periodically
to keep the groups balanced since the users’ distribution in
space changes over time. Moreover, the groups should con-
tain users located in closely situated spatial units to maxi-
mize the lifetime of a partitioning. The challenge is to im-
plement a partitioning algorithm that can be executed peri-
odically at SPs because the typical spatial partitioning algo-
rithms are much too costly to be considered in our context
(i.e., limited-resources SPs).

Our algorithm is based on the following idea. We use a

Figure 5: Hilbert indexing of spatial units

space-filling curve to index the spatial units of the applica-
tion query. A space-filling curve has the property to map
a multidimensional space to a one-dimensional space such
that, for two objects that are close in the original space,
there is a high probability that they will be close in the
mapped target space. Then, we sort the spatial units on
the space-filing curve index. Once sorted, an approximate
balanced grouping can be checked and computed in O(NG)
space complexity and O(N) time complexity, where NG is
the number of probe groups, and N is the number of spatial
units.

Indexing the spatial units. In our system, we use
Hilbert curves, but other types of space-filling curves can
be used as well to index the spatial units considered by the
participatory sensing application (e.g., z-curves). In the case
of free movement, the indexing is straightforward since the
space is already partitioned with a uniform grid (see Figure 5
left). Then, we cover the grid cells with the Hilbert curve
corresponding to the grid granularity and label each cell with
the obtained Hilbert index. In the case of constrained move-
ment, the indexing requires two steps. First, we cover the
transportation network with a uniform grid (see Figure 5
right). The grid granularity is chosen such that the num-
ber of network segments (see Section 3.3) intersecting with
a grid cell is low for most of the cells. Then, the grid cells
are indexed with a Hilbert curve and each network segment
is labeled with the Hilbert index of the cell containing the
segment center. In case several segments are contained by
a cell, the segments are sorted by the x-coordinate and the
y-coordinate of their centers and labeled accordingly. Once
the spatial units are indexed, they are sorted on the index
value and the sorted unit vector is broadcasted to all the
participants to be used in the probe partitioning phase.

Checking and repartitioning the probe grouping.
Periodically, our system verifies if the current probes parti-
tioning is still balanced with respect to the number of probes
in each group. The verification frequency depends on the dy-
namicity of users in space. In PAMPAS, the checking and
repartitioning processes can be executed often (i.e., every
few seconds) due to their low cost. When a partitioning
checking is triggered, the system computes a count aggre-
gate in addition to the application aggregate function (see
Figure 3), which gives the actual number of users (SPs) in all
the spatial units. The count aggregate result is then pushed
to an SP randomly chosen by the SSI. The checker SP de-
crypts the results and updates the weights5 of the sorted
spatial unit vector (lines 4-7 in Algorithm 3). This opera-
tion has O(N) complexity assuming that a small index con-

5The weight is the number of probes in a spatial unit.

Algorithm 3: Checking probe partitioning (SP-side)

1 check probe partitioning():/* one randomly
selected SP */

2 /* Pull all the results from the SSI */
3 foreach i in {Ek(Gi)} do
4 send request(Ek(Gi), SSI)

5 enc resultfinal
i = receive(SSI)

6 allCounts[Gi][]← E−1
k (enc resultfinal

i)
7 update localy stored counts for spatial units

/* also required to compute the probability to
generate fake samples */

8 compute weights[Gi] = SUM(allCounts[Gi][])

9 compute standard deviation(weights)
10 if standard deviation(weights) < threshold then
11 send for broadcast(nEk(allCounts), SSI)

12 else
13 execute probes repartitioning()

taining the partitions frontiers is kept in memory by the
SP (which requires only NG Flash addresses to be kept in
RAM). At the same time, the SP computes in memory the
count by group (since the groups are sent one by one by the
SSI, line 8 in Algorithm 3) and compares the counts. If the
balancing of the current probes partitioning is within the
predefined limits, the checker SP sends the current values to
all the other SPs (i.e., exchanged encrypted through SSI),
which update the weights of the spatial units with the new
count values. Otherwise, the checker SP computes a new
partitioning.

Once the sorted vector of spatial units is updated with the
new weight values, the probe repartitioning can be efficiently
computed in O(N) and O(NG) time and space complexity
respectively (see Algorithm 4). To set the partition borders
we use a greedy algorithm, which adds spatial units to a
group as long as the total weight of the group is lower than
a threshold value (lines 12-16 in Algorithm 4). The thresh-
old is computed as the ratio between the total number of
probes and the number of groups (line 10 in Algorithm 4),
and represents the average number of users per group. The
partitioning result is a list of NG milestones indicating the
group borders in the sorted index of spatial units (line 15 in
Algorithm 4). The result is then encrypted and delivered,
through SSI, to all users, which update their partitioning
data and generate new samples accordingly starting from
the next computation window.

The proposed probes partitioning algorithm has low com-
plexity and can be efficiently executed even with the low
resources of an SP. However, the partitioning algorithm can-
not guarantee a certain degree of balancing of the partition
weights. Yet, the partitioning balancing is required to avoid
leaking any information regarding the spatial distribution of
users. To deal with this problem, the SPs generate fake sam-
ples in all the probe groups having a number of users lower
than the maximum size group. Therefore, in the collection
period of each computing time window, an SP sends proba-
bilistically a dummy sample in addition to the real sample.
The probability to send a fake sample is proportional to the
difference between the maximum size group and the number
of users in the SP’s group, and inversely proportional to the

Algorithm 4: Repartitioning process (SP-side)

1 PROBE REPARTITIONING():/* one randomly
selected SP */

2 compute QIcomp and QIcomm for current NG

3 while true do
4 /* adjust the number of groups NG */
5 if QIcomp > QIcomm then
6 tNG = 2 ∗NG

7 else
8 tNG = NG/2

9 /* repartition for tNG */
10 avgGroupWeight = SUM(allCounts[])/tNG

11 currentGroupWeight = 0
12 for i = 0 to N − 1 do
13 currentGroupWeight+ = allCounts[i]
14 if currentGroupWeight ≈ avgGroupWeight

then
15 newPartitionMilestones[].add(i)
16 currentGroupWeight = 0

17 /* check if the new partitioning for tNG is
better than for NG*/

18 compute tQIcomp and tQIcomm for tNG

19 if tQIcomp + tQIcomm < QIcomp + QIcomm

then
20 NG = tNG; QIcomp = tQIcomp

21 QIcomm = tQIcomm

22 else
23 break

24 message = allCounts[]||newPartitionMilestones[]
25 send for broadcast(nEk(message), SSI)

number of users in the group (see Algorithm 2, lines 6-8).
The same approach is used to hide the number of spatial
units in each group. At the end of the aggregation phase,
each aggregating SP adds to the result a number of fake val-
ues equal to the difference between the maximum number of
units in the groups and the number of units in the current
group. In this way, all the partial aggregate results received
by the SSI have the same size and the SSI cannot infer the
number of cells in any group. Note that the fake values are
filtered out by the worker or querier SPs and therefore have
no impact on the accuracy of the results.

QIcomp = Maxi=1,NG [Comp timei]−
Maxj=1,N [Comp timej] (1)

QIcomm =
size(sample)

bandwidth

NG∑
i=1

{Maxj=1,NG [Countj(probes)]−

Counti(probes)}+

size(sample)

bandwidth

NG∑
i=1

{Maxj=1,NG [Countj(spatialUnits)]−

Counti(spatialUnits)} (2)

Choosing the Number of Probe Groups. The cost
of the aggregation protocol is composed of the computation

cost at the SP side and the communication cost between
the SSI and the SP. The number of probe groups impacts
both the computation and the communication costs. Specif-
ically, the computation cost decreases with the increase in
the number of groups and attains the minimum value when
the number of groups is equal to the number of spatial cells,
i.e., an SP is used to aggregate the samples for each spatial
unit. But increasing the number of groups leads to a higher
imbalance in the groups’ weights, which in turn requires in-
jecting more fake samples and enlarges the communication
cost. Therefore, modifying the number of groups has oppo-
site effect on the computation and the communication cost.

PAMPAS computes two quality indicators to measure the
impact of the number of groups on the computation and
communication costs, i.e., QIcomp and QIcomm, as defined
by Formulas (1) and (2). QIcomp estimates the degrada-
tion of the computation time at the SP side generated by
the fact that several spatial cell aggregates are delegated to
one SP instead of using one SP for each cell. Estimating
the computation time is fairly simple since the time is typi-
cally linear with the number of samples to be processed by
the SP, assuming that the aggregation can be entirely pro-
cessed in RAM. However, the cost model can be extended
to the case in which it is required to access the secondary
storage. QIcomm estimates the degradation of the commu-
nication cost caused by the imbalance of the group weights.
The first term indicates the overhead incurred by the fake
samples generated to balance the groups, while the second
term measures the overhead of generating fake results to
balance the number of aggregate results in each group.

Each time an SP computes the probe partitioning, it also
computes the values of QIcomp and QIcomm (line 2 in Algo-
rithm 4). If QIcomp > QIcomm, the SP multiplies by two the
number of groups and re-partitions the probes. If QIcomp <
QIcomm the SP divides by two the number of groups and re-
partitions the probes (lines 5-8 in Algorithm 4). The SP con-
tinues to adjust the number of groups until QIcomp+QIcomm

has minimum value (lines 19-23 in Algorithm 4), meaning
that the aggregation cost is near optimal. Thus, this pro-
cess allows adapting the number of groups to the number
and the spatial distribution of the probes.

6. SECURITY AND PRIVACY ANALYSIS

6.1 Security Analysis
The users cannot read the raw data of other users because

the data stored in memory is protected by the secure MCU
(i.e., the RAM is located inside the MCU) and the data
stored in NAND Flash are cryptographically protected.

The SSI does not have the encryption key, so it cannot ac-
cess the transiting data. In addition, the non-deterministic
encryption protects the data against frequency-based at-
tacks. The SSI may also try to buy an SP and pass for
a user to gain access to the shared encryption key. How-
ever, this would be useless since the tamper-resistance of an
SP protects the key. The SSI could collude with a querier,
but it will gain access only to the aggregate result. Finally,
since the samples are communicated through anonymizers,
the SSI cannot identify the senders or link consecutive mes-
sages from the same user.

The SSI could try to infer information from the deter-
ministically encrypted group ID values. Nevertheless, the
SSI cannot perform a frequency-based attack using the en-

crypted group ID, since all the groups contain approximately
the same number of messages. Therefore, the SSI cannot in-
fer the corresponding (approximate) location of a group or
the topological neighborhood of the groups (which would
be the first step to attack the users’ privacy). Hence, the
only knowledge the SSI acquires is the number of groups and
its evolution over time, which does not endanger the users’
privacy. Note that even if the SSI has somehow access to
the full partitioning information and the corresponding en-
crypted ID, a user is still hidden under the corresponding
group area and within the crowd in the same group (let us
recall that the messages are sent anonymously so it is hard
for the server to link the messages coming from the same
user). Hence, the protocols are secure and fully protect the
privacy of the users.

Although, protecting the privacy of users beyond the ag-
gregate results is out of the scope of this paper (as discussed
in Section 3.2), one can easily integrate basic protection
mechanisms in PAMPAS for such cases. For example, to
avoid the risk of exposure for the users situated in very
sparse areas (e.g., a single user or very few users located in a
spatial unit), we can simply add a predicate in the HAVING
clause of the aggregate query (see Figure 3) indicating the
minimum number of users in a spatial unit. In this way, the
sparse spatial units are eliminated from the aggregate re-
sults. Another solution is to increase the size of the sliding
window, or of the spatial units accordingly.

6.2 Privacy Analysis
To underline the high level of privacy protection of PAM-

PAS w.r.t. the SSI, we consider an entropy-based metric
and apply it in the context of two scenarios that are related
to our architecture. We then compare the privacy leakage in
these two scenarios with the privacy leakage in PAMPAS.

Entropy is a popular metric to describe location privacy in
general [6], and it is also appropriate to describe the privacy-
preserving mechanism of PAMPAS. Commonly, entropy is
used to quantify the average degree of uncertainty associ-
ated with a set of events. In the case of location privacy,
the idea is to prevent user identification by obfuscating her
exact location in a spatial region containing a certain num-
ber of individuals. Therefore, the level of privacy is directly
related to the popularity (i.e., number of individual foot-
prints) of the region. This means the higher the popular-
ity, the higher the privacy level of the users in that region.
Then, entropy is used to quantify the degree of popular-
ity of a region. Formally, let reg be a spatial region and
let U(reg) = {u1, u2, . . . up} be the set of users in region
reg. Let fi (with 1 ≤ i ≤ p) be the number of sample
updates (i.e., footprints) that user ui sends from reg and
F =

∑p
i=1 fi be the total number of sample updates sent

from reg.

Definition 1. Entropy of a region: the entropy of region

reg is defined as: E(reg) = −
∑p

i=1

fi
F
.log

fi
F

Definition 2. Popularity of a region: the popularity of re-
gion reg is defined as: Pop(reg) = 2E(reg)

Definition 3. Privacy leakage: the privacy leakage for each
updatek sent by user ui is defined as:

priv leakui(updatek) =
1

Pop(location of updatek)

To compute the privacy leakage in different cases, we con-
sider a simple numerical example inspired by the datasets
used in our experimental evaluation (see Section 7.1). Let
us consider that 200 thousand users participate in a mobile
sensing application that aggregates data over 20 thousand
spatial units (e.g., road segments in a road network). To
keep the formulas tractable (but without loss of generality),
let us consider that each user produces 50 samples from 50
distinct spatial units. This implies that on average, there
are 500 footprints (i.e., updates) in each spatial unit.

Scenario 1: there is no grouping of the probes. Each
participant sends the non-deterministically encrypted value
of a sample together with the deterministically encrypted
value of the spatial unit identifier to allow an efficient ag-
gregation of the data. However, no fake sample is inserted
by the probes. Although the spatial unit identifiers are en-
crypted, the SSI could easily determine the location of the
spatial units if it has access to the global spatial distribution
of the probes (i.e., a frequency-based attack). In this case,
the average entropy of a spatial unit by applying Defini-
tion 1 is E(s.unit) = −

∑500
i=1

1
500

.log 1
500

= log(500), which
gives a popularity of Pop(s.unit) = 500 and an average pri-
vacy leakage of priv leak = 0.002 for each update. Clearly,
the privacy leakage can be lower or higher for each spatial
unit depending on the popularity value compared with the
average value.

Scenario 2: there is a static partitioning of probes, i.e.,
the spatial units are statically partitioned into a number
of groups containing closely located spatial units. As in
the previous case, the probes send the deterministically en-
crypted value of the spatial group and are also exposed to
a frequency-based attack from the SSI. However, grouping
many spatial units leads to decreasing the privacy leakage
risk (but at the cost of increased aggregation time). For
instance, partitioning the spatial units in 200 groups (i.e.,
100 spatial units per group), leads to an average popular-
ity Pop(group) = 103 and thus an average privacy leakage
priv leak(update) = 10−3, which is smaller than in the pre-
vious scenario. Also, the obfuscation region is much larger
since it corresponds to 100 spatial units instead of one.

PAMPAS goes even further in the protection of the par-
ticipants’ privacy by using a dynamic partitioning of the
probes based on their location and spatial distribution. The
adaptive partitioning produces nearly balanced groups of
probes. In addition, the eventual imbalance of the groups
is corrected by injecting fake tuples, which precludes the
SSI doing frequency-based attacks. This means that it is
extremely difficult for the SSI to estimate even the approx-
imate corresponding area of each group. Therefore, in our
case, the entropy applies indistinguishably to all the partic-
ipants leading the a popularity Pop(group) = 2 · 106 and an
average privacy leakage priv leak(update) = 5 · 10−7. Prac-
tically, in PAMPAS, the privacy leakage depends only on
the total number of participants, while the obfuscation area
corresponds to the entire observation space. Besides, the
number of groups is adaptively chosen such as to minimize
the aggregation cost.

7. EXPERIMENTAL EVALUATION
The goals of our experimental evaluation are twofold: (i)

compare the execution time and scalability of PAMPAS with
those of a state-of-the-art protocol described in [19]; (ii)
quantify the cost and scalability of our partitioning pro-

Figure 6: Aggregation maps for two applications: noise mon-
itoring (left) and traffic monitoring (right)

Figure 7: Secure tokens

tocol. We implemented and validated PAMPAS through
emulations using secure tokens which have a hardware con-
figuration representative for secure hardware platforms. As
applications for our experiments, we used traffic monitoring
and noise monitoring with both real and synthetic datasets
representing small and medium-size cities. Figure 6 illus-
trates our graphic interface for these applications; it shows
the aggregate results for the noise heat-map and the average
travel time for the road network. A demo of our prototype
was presented in [20] using a traffic monitoring scenario.

7.1 Experimental Setting
Hardware platform. In our experimental evaluation,

the SSI is hosted on a PC (3.1 GHz i5-2400, 8GB RAM,
running Windows 7) which also displays the aggregate re-
sults in a graphical form for validation purpose. The SPs are
implemented by representative secure hardware devices (see
Figure 7) which includes an MCU with a 32-bit RISC CPU
at 120MHz, a cryptographic co-processor implementing AES
and SHA, 128KB of static RAM and 1MB of NOR Flash
to store the software stack, a smartcard chip hosting the
cryptographic credentials (i.e., the secrete encryption keys)
and an SD card reader allowing for a large storage capacity.
We used a commodity SD card (Samsung SDHC Essential
Class 10 of 32GB) as secondary Flash storage. The SSI in
our testing system manages a multi-channel Ethernet con-
nection with a global bandwidth of 100Mbps. Importantly,
on the SP’s side, our implementation limits the RAM con-
sumption to only 30KB and the maximum communication
bandwidth to 200Kbps to validate the proposed protocols
with less powerful secure devices. Thus, in our experiments,
all the SPs have this minimalist configuration. To emulate
a very large number of SPs, we execute sequentially on an
SP the aggregate computations and communications for all
the worker SPs and measure the ”parallel” execution time as
the maximum aggregation time in the execution sequence.

Baseline system. To underline the importance of the
PAMPAS protocols, we implemented the secure protocol pro-
posed in [19] and took it as the baseline. This protocol can
be applied without modification to aggregate the samples

collected in each time window. Since PAMPAS offers the
same level of security and privacy as the baseline protocol,
our experimental evaluation focuses on the efficiency part.
Note that in [19], two more protocols are proposed that are
even more expensive than the secure protocol if considered
in our context.

Datasets and aggregate functions. We use both syn-
thetic and real datasets to test the efficiency and scalability
of PAMPAS. We employed the well-known Brinkhoff genera-
tor [4] to generate mobility traces on two real road networks
of the cities of Oldenburg (Germany) and Stockton (San
Joaquin County, CA). Oldenburg is a small size network
having 7035 road segments, while Stockton is a medium size
road network having 24123 segments. Depending on the net-
work size, we generated traces corresponding to a medium
and large number of users. With Oldenburg, the medium
and large datasets contain 47 thousand and 270 thousand
users respectively. With Stockton, the medium and large
datasets contain 200 thousand and 1.35 million users respec-
tively. The spatial distribution of the traces follows the net-
work spatial density. Compared to the existing real datasets,
the synthetic datasets have the prominent advantage of hav-
ing excellent spatial and temporal coverage. However, it is
also important to validate the proposed protocol with real
datasets. To this end, we used the T-Drive Taxi trajectory
dataset [21]. This dataset contains around 15 million trajec-
tory units collected from 10357 taxis over a period from Feb.
2 to Feb. 8, 2008 in Beijing. Because the density of taxis is
too low compared to the synthetic dataset, we extracted and
merged a period of one hour in our tests, in order to gener-
ate a dataset containing 191 thousand trajectories covering
32800 road segments.

To show the generality of PAMPAS, we selected three ag-
gregate functions, i.e., average, IDW [14] and median, cor-
responding to the three aggregate types described in Sec-
tion 3.3. We associate the average and median aggregates
with the traffic monitoring application, i.e., compute the
average travel time and the median speed for each road seg-
ment in a road network. Hence, these two scenarios consider
the constrained movement type. The IDW aggregate is as-
sociated to the noise-level monitoring application and a free
movement type. In this case, we use the same generated
mobility traces, but consider them in the 2D space instead
of the network space. Also, we use a 64x64 grid to divide
the observed 2D space into 4096 spatial units for the free
movement scenario. The speed sample values are directly
generated by the moving objects generator, while the noise
values are generated by us proportionally to the number of
probes in the spatial unit.

7.2 Performance Evaluation
Execution time. Figure 8 shows the aggregation time

(in a logarithmic scale) for the three functions of both Base-
line and PAMPAS protocols with 191 thousand probes in
Beijing and with 200 thousand probes in Stockton. The
aggregation time is global, i.e., it includes both the compu-
tation and communication time. The results indicate that
PAMPAS is very efficient since it requires only a few sec-
onds to compute the aggregate results for all the tested func-
tions in both datasets. Also, the aggregation times of PAM-
PAS are similar between the real and the synthetic datasets.
However, in both cases the baseline protocol is much more
costly (especially for complex aggregate functions) leading

Figure 8: Aggregation time of PAMPAS and Baseline pro-
tocols in real dataset (top) and synthetic dataset (bottom)

to aggregation times up to three orders of magnitude higher
than PAMPAS. Moreover, the aggregation times with the
baseline protocol are larger for the Beijing dataset. The
explanation is that the number of spatial units is larger in
Beijing (i.e., 32800) than in Stockton (i.e., 24123). On the
other hand, PAMPAS is scalable with respect to both the
aggregation function and the number of spatial units in the
query.

Scalability. We further test the scalability of the pro-
tocols with different number of probes, spatial units, and
aggregate functions. Figure 9a shows the aggregation time
for the two protocols for the average (top graph) and median
(bottom graph) functions with medium and large number of
users on both road networks. The results confirm that only
PAMPAS is scalable w.r.t. all the varying input parameters.
In the worst case, the computation time attains 14 seconds
to compute the median speed for 1.35 million samples cov-
ering 24123 spatial units.

The baseline protocol does not scale with the number of
samples and especially with the number of spatial units.
Practically, the baseline can provide real-time aggregation
only for a small number of spatial units (i.e., 7000 in Old-
enburg) and basic aggregate functions (e.g., average). The
very limited RAM of the SPs and the impossibility to effi-
ciently parallelize the aggregate computation make the base-
line inadequate for the requirements of participatory sensing
applications.

Cost and scalability of partitioning protocol. Fig-
ure 9b (top) presents the partitioning computation time for
both Oldenburg and Stockton networks. A new partitioning
can be computed in a few seconds by an SP. This means
that the checking and probes re-partitioning can be exe-
cuted frequently, which allows PAMPAS to adapt to even
fast changes in the spatial distribution of the probes. Most
of the partitioning cost resides in reading and writing the
partitioning data to the secondary Flash storage. This also
explains the increase of the partitioning time with the num-
ber of partitions, since in this case the I/O operations are
executed at a smaller granularity, which is more costly.

Figure 9b (bottom) indicates that the partitioning unbal-
ance factor, i.e., the ratio between the maximum and the av-
erage partition size, increases with the number of partitions.
The unbalance factor is an important indicator in PAMPAS
since the higher the unbalance, the higher the number of fake
injected samples and, therefore, the communication cost.

Figure 9c shows the impact of the number of partitions on
the global aggregation time as well as on the computation
and communication cost, which compose the total time. The
computation time decreases with the increase of the number
of partitions since the amount of work done by the aggre-
gation SPs also decreases. Conversely, the communication
time increases with more partitions since more fake samples
are injected into the system as explained above. Globally,
the near-optimal aggregation time is obtained with a num-
ber of partitions that minimizes the cumulated degradation
of the computation and communication costs (see Section 5).
We obtained similar results with the real dataset, for which
the optimal number of partitions is 100 while the network
partitioning is computed in just 2 seconds. The aggregation
costs are partially shown in Figure 8 (top). Given the space
limitation and the similarity of the results with the synthetic
datasets, we omit here the details of the results with the real
dataset.

Discussion. It is worth mentioning that the aggregation
time can be greatly improved by increasing the processing
power and the communication bandwidth of the SSI. For
example, increasing the server bandwidth from 100Mbps to
1 GBps, makes the maximum aggregation time (i.e., me-
dian function with the large Stockton dataset) to drop from
14 seconds to less than 7 seconds. Also, in some scenarios,
pushing the computation in the user devices may be prob-
lematic (e.g., battery powered devices, concurrent applica-
tions running in the device). However, PAMPAS minimizes
this type of problem thanks to its design and its high ef-
ficiency. For instance, in our tests, a user participating in
the system for one hour, has a probability between 3.5%
and 8.7% to participate once to an aggregate computation
assuming that aggregates results are produced every 30 sec-
onds, and a probability between 0.004% and 0.12% to do
a repartitioning assuming that the probes partitioning is
checked every 1 minute. In all cases, the computation is
done in a few seconds at most and requires only modest re-
sources. Moreover, the computation effort is inversely pro-
portional to the probability to be picked.

8. CONCLUSION
This paper proposes PAMPAS, a privacy-aware mobile

participatory sensing system based on a distributed archi-
tecture and personal secure hardware. This combination al-
lows PAMPAS to achieve the same level of privacy as cryp-
tographic solutions without having to sacrifice generality,
scalability, and accuracy. The proposed aggregation solu-
tion is, to the best of our knowledge, the first proposal of a
distributed protocol that is secure, efficient, and scalable and
that fits both the strict hardware constraints of secure per-
sonal devices and the real-time constraints of participatory
sensing applications. The experimental evaluation based on
representative hardware for secure platforms validates the
proposed solution.

9. REFERENCES
[1] T. Allard, B. Nguyen, and P. Pucheral. METAP:

revisiting privacy-preserving data publishing using
secure devices. Distributed and Parallel Databases,
32(2):191–244, 2014.

[2] ARM. ARM Security Technology - Building a Secure
System using TrustZone Technology. ARM Technical
White Paper, 2009.

(a) Scalability of the PAMPAS and
Baseline protocols with Average function
(top) and Median function (bottom)

(b) The partitioning costs (top) and the
partitioning imbalance factor (bottom)
with different number of partitions

(c) Communication and computation
costs of Median function with different
number of partitions

Figure 9: Performance evaluations

[3] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. In
OSDI, pages 267–283, 2014.

[4] T. Brinkhoff. A framework for generating
network-based moving objects. GeoInformatica,
6(2):153–180, June 2002.

[5] J. W. S. Brown, O. Ohrimenko, and R. Tamassia.
Haze: privacy-preserving real-time traffic statistics. In
ACM SIGSPATIAL, pages 540–543, 2013.

[6] M. L. Damiani. Location privacy models in mobile
applications: conceptual view and research directions.
GeoInformatica, 18(4):819–842, 2014.

[7] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and
V. D. Blondel. Unique in the crowd: The privacy
bounds of human mobility. Scientific reports, 3, 2013.

[8] E. D’Hondta, M. Stevens, and A. Jacobs.
Participatory noise mapping works! an evaluation of
participatory sensing as an alternative to standard
techniques for environmental monitoring. Pervasive
and Mobile Computing, 9(5):681–694, October 2013.

[9] G. Drosatos, P. S. Efraimidis, I. N. Athanasiadis, and
M. Stevens. A privacy-preserving cloud computing
system for creating participatory noise maps. In
COMPSAC, pages 581–586, 2012.

[10] M. Faezipour, M. Nourani, A. Saeed, and
S. Addepalli. Progress and challenges in intelligent
vehicle area networks. Magazine Communications of
the ACM, 55(2):90–100, 2012.

[11] H. Gao, C. H. Liu, W. Wang, J. Zhao, Z. Song, X. Su,
J. Crowcroft, and K. K. Leung. A survey of incentive
mechanisms for participatory sensing. IEEE Comm.
Surveys and Tutorials, 17(2):918–943, 2015.

[12] B. Hoh, T. Iwuchukwu, Q. Jacobson, D. Work, A. M.
Bayen, R. Herring, J. C. Herrera, M. Gruteser,
M. Annavaram, and J. Ban. Enhancing privacy and
accuracy in probe vehicle-based traffic monitoring via
virtual trip lines. IEEE Tran. on Mobile Computing,

11(5):849–864, 2012.

[13] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke,
J. Widom, H. Balakrishnan, U. Çetintemel,
M. Cherniack, R. Tibbetts, and S. B. Zdonik. Towards
a streaming sql standard. In PVLDB 1(2), pages
1379–1390, 2008.

[14] S. Nittel, J. C. Whittier, and Q. Liang. Real-time
spatial interpolation of continuous phenomena using
mobile sensor data streams. In ACM SIGSPATIAL,
pages 530–533, 2012.

[15] M. Penza. Cost action TD1105: New sensing
technologies for environmental sustainability in smart
cities. In IEEE SENSORS, 2014.

[16] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and
F. H. Li. Privacy and accountability for location-based
aggregate statistics. In CCS, pages 653–666, 2011.

[17] D. Quercia, I. Leontiadis, L. Mcnamara, C. Mascolo,
and J. Crowcroft. Spotme if you can: Randomized
responses for location obfuscation on mobile phones.
In ICDCS, pages 363–372, 2011.

[18] A. Thiagarajan, L. Ravindranath, K. LaCurts,
S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson. Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones. In ACM
SenSys, pages 85–98, 2009.

[19] Q.-C. To, B. Nguyen, and P. Pucheral.
Privacy-preserving query execution using a
decentralized architecture and tamper resistant
hardware. In EDBT, pages 487–498, 2014.

[20] D.-H. Ton-That, I. Sandu-Popa, and K. Zeitouni.
PPTM: Privacy-aware participatory traffic monitoring
using mobile secure probes. In IEEE MDM, 2015.
Demo paper.

[21] J. Yuan, Y. Zheng, W. Xie, X. Xie, G. Sun, and
Y. Huang. T-drive: driving directions based on taxi
trajectories. In SIGSPATIAL, pages 99–108, 2010.

