
ABSTRACT

FEDERATED LEARNING SYSTEMS FOR MOBILE SENSING DATA

by
Xiaopeng Jiang

Federated Learning (FL) has emerged as a new distributed Deep Learning (DL)

paradigm that enables privacy-aware training and inference on mobile devices with

help from the cloud. This dissertation presents a comprehensive exploration of FL

with mobile sensing data, covering systems, applications, and optimizations.

First, a mobile-cloud FL system, FLSys, is designed to balance model

performance with resource consumption, tolerate communication failures, and

achieve scalability. In FLSys, different DL models with different FL aggregation

methods can be trained and accessed concurrently by different apps. In addition,

FLSys provides advanced privacy-preserving mechanisms and a common API for

third-party app developers to access FL models. FLSys adopts a modular design

and is implemented in Android and AWS cloud. Extended from FLSys, ZoneFL

exploits a mobile-edge-cloud architecture to adapt models to user behaviors in

different geographical zones to further improve scalability and model utility. Both

FLSys and ZoneFL are evaluated with real-world deployments to showcase the

superior model performance, scalability, and fault-tolerance.

Second, Federated Meta-Location Learning (FMLL) is proposed on smart

phones for fine-grained location prediction, based on GPS traces collected on the

phones. FMLL has three components: a meta-location generation module, a

prediction model, and a FL framework. The meta-location generation module

represents the user location data as relative points in an abstract 2-Dimensional

(2D) space, which enables learning across different physical spaces. The model

fuses Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural

Networks (CNN) layers, where BiLSTM learns the speed and direction of the mobile

users, and CNN learns information such as user movement preferences. FMLL uses

federated learning to protect user privacy and reduce bandwidth consumption.

Third, Complement Sparsification (CS) is presented as an FL pruning

mechanism that achieves low bidirectional communication overhead between the

server and the clients, low computation overhead at the clients, and good model

accuracy. CS uses a complementary and collaborative pruning at the server and the

clients. At each round, CS creates a global sparse model that contains the weights

that capture the general data distribution of all clients, while the clients create local

sparse models with the weights pruned from the global model to capture the local

trends. For improved model performance, these two types of complementary sparse

models are aggregated into a dense model in each round, which is subsequently

pruned in an iterative process.

Fourth, Federated Continual Learning (FCL) is explored as a more intricate FL

scenario wherein data accumulates over time and undergoes distributional changes.

A framework, Concept Matching (CM), is introduced for efficient FCL. The CM

framework groups client models into model clusters, and then uses novel CM

algorithms to build different global models for different concepts in FL over time.

In each round, the server sends the global concept models to the clients. To avoid

catastrophic forgetting, each client selects the concept model best-matching the

implicit concept of the current data for fine-tuning. To avoid interference among

client models with different concepts, the server clusters the models representing the

same concept, aggregates the model weights in each cluster, and updates each global

concept model with a cluster model of the same concept. Since the server does not

know the concepts captured by the aggregated cluster models, a theoretical grounded

server CM algorithm is proposed to effectively update a global concept model with a

matching cluster model.

FEDERATED LEARNING SYSTEMS FOR MOBILE SENSING DATA

by
Xiaopeng Jiang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2024

Copyright © 2024 by Xiaopeng Jiang

ALL RIGHTS RESERVED

APPROVAL PAGE

FEDERATED LEARNING SYSTEMS FOR MOBILE SENSING DATA

Xiaopeng Jiang

Dr. Cristian Borcea, Dissertation Advisor Date
Professor, Computer Science Department, NJIT

Dr. Yi Chen, Committee Member Date
Professor, Martin Tuchman School of Management and Computer Science
Department, NJIT

Dr. Xiaoning Ding, Committee Member Date
Associate Professor, Computer Science Department, NJIT

Dr. NhatHai Phan, Committee Member Date
Associate Professor, Data Science Department, NJIT

Dr. Guy Jacobson, Committee Member Date
Principal Inventive Scientist, AT&T Labs, Bedminster, NJ

BIOGRAPHICAL SKETCH

Author: Xiaopeng Jiang

Degree: Doctor of Philosophy

Date: August 2024

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science
New Jersey Institute of Technology, Newark, NJ, US, 2024

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, US, 2016

• Master of Science in Occupational & Health Engineering
New Jersey Institute of Technology, Newark, NJ, US, 2011

• Bachelor of Engineering in Safety Engineering
Northeastern University, Shenyang, Liaoning, China, 2009

Major: Computer Science

Presentations and Publications:

X. Jiang and C. Borcea, “Federated Continual Learning Using Concept Matching”,
the 38th Annual Conference on Neural Information Processing Systems
(Neurips 2024), (Under submission 2024).

P. Lai, X. Jiang, V. D. Mayyuri, A. Chen, C. Borcea, N. Phan, R. Jin, “FedX:
Adaptive Model Decomposition and Quantization for IoT Federated Learning”,
the 25th International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing (ACM MobiHoc
2024), (Under submission 2024).

X. Jiang, H. Hu, V. D. Mayyuri, A. Chen, D. M. Shila, A. Larmuseau, R. Jin, C.
Borcea, N. Phan, “FLSys: Toward an Open Ecosystem for Federated Learning
Mobile Apps”, IEEE Transactions on Mobile Computing (TMC), Janurary
2024

P. Sen, X. Jiang, Q. Wu, M. Talasila, W. Hsu, C. Borcea, “GoPlaces: An App for
Personalized Indoor Place Prediction”, the 20th IEEE International Conference
on Mobile Ad-Hoc and Smart Systems (IEEE MASS 2023), September 2023.

iv

X. Jiang, T. Oh, N. Phan, H. Mohammadi, V. D. Mayyuri, A. Chen, R. Jin, C.
Borcea, “Zone-based Federated Learning for Mobile Sensing Data”, the 21st
IEEE International Conference on Pervasive Computing and Communications
(IEEE PerCom 2023), March 2023.

X. Jiang and C. Borcea, “Complement Sparsification: Low-Overhead Model Pruning
for Federated Learning”, the 37th AAAI Conference on Artificial Intelligence
(AAAI 2023), February 2023.

P. Sen, X. Jiang, Q. Wu, M. Talasila, W. Hsu, C. Borcea, “Indoor Place Prediction
on Smart Phones (Demo Abstract)”, the 20th ACM Conference on Embedded
Networked Sensor Systems (ACM SenSys 2022), November 2022.

X. Jiang, S. Zhao, G. Jacobson, R. Jana, W. Hsu, M. Talasila, S. A. Aftab,
Y. Chen, C. Borcea, “Federated Meta-Location Learning for Fine-Grained
Location Prediction”, IEEE International Conference on Big Data (IEEE Big
Data 2021), December 2021.

S. Zhao, X. Jiang, G. Jacobson, R. Jana, W. Hsu, R. Rustamov, M. Talasila,
S. A. Aftab, Y. Chen, and C. Borcea. “Cellular Network Traffic Prediction
Incorporating Handover: A Graph Convolutional Approach”, the 17th Annual
IEEE International Conference on Sensing, Communication and Networking
(IEEE SECON 2020), June 2020.

v

To Those Whom I Love And Those Who Love Me

vi

ACKNOWLEDGMENTS

I would like to acknowledge and give my warmest thanks to my dissertation advisor

Dr. Cristian Borcea who made this work possible. Dr. Borcea has been a constant

source of knowledge, inspiration, and constructive feedback. He cares deeply about

us, his PhD students, and fosters an encouraging, welcoming, and productive research

atmosphere. His high standards in research teach us every detail, from motivation to

presentation. His guidance and advice carried me through all the stages of my PhD

study, not only in my research, but also in all areas of my personal life.

Next, I would like to extend my heartfelt gratitude to every member of my

Committee: Dr. Yi Chen, Dr. Xiaoning Ding, Dr. Hai Phan, and Dr. Guy

Jacobson for their valuable feedback and suggestions that vastly helped in improving

the dissertation and papers.

In addition, I would like to thank Dr. Manoop Talasila, Dr. Wen-Ling Hsu, Dr.

Rittwik Jana, and Syed Anwar Aftab from AT&T Research Labs, and Dr. An Chen

and Vijaja D. Mayyuri from Qualcomm for being my industry collaborators. Their

comments and suggestions have helped me improve the dissertation greatly.

More specifically, I would like to thank my fellow lab-mates: Dr. Shuai Zhao,

Dr. Han Hu, Dr. Phung Lai, and Pritam Sen, for their valuable insights and support

during my research. Collaborating on research and writing papers with them has

been a pleasant experience.

Most importantly, I would not have achieved a fraction of this without the

unconditional love and support of my family members. Although they are overseas,

they have striven to show me their constant support and have helped me tremendously

when I was in need. My family has supported my entire journey, and endlessly helped

me, and for that, I am forever thankful.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Federated Learning Systems for Mobile Devices 2

1.1.1 FL System Driven by Real-life Mobile Applications 2

1.1.2 Zone-based FL System . 3

1.2 Federated Learning Applications with Mobile Sensing Data 5

1.2.1 Human Activity Recognition 5

1.2.2 Fine-Grained Location Prediction 6

1.3 Federated Learning Optimizations . 8

1.3.1 Low-Overhead Model Pruning for FL 8

1.3.2 Federated Continual Learning Using Concept Matching 10

1.4 Contributions of Dissertation . 12

1.4.1 FL System Driven by Real-life Mobile Applications 12

1.4.2 Zone-based FL System . 15

1.4.3 Federated Meta-Location Learning 17

1.4.4 Complement Sparsification to Reduce Overhead 19

1.4.5 Concept Matching for FCL . 20

1.5 Contributors to this Dissertation . 22

1.6 Structure of the Dissertation . 22

2 LITERATURE REVIEW . 24

2.1 Federated Learning Background . 24

2.1.1 FL Preliminaries . 24

2.1.2 FL Systems . 25

2.2 Federated Learning Applications with Mobile Sensing Data 27

2.2.1 Human Activity Recognition 27

2.2.2 Location Prediction . 28

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

2.3 Enhancing Federated Learning . 30

2.3.1 Coping with Non-IID Data in FL 30

2.3.2 FL Incorporating Differential Privacy 30

2.3.3 Location Embedding in FL . 32

2.3.4 Clustering and Personalization in FL 32

2.3.5 Model Pruning in FL . 34

2.3.6 Federated Continual Learning 35

2.4 Chapter Summary . 37

3 FLSYS: TOWARD AN OPEN ECOSYSTEM FOR FEDERATED
LEARNING MOBILE APPS . 38

3.1 FLSys Design . 38

3.1.1 System Requirements . 39

3.1.2 FLSys Overview . 41

3.1.3 System Architecture . 42

3.2 Prototype Implementation . 49

3.2.1 Implementation Technologies 49

3.2.2 Phone Implementation . 51

3.2.3 Cloud Implementation . 53

3.2.4 Asynchronous Federate Averaging Implementation 53

3.2.5 FLSys Setup Workflow . 55

3.3 HAR-Wild: Data, Model, and Training 56

3.3.1 Data Collection . 57

3.3.2 Data Processing . 60

3.3.3 Model Design . 62

3.3.4 HAR-Wild Async Augmented Training 63

3.4 Evaluation . 65

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.4.1 HAR-Wild Model Evaluation 67

3.4.2 Sentiment Analysis (SA) Model Evaluation 71

3.4.3 HAR-Wild over FLSys Emulation Performance 72

3.4.4 FLSys Performance on Smart Phones 75

3.4.5 FLSys Performance in the Cloud 78

3.5 Chapter Summary and Lessons Learned 79

4 ZONE-BASED FEDERATED LEARNING 83

4.1 ZoneFL Training . 83

4.1.1 Zone Partition . 83

4.1.2 ZoneFL Training Overview . 84

4.1.3 Zone Merge and Split (ZMS) 86

4.1.4 Zone Gradient Diffusion (ZGD) 91

4.2 System Design and Implementation 92

4.2.1 System Architecture . 92

4.2.2 ZoneFL Prototype Implementation 95

4.3 Evaluation . 97

4.3.1 Datasets, Models, and Metrics 97

4.3.2 Model Utility Results . 98

4.3.3 System Results . 100

4.4 Chapter Summary . 104

5 FEDERATED META-LOCATION LEARNING FOR FINE-GRAINED
LOCATION PREDICTION . 106

5.1 Meta-Location Generation . 107

5.1.1 Raw Location Data . 107

5.1.2 Meta-Location Input for Prediction Model 107

5.1.3 Meta-Location Output for Prediction Model 109

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.1.4 Meta-Location Benefits . 110

5.2 FMLL Model . 111

5.2.1 Problem Definition . 111

5.2.2 Model Architecture . 112

5.3 FMLL Learning Framework . 115

5.3.1 System Architecture . 116

5.3.2 Operation Stages . 117

5.3.3 Training with Data Augmentation 118

5.4 Dataset and Meta-location Preprocessing 119

5.4.1 Dataset Description . 119

5.4.2 Meta-location Preprocessing 119

5.5 Experimental Evaluation . 122

5.5.1 Model Performance Without FL 122

5.5.2 Model Performance with FL 127

5.5.3 Model Benchmarks on Smart Phones 129

5.6 Discussion . 133

5.7 Chapter Summary . 134

6 COMPLEMENT SPARSIFICATION: LOW-OVERHEAD MODEL
PRUNING FOR FEDERATED LEARNING 136

6.1 Complement Sparsification in FL . 136

6.1.1 Preliminaries . 138

6.1.2 CS Workflow . 139

6.1.3 Algorithmic Description . 140

6.1.4 Technical Insights . 141

6.1.5 Algorithm Analysis . 143

6.2 Evaluation . 144

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

6.2.1 Datasets . 144

6.2.2 Models . 144

6.2.3 Experimental Settings . 145

6.2.4 Baselines . 146

6.2.5 Results . 146

6.3 Chapter Summary . 153

7 FEDERATED CONTINUAL LEARNING USING CONCEPT MATCHING 154

7.1 CM Framework . 154

7.1.1 Motivating Application Scenarios 154

7.1.2 Problem Definition . 155

7.1.3 Learning Framework for FCL 157

7.1.4 Design Discussion . 159

7.2 Concept Matching Algorithms . 160

7.3 Evaluation . 164

7.3.1 Experimental Setup . 165

7.3.2 Results . 170

7.4 Chapter Summary . 186

8 CONCLUSIONS AND FUTURE DIRECTIONS 187

REFERENCES . 190

xii

LIST OF TABLES

Table Page

2.1 Comparison of Different FL Frameworks 27

3.1 Types of Sensor Data Collected . 58

3.2 Total Time of Sensor Sessions (Continuous Sensors) 58

3.3 Total Number of Data Samples . 59

3.4 Labels and the Total Number of Minutes Collected for Each Label . . . 60

3.5 Number of Samples in the Dataset for 51 Users 66

3.6 Model Settings of HAR-W and Baselines 66

3.7 HAR-Wild Using Centralized and FL Training vs. Baselines: Macro-
Model Performance . 67

3.8 Macro-model Performance for HAR-W-64-fed-uniform for Different Types
of Privacy Protection Mechanisms and Different Parameters 70

3.9 SA Model Performance Per Class for Centralized and Federated Learning 71

3.10 Performance Per Class of HAR-Wild over FLSys Using Android Emulation 73

3.11 Training on Android Phones: Resource Consumption and Latency 77

3.12 Inference on Android Phones: Resource Consumption and Latency . . . 77

4.1 ZoneFL vs. Global FL . 99

4.2 ZMS Improvement . 100

4.3 Training on Phones: Resource Consumption and Latency 101

4.4 Inference on Phones: Resource Consumption and Latency 102

4.5 Server Load in ZoneFL over Global FL 103

4.6 ZMS in The Field Study . 103

5.1 Performance of FMLL w/o FL and Baselines 125

5.2 FMLL w/o FL Pre-trained on Pedestrian Data and Used to Predict on
Bicycling Data w/o TL . 126

5.3 FMLL Performance on Geolife dataset: Geolife alone vs. TL from Open
PFLOW to Geolife . 127

5.4 FMLL with FL Performance . 127

xiii

LIST OF TABLES
(Continued)

Table Page

5.5 Smart Phone Specs . 130

5.6 Inference Resource Consumption and Latency 131

5.7 Training Resource Consumption and Latency 132

6.1 Training Hyper-parameters for SA and IC Models 145

6.2 Client Sparsity vs. Server Sparsity for SA 151

6.3 Client Sparsity vs. Server Sparsity for IC 151

6.4 CS Training FLOPs Saving vs. Server Sparsity for SA 151

6.5 CS Training FLOPs Saving vs. Server Sparsity for IC 152

7.1 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, and
TrafficSigns “Super” Dataset Details for Each Concept 165

7.2 Cifar100 and TinyImagenet “Super” Dataset Details for Each Concept . 165

7.3 Model Accuracy (%) Comparison (Mean and SD) with SOTA 174

7.4 Forgetting Rate (%) Comparison (Mean and SD) with SOTA 174

7.5 Matching Effectiveness (%) with 100 Rounds 176

7.6 Performance vs. # of Clients . 176

7.7 Performance vs. Model Size . 177

7.8 Client Operation Time (Second) on Real IoT Device for SVHN,
FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
“Super” Dataset . 177

7.9 Clustering Performance with 100 Rounds Training for SVHN, FaceScrub,
MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns “Super” Dataset . 182

xiv

LIST OF FIGURES

Figure Page

3.1 FLSys architecture and asynchronous protocol. 40

3.2 HAR-Wild model architecture. 62

3.3 Number of data points of each class for each user. 63

3.4 Centralized training evaluation. 68

3.5 Comparison of FL HAR-Wild versions, w/ and w/o data augmentation,
and w/ and w/o privacy protection. 69

3.6 HAR-Wild over FLSys using Android/Linux emulation. 73

3.7 Linux emulation of HAR-Wild over FLSys, while varying total number of
users and number of users dropping from training. 75

3.8 Aggregation time and participating clients. 76

3.9 FLSys aggregation execution time against the number of models. 79

4.1 ZoneFL training architecture. 84

4.2 Binary tree and zone splitting. 90

4.3 System architecture. 94

4.4 Simulation results of global FL and ZoneFL algorithms. 99

4.5 User training time vs. number of zones in the user data. 103

5.1 Illustration of meta-location generation. 109

5.2 Model architecture. 112

5.3 FMLL aystem architecture. 116

5.4 Federated Learning operation of FMLL. 117

5.5 Heatmap of possible next minute location in Open PFLOW (left) and
Geolife (right) for 20m × 20m grid cells. 120

5.6 Open PFLOW 5th min prediction heatmap of 20m × 20m grid cells. . . 120

5.7 Open PFLOW next minute prediction heatmap of 5m × 5m grid cells. . 120

5.8 Prediction accuracy as a function of grid-cell size. 125

5.9 Prediction accuracy as a function of time windows. 126

xv

LIST OF FIGURES
(Continued)

Figure Page

5.10 Loss and accuracy over epochs with 40 rounds of training. 128

5.11 Loss and accuracy over rounds with 24 epochs of training. 128

6.1 Overview of complement sparsification in FL. 137

6.2 Test set accuracy vs. communication rounds for SA trained with all users
in every round. 146

6.3 Test set accuracy vs. communication rounds for SA trained with 10
random users in each round. 146

6.4 Test set accuracy vs. communication rounds for IC trained with 10
random users in each round. 147

6.5 Zoom in of rounds 150-300 from Figure 6.4. 147

6.6 Global sparse model vs. aggregated dense model accuracy for SA with 10
random users every round. 150

6.7 Global sparse model vs. aggregated dense model accuracy for IC with 10
random users every round. 150

6.8 Accuracy as a function of server sparsity for SA. 153

6.9 Accuracy as a function of server sparsity for IC. 153

7.1 FCL using CM. 156

7.2 CM Effectiveness with SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-
MNIST, and TrafficSigns: test set accuracy over training rounds. . . . 171

7.3 CM effectiveness with Cifar100 and TinyImagenet: test set accuracy over
training rounds. 172

7.4 Class-incremental vs. task-incremental: SVHN, FaceScrub, MNIST,
Fashion-MNIST, Not-MNIST, TrafficSigns test set accuracy over
communication rounds. 173

7.5 Model accuracy over communication rounds with different number of
concepts configured. 178

7.6 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
test set accuracy vs. communication rounds as number of clients
increasing. 179

xvi

LIST OF FIGURES
(Continued)

Figure Page

7.7 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
test set accuracy vs. communication rounds for training 20 clients with
different model size. 180

7.8 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
test set accuracy vs. communication rounds for training 80 clients with
different model size. 181

7.9 TinyImagenet and Cifar100 test set accuracy vs. communication rounds
as number of clients increases. 183

7.10 TinyImagenet and Cifar100 test set accuracy vs. communication rounds
for training 20 clients with increasing model size. 184

7.11 CM vs. vanilla FL with each original dataset as a concept: SVHN,
FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns test set
accuracy over communication rounds. 185

xvii

CHAPTER 1

INTRODUCTION

Federated Learning (FL) [1] has the potential to bring deep learning (DL) on mobile

devices, while preserving user privacy during model training. FL balances model

performance and user privacy through three design features. First, each device

trains a local model on its raw data. Second, the gradients of the local models from

multiple users are sent to a server for aggregation to compute a global model that

is more accurate than individual local models. Third, the server shares the global

model with all users. During this federated training, the raw data from individual

users never leave their devices. A wide range of mobile apps, e.g., predicting or

classifying health conditions based on mobile sensing data, can benefit from running

DL models on smart phones using FL, which offers privacy-preserving global training

that incentivizes user participation.

Despite the growing interest in FL to preserve user privacy, the lack of a publicly

available FL system has precluded the widespread adoption of FL models on smart

phones. This has also limited our understanding of how real-world applications can

benefit from FL. Furthermore, there are many open problems in FL, such as how

to cope with non Independent and Identically Distributed (IID) data issue in FL,

how to train models efficiently and collaboratively from resource restrained mobile

devices, how FL system to be adapted in a mobile-edge-cloud computing architecture,

how to tackle the ever-changing data distribution in the real world. This dissertation

is to firstly design and implement an efficient end-to-end FL system driven by real-

life mobile applications, enhance it in terms of scalability and mobile user mobility

awareness, study some FL mobile sensing applications, and then to tackle some open

1

problems in FL, such as the communication and computation overhead, and Federated

Continual Learning (FCL) scenario.

The rest of this chapter presents an overview of FL systems for mobile devices

in Section 1.1, and discusses two FL applications with mobile sensing data in

Section 1.2. Section 1.3 proposes two mechanisms to optimize FL: one to reduce

communication and computation overhead, and the other to address the ever-changing

data distribution in FL. The contributions of this dissertation proposal are presented

in Section 1.4. Section 1.5 acknowledges the contributors to this dissertation. Finally,

Section 1.6 details the structure of this dissertation.

1.1 Federated Learning Systems for Mobile Devices

1.1.1 FL System Driven by Real-life Mobile Applications

Despite progress on theoretical aspects and algorithm/model design for FL [2–6], the

lack of a publicly available FL system targeting mobile devices has precluded the

widespread adoption of FL models on smart phones, even though such models can

enable novel mobile apps that apply DL on mobile data (many times collected from

sensors on the phones) in a privacy-preserving manner. Furthermore, this has also

limited our understanding of how real-world applications can benefit from FL. Most of

existing FL systems are either unavailable for the research and practice communities

(e.g., Google [1], FedVision [7]), under development [8], or do not support mobile

devices [9]. Well-developed open systems enabling on-device training [10, 11] do not

provide support for third-party app development and do not consider the constraints

of mobile devices. Most of the existing FL studies are based on simulations [2–6,12],

which may lead to an oversimplified view of the applicability of FL models in real-

world. In the meantime, although demonstrated in several scenarios such as keyboard

typing prediction [13], FL lacks real-world applications, which can drive the design

2

of FL systems. Indeed, real-world benchmarks for FL are pivotal to help shape the

developments of FL systems [14].

In this dissertation, we take a unique application-system co-design approach to

design, build, and evaluate an FL system. Our system design is informed by a critical

mobile app, which illustrates a large category of apps that use DL on mobile sensing

data: human activity recognition (HAR) on smart phones. In addition to HAR, we

analyzed other real-life applications [1, 7, 13, 15, 16] to inform the system design. A

list of important questions emerges, and many of them are not addressed in existing

FL system designs [1, 8, 13, 16] that largely ignore the constraints of mobile devices:

How can we balance FL model performance with resource constraints on the phones?

How can we ensure the training conducted on phones is completed on time, despite

limited resources, i.e., computation power and battery life? How can the server

achieve seamless scalability and accurate model aggregation in the presence of large

and variable numbers of users who typically train different models and how can the

system simultaneously cope with potential communication failures (e.g., connectivity

lost on the phone)? After a global model is shared with the phones, how can a

third-party DL app utilize this model? How does the system support different types

of advanced privacy preserving mechanisms?

Aiming to answer the aforementioned research questions, this dissertation

presents the design, implementation, and evaluation of FLSys, a mobile-cloud

federated learning (FL) system that supports deep learning models for mobile apps.

FLSys is a key component toward creating an open ecosystem of FL models and apps

that use these models.

1.1.2 Zone-based FL System

To further improve the accuracy of a mobile sensing model with FL, the system

needs to adapt to user behavior, which is location-dependent. For example, people’s

3

lifestyles depend on their living areas. Living in dense areas of the city with fewer

recreational facilities prevents people from doing enough exercise. Similarly, health

problems may be related to the level of pollution in different parts of the city.

We propose Zone-based Federated Learning (ZoneFL), a novel federated

learning (FL) architecture that builds and manages different models for different

geographical zones. By design, ZoneFL satisfies the privacy-preserving requirement

because FL [17] learns from data collected by many users, while protecting the user

data privacy during training. In FL, the models are trained on mobile devices with

their local data, and the server aggregates the models received from mobile devices.

The users’ privacy-sensitive data never leave the mobile devices.

We give vehicular traffic prediction and heart health notification as two concrete

motivating examples. For traffic prediction, the traffic patterns in shopping districts

and business districts are different because of different zone-dependent user behavior.

A heart health notification app sends alerts about the level of cardiovascular risk

associated with users’ current activity based on the altitude and climate of a

geographical zone. Using ZoneFL will outperform a global model in such applications,

and we enjoy privacy prescerving and scalability of ZoneFL as well.

ZoneFL divides the physical space into geographical zones mapped to a mobile-

edge-cloud system architecture for good model accuracy and scalability. Each zone

has a federated training model, called a zone model, which adapts well to data and

behaviors of users in that zone. Benefiting from the FL design, the user data privacy

is protected during the ZoneFL training. We propose two novel zone-based federated

training algorithms to optimize zone models to user mobility behavior: Zone Merge

and Split (ZMS) and Zone Gradient Diffusion (ZGD). ZMS optimizes zone models

by adapting the zone geographical partitions through merging of neighboring zones

or splitting of large zones into smaller ones. Different from ZMS, ZGD maintains

fixed zones and optimizes a zone model by incorporating the gradients derived from

4

neighboring zones’ data. ZGD uses a self-attention mechanism to dynamically control

the impact of one zone on its neighbors. Extensive analysis and experimental results

demonstrate that ZoneFL significantly outperforms traditional FL in two models for

heart rate prediction and human activity recognition. In addition, we developed a

ZoneFL system using Android phones and AWS cloud. The system was used in a

heart rate prediction field study with 63 users for 4 months, and we demonstrated

the feasibility of ZoneFL in real-life.

1.2 Federated Learning Applications with Mobile Sensing Data

1.2.1 Human Activity Recognition

FLSys design is largely informed by a critical mobile app: human activity recognition

(HAR) on the phones, which is important for industry, public health, and research.

Simply speaking, mobile apps using HAR can harness recognized human physical

activities using data collected from phone sensors. HAR is a representative FL app

on smart phones that needs privacy-sensitive mobile sensing data collected in the

wild in order to work effectively. From an industry point of view, accurate HAR

can help the smart phone manufacturers to be smart about allocating resources

and extending battery life. The Covid-19 pandemic highlights the public health

importance of understanding individual & population behaviors under government

orders and (health) emergencies [18]; furthermore, combining user activities with

mental wellness surveys and prediction has the potential to develop personalized

interventions to help individuals to better cope with anxiety, stress, and substance

abuse, and other important societal issues [19]. Current research on HAR models uses

centralized learning on data collected in controlled lab environments on standardized

devices and controlled activities [20–26], which do not work well in real-world.

Furthermore, they do not consider the inter-play between concurrent data collection,

training, and inference on model utility and resource consumption on the phones.

5

Instead, we use HAR in the wild (open environments, where the user mobility,

activities, or application usage are not controlled in any way). Users’ behaviors,

revealed by HAR data collected over long periods of time, may be privacy-sensitive,

especially when location data is collected in addition to inertial measurement unit

(IMU) data. Furthermore, collecting user data at a central server for training may

violate recent privacy regulations (e.g., GDPR). In general, the privacy-sensitive

nature of mobile sensing data, which may also include photos and videos, makes

HAR ideal for studying the design of FL systems.

To study how HAR can be supported by FLSys in the wild, we collected data

from 100+ college students in two areas during April - August 2020. The students

used their own Android phones, and their daily-life activities were not constrained

in any way by our experiment. Data collected on mobile devices is non-IID, which

affects FL-trained models [15]. We have evaluated a variety of HAR models in both

centralized and federated training, and designed HAR-Wild, a Convolution Neural

Network (CNN) model with a data augmentation mechanism to mitigate the non-IID

problem.

1.2.2 Fine-Grained Location Prediction

Another critical application of FL with mobile sensing data is fine-grained user

location prediction. A system that achieves high accuracy for fine-grained user

location prediction on smart phones can be used by the OS and the apps to improve

system or app performance [27]. For example, accurate location prediction can be

utilized in 5G networks at every time scale and across all layers of the protocol

stack [28]. Since 5G performance is sensitive to small changes in location, the phone

could use a map showing location-based quality of wireless network service to adapt

video quality as a function of the predicted user locations. Augmented reality apps

are delay-sensitive and can benefit from fine-grained location prediction to speed up

6

content rendering. Yet another example is context-aware apps that need to adapt in

advance based on where the user will move next, such as location-based gaming or

advertising. For instance, location-based gaming could adapt in real-time based on

the predicted user locations to be more interesting or challenging.

Existing location prediction systems cannot be used in such scenarios. Most

location prediction research focuses on Place ID prediction. They work either at

large spatial scales, or at large time scales. For example, works for destination

prediction [29–32], place-label prediction [33–35], and Place of Interest (POI)

prediction [36–43] have poor spatial accuracy (e.g., hundreds of meters). We are

aware of one study predicting location at small time-scale (e.g., predict where the

user will be in several minutes), but the location error is in the order of hundreds

of meters [44]. There are additional works that focus on small time-scale check-in

POI prediction [45, 46], but they do not work for fine-grained locations or for every

location in a road network.

A location prediction system would have limited usability if it could predict only

places that have been visited previously by the user. The system can be improved

by training the prediction model with data collected by all the users who adopt the

system. While sharing location data across users will improve prediction accuracy,

a naive method using GPS traces directly in centralized training is unlikely to be

accepted by the users due to privacy concerns [47]. If users’ location traces are

disclosed, the identities of the users can be inferred even if pseudonyms are used [48,

49]. This is due to the fact that location can contain identity information [50]. Thus,

the system needs to also provide location privacy protection.

We propose Federated Meta-Location Learning (FMLL) for fine-grained location

prediction from GPS traces that works on the users’ phones while preserving users’

location privacy. In our work, the term fine-grained refers to both spatial and

temporal scales. FMLL uses FL framework with two additional components: a

7

meta-location generation module and a prediction model. The framework runs

on the phones of the users and also on a server that coordinates learning from

all users in the system. The meta-location generation module represents the user

location data as relative points in an abstract 2D space, which enables learning across

different physical spaces. The model fuses Bidirectional Long Short-Term Memory

(BiLSTM) and Convolutional Neural Networks (CNN), where BiLSTM learns the

speed and direction of the mobile users, and CNN learns information such as user

movement preferences. FMLL uses federated learning to protect user privacy and

reduce bandwidth consumption. Our experimental results, using a dataset with

over 600,000 users, demonstrate that FMLL outperforms baseline models in terms

of prediction accuracy. We also demonstrate that FMLL works well in conjunction

with transfer learning, which enables model reusability. Finally, benchmark results

on Android phones demonstrate FMLL’s feasibility in real life.

1.3 Federated Learning Optimizations

1.3.1 Low-Overhead Model Pruning for FL

Traditionally, FL uses dense and over-parameterized DL models. Empirical evidence

suggests that such models are easier to train with stochastic gradient descent

(SGD) than more compact representations [51]. However, the over-parameterization

comes at the cost of significant memory, computation, and communication overhead.

This is a problem for resource-constrained mobile and Internet of Things (IoT)

devices [52], a major target for FL, which need to perform not only inference but

also training. Therefore, reducing the computation and communication overhead in

FL, while maintaining good model performance, is essential to ensure widespread FL

deployment on mobile and IoT devices.

One potential solution to this problem is model pruning/sparsification, which

aims to produce sparse neural networks without sacrificing model performance [53].

8

Sparse models result in significantly reduced memory and computation costs

compared to their dense counterparts, while performing better than small dense

models of the same size [54]. Sparse models lead to a better generalization of the

networks [55] and are more robust against adversarial attacks [56, 57].

Pruning/sparsification can be used in FL, where the server and the clients can

collaboratively optimize sparse neural networks to reduce the computation and

communication overhead of training.

Despite the benefits of sparse models, it is challenging to design a

communication-computation efficient model pruning for FL. A typical pruning

mechanism has three stages: training (a dense model), removing weights, and

fine-tuning [58]. Since a model with some of the weights removed has to recover the

performance loss through additional fine-tuning in the back-propagation, the

fine-tuning together with weights removal represents the computation overhead of

the mechanism. In FL, this overhead cannot be placed only on the server because

the server does not have access to the raw training data for fine-tuning. Therefore,

pruning has to be done collaboratively between the server and the clients, and a

significant computation overhead will be placed on the clients. Since FL exchanges

model updates between the clients and the server every training round, smaller

pruned models will lead to lower communication overhead. However, low

communication overhead comes at the expense of computation overhead for pruning.

We propose Complement Sparsification (CS), a pruning mechanism that satisfies

all these requirements through a complementary and collaborative pruning done at the

server and the clients. At each round, CS creates a global sparse model that contains

the weights that capture the general data distribution of all clients, while the clients

create local sparse models with the weights pruned from the global model to capture

the local trends. For improved model performance, these two types of complementary

sparse models are aggregated into a dense model in each round, which is subsequently

9

pruned in an iterative process. CS requires little computation overhead on the top

of vanilla FL for both the server and the clients. We demonstrate that CS is an

approximation of vanilla FL and, thus, its models perform well. We evaluate CS

experimentally with two popular FL benchmark datasets. CS achieves substantial

reduction in bidirectional communication, while achieving performance comparable

with vanilla FL. In addition, CS outperforms baseline pruning mechanisms for FL.

1.3.2 Federated Continual Learning Using Concept Matching

Most of the current FL research assumes the data have been collected before training,

and the data at clients do not change over the training rounds. In many applications,

this is not the case, as data accumulate over time and change its distribution. The

data distribution change, also referred to as concept drift, makes prediction models

obsolete over time. For example, a user sleep quality prediction model trained

on data collected during routine life will not work well when the users experience

changes in their sleep patterns due to stress, illness, or travel. For a traffic prediction

model, the opening of a new highway, seasonal variations in traffic, and changes in

public transportation routes can alter the data distribution over time, and impair the

prediction performance. In addition, on mobile/IoT devices, such as such as smart

watches and smart cameras, it is difficult to train with the entire dataset on-device

at every round due to their resource constraints. This effect of dynamic data is being

actively studied by the Continual Learning (CL) community in centralized settings.

However, CL research in FL settings is still in its infancy.

Federated Continual Learning (FCL) performs FL under the CL dynamic data

scenarios. There are two main challenges in FCL. One, inherited from CL, is

catastrophic forgetting [59]. Due to concept drift, the model forgets previously learned

knowledge as it learns new information over time. A concept infers a function from

training examples of its inputs and outputs [60]. For example, in human activity

10

recognition (HAR) [61], the concepts can be the subsets of activities, the locations of

the activities, or the health status of the user. FCL imposes privacy constraints on

the top of CL, which escalates this challenge. Even if the clients are aware of concept

drift (e.g., sedentary vs. active lifestyle in HAR), they may not want to reveal it to

the FL server due to privacy concerns. The second challenge is that the FL clients

with different data concepts may potentially interfere with each other, because the

data in FL is typically non independently or identically distributed (non-iid). The

interference will sabotage the efforts of clients’ training during aggregation and lead

to underperforming global models. CL amplifies this interference in FL, because the

union of the clients data may also be distributed differently over time.

An efficient FCL framework shall tackle these challenges to achieve good

model performance. So far, no existing system has achieved this goal under

realistic assumptions. While several works [62–70] have recently targeted FCL, their

applicability is limited due to unrealistic assumptions (e.g., the server knows the

concept drift from the clients or the classes to learn do not change over time), or the

interference among the clients is not handled.

We propose Concept Matching (CM), an FCL framework to address these

challenges. The CM framework groups client models into model clusters, and then

uses novel CM algorithms to builds different global models for different concepts in

FL over time. In each round, the server sends the global concept models to the clients.

To avoid catastrophic forgetting, each client selects the concept model best-matching

the implicit concept of the current data for fine-tuning. To avoid interference among

client models with different concepts, the server clusters the models representing

the same concept, aggregates the model weights in each cluster, and updates each

global concept model with a cluster model of the same concept. Since the server

does not know the concepts captured by the aggregated cluster models, we propose

a novel server CM algorithm that effectively updates a global concept model with

11

a matching cluster model. We formulate and prove the theoretical ground of the

server CM algorithm, which guarantees to update the concept models in the right

gradient descent direction. In addition, the CM framework provides flexibility to use

different clustering, aggregation, and concept matching algorithms. The evaluation

over several datasets demonstrates that CM outperforms state-of-the-art systems and

scales well with the number of clients and the model size.

1.4 Contributions of Dissertation

1.4.1 FL System Driven by Real-life Mobile Applications

This dissertation presents FLSys, the first FL system in the literature created

using an application-system co-design approach for smart phones to address the

aforementioned research questions in Subsection 1.1.1. We provide a comprehensive

description of the design, implementation, and evaluation of FLSys. The two main

challenges for an FL system on phones are concurrent management of multiple FL

activities under resource constraints and frequent disconnections due to networking

and battery issues. These two challenges are not considered by any existing FL

system. To solve them, we propose an innovative system architecture that provides

(1) a unified system to manage resources on the phone in the presence of multiple

models, third-party apps using these models, and data collectors for these models;

and (2) an asynchronous protocol to manage the FL process in the presence of

disconnections. The FLSys components on smart phones manage training, inference,

data collection/preprocessing, and privacy to balance model utility with resource

consumption, while tolerating disconnections.

Furthermore, the engineering of an effective and efficient FLSys prototype on

Android and AWS and its evaluation with data collected in the wild is also a major

novel contribution of this article. No such system is currently available to the research

12

community. While implemented in Android and AWS, FLSys has a general system

design and API that can be extended to other mobile OSs and cloud platforms.

At a more specific level, there are four novel contributions in the system

architecture that combine solutions in machine learning, fault-tolerance, software

engineering, and cloud systems. First, FLSys balances model performance, privacy

and resource consumption on-demand through data collection and training configu-

rations, such as sampling rate, model structure, hyper-parameters, and differential

privacy (DP) mechanisms. Second, FLSys uses an asynchronous protocol between

the server and the phones to handle phone failures to participate in training due to

resource constraints or disconnections, while maintaining good model performance.

This protocol allows the devices to self-select for training when they have enough

data and resources and allows the sever to operate correctly in the presence of

communication failures with the phones. Third, FLSys enables an ecosystem of

third-party apps and models, as well as the ability to use different aggregators,

data collectors/preprocessors, and DP-based privacy mechanisms through its modular

design. FLSys provides a common API for third-party apps to retrieve inference

results from different DL models, while efficiently managing resource consumption

and contention. FLSys also flexibly supports different types of DP mechanisms,

both on the mobile devices and in the cloud to protect user privacy against an

honest-but-curious server. Fourth, in FLSys, different aggregation algorithms and

training policies can be deployed selectively as modules in the cloud using function

as a service (FaaS) support, which makes operating FL more cost-efficient. We also

leverage FaaS and cloud storage solutions to engineer a scalable FL server.

Another novel contribution of this article is the HAR model that we designed

and built to test FLSys, which is tailored to work efficiently on resource-constrained

phones with non independent and identically distributed (non-IID) data. For

HAR experiments on FLSys, we collected data from 100+ college students in two

13

areas during a 4-month period. The students used their own Android phones,

and their daily-life activities were not constrained in any way by our experiment.

Data collected on mobile devices are non-IID, which affects FL-trained models [15].

We have evaluated a variety of HAR models with both centralized and federated

training, and designed HAR-Wild, a Convolution Neural Network (CNN) model

with a data augmentation mechanism to mitigate the non-IID problem. HAR-Wild

was also designed to have a small memory footprint, which is appropriate for

resource-constrained devices. To showcase the ability of FLSys to work with different

FL models, we also built and evaluated a natural language sentiment analysis (SA)

model on a dataset with 46,000+ tweets from 436 users.

We carried out a comprehensive evaluation of FLSys together with HAR-Wild

and SA to quantify the model utility and the system feasibility in real life conditions.

This article is the first in the literature to share an extensive FL evaluation

on smart phones, using an end-to-end mobile-cloud FL system and mobile data

collected in the wild. We conducted a comprehensive evaluation across three

distinct training settings: 1) centralized training, 2) simulated FL with advanced

privacy preserving mechanisms, and 3) Android FL. Centralized training provides

an upper bound on model accuracy and is used to compare our HAR-Wild model

with baseline approaches. The results demonstrate that HAR-Wild outperforms

the baseline models in terms of accuracy. Furthermore, the federated HAR-Wild

performance using simulations (TensorFlow and DL4J 1), Android emulations, and

Android phone experiments is close to the upper bound performance achieved by the

centralized model. The results on smart phones demonstrate that FLSys can perform

communication and training tasks within the allocated time and resource limits, while

the FL server is able to handle a variable number of users. Finally, micro-benchmarks

1https://deeplearning4j.org/

14

on Android phones show FLSys with HAR-Wild and SA are practical in terms of

training and inference time, as well as memory and battery consumption.

1.4.2 Zone-based FL System

To build an effective DL system for mobile sensing data that works efficiently on smart

phones, the following requirements shall be satisfied: (i) Privacy-preserving : learn

from data provided by many users, while protecting user data privacy; (ii) Mobility-

awareness : achieve good model accuracy by adapting to user mobility behavior, and

(iii) Scalability : scale well as the number of users increases. We propose Zone-based

Federated Learning (ZoneFL), a novel federated learning (FL) architecture that

builds and manages different models for different geographical zones, to satisfy these

requirements.

The main novel contribution of ZoneFL is its zone-based approach to satisfy

requirements for mobility-awareness and scalability. To adapt DL models to user

mobility for higher accuracy and to achieve good scalability, ZoneFL divides the

physical space into geographically non-overlapping zones mapped to a mobile-edge-

cloud architecture. Each zone trains its own zone model, which adapts to the data

and behaviors of the users who spend time in that zone. As users move from one zone

to another, collect data, and participate the training of different zones. For inference,

their mobile devices switch from one zone model to another. Thus, zone models

achieve higher accuracy than globally trained FL models, satisfying the mobility-

awareness requirement. In ZoneFL, edge nodes manage the FL training within their

zones and host the latest models for their zones. Mobile devices can download these

models when they enter a new zone. The cloud collaborates with the edge nodes to

dynamically maintain the zone partitions for the entire space, but it is not involved

in training. Compared to traditional FL mobile-cloud architecture, the mobile-edge-

cloud architecture of ZoneFL is more scalable because model aggregation is done

15

distributedly at the edge (satisfying the scalability requirement), has lower latency

for mobile users who interact with the edge instead of the cloud, and results in less

bandwidth consumption in the network core [71,72].

A major challenge in ZoneFL is how to ensure the zone models adapt to

user mobility behavior changes over time. To solve this challenge, we propose

two novel zone-based federated training algorithms: Zone Merge and Split (ZMS)

and Zone Gradient Diffusion (ZGD). ZMS optimizes zone models by adapting the

zone geographical partitions through merging of neighboring zones or splitting of

large zones back to previously merged smaller zones. The algorithm ensures that

merging and splitting results in better model accuracy in each new zone. ZMS can

be used when the initial zone partitions are suboptimal, and the zone partitions

will be gradually improved as ZMS proceeds. Different from ZMS, ZGD maintains

fixed zones and optimizes a zone model by leveraging concepts from graph neural

networks to incorporate the gradients derived from neighboring zones’ data. ZGD

uses a self-attention mechanism to dynamically control the impact of one zone on its

neighbors. ZGD can be used to further optimize zone models when the zone partitions

are relatively stable according to ZMS.

ZoneFL was evaluated in terms of model accuracy and system performance

using two models and two real-world datasets: Human Activity Prediction (HAR)

with mobile sensing data collected in the wild, and Heart Rate Prediction (HRP) with

the FitRec dataset [73]. The results demonstrate that models using ZoneFL without

optimization performed by ZMS and ZGD significantly outperform their counterpart

models using traditional FL for zones that have enough training data. ZoneFL with

ZGD and ZMS further imporve the model performance, with ZMS improving the

performance in the initial rounds and ZGD after that.

We implemented a ZoneFL system using Android phones and AWS cloud. The

system was tested with the HRP model in a field study in the wild with 63 users for

16

4 months. The results show that ZoneFL achieves low training and inference latency,

as well as low memory and battery consumption on the phones. ZoneFL scales better,

because a zone edge server only handles only 34.98% to 37.26% of the communication

and computation load handled by a global FL server. We also observed multiple zone

merges and splits in the field study, when the model utility improved significantly.

Compared with global FL, ZoneFL has a slightly higher training time on the mobile

phones when the users participate in training for several zones. This overhead is

an acceptable cost for the benefits provided by ZoneFL. Overall, the system results

demonstrate the feasibility of ZoneFL in a real-life deployment.

1.4.3 Federated Meta-Location Learning

We build a novel location prediction system that is meticulously designed to meet

the following requirements: (R1) achieves high prediction accuracy at a fine-grained

spatio-temporal scale; (R2) works well for pedestrians and bicyclists; (R3) works in

places that have not been visited before by the owners of the smart phones invoking

the prediction there; and (R4) protects user location privacy. To the best of our

knowledge, there is no existing work that satisfies all these requirements.

This dissertation presents Federated Meta-Location Learning (FMLL) that

satisfies all these requirements. FMLL uses FL framework with two main components:

a meta-location generation module and a prediction model. The meta-location

generation module represents the user location data as relative points in an abstract

2D space, which is a grid with fixed-size cells. Meta-locations enables training

on data received from all users even from different physical locations. This

meta-location also scales all data to the same range and avoids the bias introduced

by data with high longitude and latitude values, which weighs more during the deep

learning optimization. Our novel prediction model is trained on input derived from

meta-location. The model uses Bidirectional Long Short-Term Memory (BiLSTM)

17

and Convolutional Neural Networks (CNN), where BiLSTM learns the speed and

direction of the mobile users, and CNN learns information such as user movement

preferences. These two components are fused into a dense network with softmax

activation. The federated learning framework allows the system to train on data

from all users, while protecting user privacy.

Both meta-location and the prediction model contribute to the superior

prediction accuracy for pedestrians and bicyclists (requirements R1 and R2). The

learning framework runs on the smart phones of the users and on a server that

coordinates learning from all users in the system. It helps to satisfy R3 because

a user can benefit from the learning on other users’ smart phones with locations

not visited by this user. Meta-location also contributes to R3 because it can

extract repeated patterns, even when the physical locations are different. In FMLL,

privacy is protected by combining federated learning (FL) [74] with our meta-location

generation (R4). FL trains the models locally on each phone and then computes a

global model at the server by aggregating the gradients of the local models. In this

way, the server never gets access to the raw data. However, the gradients of the

local models may still leak private location information if the FL model uses physical

location data [75]. This problem is substantially mitigated by using meta-locations,

because similar meta-locations may be generated from different physical locations,

making the identification of physical locations at the server more difficult.

Our experimental results, using a dataset with over 600,000 users, demonstrate

that FMLL outperforms baseline models in terms of prediction accuracy for pedes-

trians and bicyclists respectively. We also demonstrate model reusability on another

dataset, using FMLL with transfer learning [76]. We benchmarked the model on

Android phones, and the results demonstrate that both training and inference are

feasible in terms of execution time and battery consumption.

18

1.4.4 Complement Sparsification to Reduce Overhead

To design a communication-computation efficient model pruning mechanism for FL,

four requirements must be satisfied: (R1) reduce the size of the local updates from

the clients to the server; (R2) reduce the size of the global model transferred from the

server to the clients; (R3) reduce the pruning computation overhead at the clients;

(R4) achieve comparable model performance with dense models in vanilla FL. All

these requirements must be satisfied under the assumption that the server does not

have access to raw data due to privacy concerns. None of the existing works on FL

pruning [77–81] can satisfy these requirements simultaneously. They either impose

substantial computation overhead on the clients or only reduce the communication

overhead from the clients to the server, but not vice versa. The main unsolved problem

is the apparent contradictory nature of the requirements.

We propose Complement Sparsification (CS), a pruning mechanism for FL

that fulfills all the requirements. The main idea is that the server and the clients

generate and exchange sparse models complementarily, without any additional fine-

tuning effort. The initial round starts from vanilla FL, where the clients train a

dense model for the server to aggregate. The server prunes the aggregated model

by removing low magnitude weights and transfers the global sparse model to the

clients. In the following rounds, each client trains from the sparse model received

from the server, and only sends back its locally computed sparse model. The client

sparse model contains only the weights that were originally zero in the global sparse

model, thus complementing the global model. Then, the server produces a new dense

model by aggregating the client sparse models with the global sparse model from

the previous round. As in the initial round, the server removes the weights with

low magnitude and transfers the new global sparse model to the clients. The new

model has a different subset of non-zero weights because the client model weights are

19

amplified with a given aggregation ratio to outgrow other weights. In this way, all

the weights in the model get updated to learn over time.

In CS, both the server and the clients transfer sparse models to save commu-

nication overhead bidirectionally (R1 and R2). Without deliberate fine-tuning, the

computation overhead imposed on the system is minimized (R3). In CS, the pruning

at the server preserves a global model that captures the overall data distribution,

while the newly learnt client data distribution resides on the complementary weights

(i.e., the zero weights of the global sparse model). Practically, the clients’ training

recovers the model performance loss during pruning without additional fine-tuning.

Iteratively, the performance of the global model improves over time. Eventually, the

clients can use the converged global sparse model for inference. This process can

achieve comparable model performance with dense models in vanilla FL (R4).

We demonstrate that CS is an approximation of vanilla FL, and evaluate CS

with two popular benchmark datasets [82] for Twitter sentiment analysis and image

classification (FEMNIST). We measure model sparsity to quantify communication

overhead. Specifically, CS achieves good model accuracy with server model sparsity

between 50% and 80%. This sparsity represents the overhead reduction in the server-

to-clients communication. The clients produce model updates with sparsity between

81.2% and 93.2%. The client sparsity represents the overhead reduction for client-

to-server communication. CS reduces the computation overhead by 29.1% to 49.3%

floating-point operations (FLOPs), compared with vanilla FL. We also demonstrate

through experiments and a qualitative analysis that CS performs better than baseline

model pruning mechanisms in FL [78,79] in terms of model accuracy and overhead.

1.4.5 Concept Matching for FCL

Concept Matching (CM) is the first framework for FCL to tackle catastrophic

forgetting due to concept drift over time in CL, overcome the interference among

20

clients in FL, and achieve good model performance. Intuitively, if we can separate

the client models based on the data concepts, and train different models specifically

to learn each concept iteratively, catastrophic forgetting and the interference among

clients can be greatly diminished. This process has to be performed under the

FL assumption that the server cannot access any raw data. The CM framework

achieves these goals through clustering and concept matching in FL. At every

training round, to avoid interference among the clients, the server clusters the client

models representing the same concept and aggregates them. To mitigate catastrophic

forgetting, different concept models are trained for each concept through concept

matching which occurs differently at the server and the clients. The server concept

matching is to match and update the concept model of the previous round with

a cluster model. We propose a novel distance-based concept matching algorithm

for the server concept matching. This algorithm matches a cluster model with a

concept model close in distance, and aligns them to update the concept model in the

appropriate gradient descent direction. The client concept matching is to test the

concept models from the previous round on the current local data, and to select the

one with the lowest loss as the best match. The CM framework does not require the

clients to have any knowledge about the concepts. Furthermore, the server does not

need any additional information when compared to vanilla FL (i.e., it only requires

the model weights from the clients). The CM framework provides flexibility to use a

variety of clustering, aggregation, and concept matching algorithms. The framework

can evolve as new algorithms are proposed for different applications and models. Our

server concept matching algorithm achieves up to 100% effectiveness. This result

is grounded in a theorem, in which we proved that with each iteration of gradient

descent, the distance between the current model and the previous one decreases.

Our algorithm ensures this condition for each concept model by updating it with

a matching cluster model. Furthermore, using several datasets, we experimentally

21

demonstrated the superior performance of CM over the state-of-the-art solutions,

its algorithms effectiveness to match concepts of data to model, its resilience when

configured with different numbers of concepts, and its feasibility and low overhead on

a real IoT device.

1.5 Contributors to this Dissertation

The prototype of FLSys was designed and implemented collaboratively with my

colleague Han Hu. The author designed and implemented the mobile-side

components, the deep learning model, the communication protocol, and the FL

emulation process. Han Hu’s contributions are the design of the training protocol,

the implementation of the FL simulation process, and the implementation of

cloud-side components in FLSys. The high-level design and the data pre-processing

steps were designed and implemented collaboratively by the author and Han Hu. In

addition, Thinh On and Phung Lai’s contribution is evaluating FLSys with

differential privacy.

For ZoneFL, the author designed ZoneFL system and ZMS algorithm, imple-

mented the mobile-side training app, improved the server-side components from

FLSys, and analyzed the field study. Thinh On designed and implemented ZGD

algorithm for ZoneFL, and ran simulations to evaluate ZoneFL. Hessam Mohammadi

participated in the initial design of ZoneFL, and some ideas from the initial design

was used in ZoneFL. Khang Dang implemented the data collector for ZoneFL.

For a better understanding of the two systems and my contribution, the whole

systems are presented in this dissertation, including the parts of my colleagues.

1.6 Structure of the Dissertation

The remainder of this proposal is organized as follows. Chapter 2 provides a review

of the literature related to this dissertation. Chapter 3 presents FLSys - an open

22

ecosystem for FL mobile apps. Chapter 4 presents ZoneFL. Chapter 5 shows

Federated Meta-Location Learning for fine-gained location prediction. Chapter 6

presents Complement Sparsification: low-overhead model pruning for FL. Chapter 7

presents FCL using Concept Matching. Chapter 8 concludes the dissertation and

discusses the future directions.

23

CHAPTER 2

LITERATURE REVIEW

This chapter reviews Federated Learning (FL) background, two FL applications with

mobile sensing data, and works enhancing FL.

2.1 Federated Learning Background

2.1.1 FL Preliminaries

FL is a multi-round communication protocol between a coordination server and a

set of N clients to jointly train a learning model fθ, where θ is a vector of model

parameters (also called weights). The training proceeds in rounds. At each round t

the server sends the latest model weights θt to a randomly sampled subset of clients

St. Upon receiving θt, each client u ∈ St uses θt to train its local model and generates

model weights θut . Client u computes its local gradient ∇θut = θut − θt, and sends

it back to the server. After receiving the local gradients from all the clients in St,

the server updates the model weights by aggregating all the received local gradients

using an aggregation function G : R|St|×n → Rn, where n is the size of ∇θut . The

aggregated gradient will be added to θt: θt+1 = θt + λG({∇θit}i∈St), where λ is the

server’s learning rate. A typical and widely applied aggregation function G is the

weighted averaging, called Federated Averaging (FedAvg) [15].

By joining the FL protocol, clients minimize the average of their loss functions

as follows: θ∗ = argminθ
1
N

∑N
u=1 Lu(θ), where Lu is the loss function of client u

on their local training dataset Du. Lu is defined as Lu(θ) =
1

|Du|
∑

x∈Du
L
(
fθ(x), y

)
,

where |Du| denotes the number of data samples in Du, and L is a loss function (e.g.,

cross-entropy) penalizing the mismatch between the predicted values fθ(x) of an input

x and its associated ground-truth label y.

24

2.1.2 FL Systems

FL can be categorized into Horizontal FL, Vertical FL, and Federated Transfer

Learning (FTL) [16]. In Horizontal FL, data are partitioned by device user Ids, such

that users share the same feature space [16]. In Vertical FL, different organizations

have a large overlapping user space with different feature spaces. These organizations

aim at jointly training a model to predict the same model outcomes, without sharing

their data. In FTL, the datasets of these organizations differ in both the user space

and the feature space. In Vertical FL and FTL, different organizations need to

align their common users and exchange intermediate results by applying encryption

techniques [83]. The server cannot just average the gradients, but it needs to minimize

a joint loss. At inference stage, the organizations may have to send their individual

intermediate results to the server to compute a final result. The systems of these two

categories rely on cryptography and their interactions are more complex. Our FLSys

focuses on Horizontal FL, with an option for extension to Vertical FL and FTL in

the future. For simplicity, we will use FL to indicate Horizontal FL in the rest of our

paper.

Table 2.1 shows the comparison between FLSys and other FL

systems/frameworks across several features required for an efficient and effective FL

system. FLSys is the only system that supports all these features, and it is also the

only one that supports third-party apps and efficient mobile sensing data collection.

Specifically, FLSys addresses unanswered questions on concurrent training of

multiple models for different apps and APIs for third party app developers.

Furthermore, unlike all the other systems, FLSys enables models that work with

data collected from the phones’ sensors, which adds challenges related to efficient

and effective data collection.

Among the comparison systems, the FL work done at Google is the best known.

However, despite work [1] that describes the conceptual design of a scalable FL system

25

for mobile devices, Google has not published the implementation and evaluation of an

end-to-end FL system to address the features in Table 2.1. Recently, its TensorFlow

Lite [84] framework started to support on-device training, but this framework does

not attempt to provide any other type of system support required by FL.

Systems such as FATE [85] and FedVision [7], introduce FL architectures

based on web-services. They focus on either institutional collaboration or a target

application, and they do not have any support for mobile devices. Similarly, Nvidia’s

FLARE [86] is a domain-agnostic, open-source, and extensible SDK for FL, but it does

not support mobile device training. Among the systems supporting mobile devices,

Syft [10] offers KotlinSyft for on-device training and provides an FL server, PyGrid,

with a web-UI. However, Syft does not address scalability or provides advanced

privacy preserving mechanism. FedML [8] shares some goals with FLSys. However,

this open source system is still under construction. In addition, FedML focuses more

on software engineering aspects, rather than on system aspects such as efficient sensor

data collection or scalability. The closest FL system to ours is Flower [87], which

provides a high-level FL programming library, employs TensorFlow Lite for on-device

training, and evaluates scalablity with a number of embedded edge computing devices.

However, this system does not focus on mobile devices and does not provide a solution

to support third-party apps or mobile sensing data collection. The evaluation is

conducted on embedded edge computing devices instead of real mobile devices. Last

but not least, FLSys is the only system designed to provide modular deployment. The

policies, algorithms, and functions are implemented at fine granularity. The system

can be deployed as interchangeable modules with serverless cloud resources, instead

of an always-on server. This makes it easy to both upgrade the system and achieve

cost-efficiency when scaling up.

26

Table 2.1 Comparison of Different FL Frameworks
TF-Lite Syft FLARE FATE FedML Flower FLSys

On-device
training

✓ ✓ * ✓ ✓

Scalability ✓ ✓
Fault-tolerance ✓ ✓ ✓
Client
heterogeneity

✓ ✓ ✓ ✓

Advanced
privacy
preserving

* ✓ ✓ ✓ ✓

Concurrent
third-party app
support

✓

Efficient sensor
data collection

✓

Modular
deployment

✓ ✓

(* denotes planned feature)

2.2 Federated Learning Applications with Mobile Sensing Data

2.2.1 Human Activity Recognition

Our HAR model focuses on sensing and classification of physical activities through

smart phone sensors. Recent works show that deep learning models are effective

in HAR tasks. For example, Ignatov [20] proposed a CNN based model to classify

activities with raw 3-axis accelerometer data and statistical features computed from

the data. Several works [21,22,26] proposed LSTM-based models and achieved similar

performances.

Most research on HAR models uses centralized learning on data collected in

controlled lab environments with standardized devices and controlled activities, in

which the participants only focus on collecting sensor data with a usually high and

fixed sampling rate frequency, i.e., 50Hz or higher. Although there are good publicly

available HAR datasets, e.g., WISDM [23], UCI HAR [24], and Opportunity [25],

they are not representative for real-life situations. Different from existing works, this

paper shows that HAR-Wild over FLSys performs well on the data collected in the

wild, which are subject to fluctuating sample rates and non-IID data distribution.

27

2.2.2 Location Prediction

Early exploration of location prediction adapted Markov Chains and Hidden Markov

Models [27]. Conventional machine learning (ML) methods, such as Bayesian

networks [33], Support Vector Machines (SVM) [34], and tree-based models [31],

were also applied for location prediction. Due to the limited information extraction

capability of these models, the performance suffered.

More recently, researchers have started to exploit deep learning (DL) techniques

for location prediction by treating it as a time series prediction problem. In a taxi

destination prediction competition, de Brébisson et al. [29] tested several DL models,

including MLP, LSTM, Bidirectional-RNN and Memory Network. Overall, the best

model was Bidirectional-RNN with a time window covering five successive GPS points.

In our case, given the need for fine-grained temporal scale, RNN-based methods alone

cannot work well because they do not capture information such as road network

characteristics and user preferences. Another obstacle to directly adopting RNN-

based methods is that the transition from one location to another cannot happen

between any two locations [32]. We overcome this by defining a reachable region

centered at the current location and bounded by the traveling speed. We also differ

in terms of privacy requirements. FMLL uses meta-locations instead of physical

locations. In addition to improved privacy, this allows FMLL to easily scale uniformly

among all users without losing the speed information, which is difficult when using

physical locations.

The trajectory of movement on a map can be naturally processed with

CNN-based methods. Lv et al. [30] proposed T-CONV, and beat the performance of

Bidirectional-RNN [29] in the taxi destination prediction problem. The method uses

trajectory data to mark the visited cells in a grid-like space, but does not incorporate

the visit frequencies at specific locations. The CNN component of FMLL, on the other

hand, incorporates visit frequency, which helps to improve prediction accuracy. Zhang

28

et al. [88] treated crowd inflow and outflow of grid cells in a city as a two-channel

image-like matrix, and used CNNs for crowd flow prediction. This is a different

problem from ours, but we share the ideas of visit frequencies for grid cells, and

further extend the idea to represent the output as reachable grid cells.

Recent research [36,37] applied state-of-art DL methods on POI IDs prediction.

These works seem close to ours in terms of predicting human mobility. However, their

problem definition is completely different, and their models use mechanisms that

cannot work well for our problem. In Section 5.5, we adapted them for fine-grained

location prediction and evaluated their performance. Section 5.5 will further discuss

the reasons for their inferior performance in fine-grained location prediction.

None of the studies discussed so far attempted to provide location privacy.

Current privacy-preserving techniques in ML, such as differential privacy (DP),

FL, and cryptographic methods could be applied for our problem, but have

limitations. DP requires that computations be insensitive to changes in any particular

individual’s record, thereby restricting data leaks through the results. However,

recent studies show record-level DP fails to address information leakage attacks [89].

A study by Graepel et al. [90] demonstrated machine learning on encrypted data

using homomorphic encryption, but there are trade-offs regarding computational

complexity and prediction accuracy. FL enables learning on the mobile devices

without sending the raw data/features to the server. However, recent studies [75]

showed user-level privacy leakage against FL by a malicious server, which can exploit

the parameters received from the users. FMLL uses FL, but mitigates such attacks

by using meta-location, which makes it difficult to identify physical locations.

29

2.3 Enhancing Federated Learning

2.3.1 Coping with Non-IID Data in FL

A well-reported issue restricting the performance of models trained by FL is non-

IID data distribution across users [4, 91]. Different from centralized learning, the

datasets among different users may follow different distributions in FL, because of

the heterogeneous devices, imbalanced class distribution, different user behaviors,

etc. As a result, DL models trained in FL algorithms usually suffer from inferior

performance when compared with centralized models [91].

To mitigate the non-IID issue, several algorithms have been proposed [2–6].

In FedProx [2], a regularization is introduced to mitigate the gradient distortion

from each device. Sarkar et al. [3] presented a cross-entropy loss to downweigh

easy-to-classify examples and focus training on hard-to-classify examples. Verma

et al. [6] proposed to estimate the global objective function by averaging different

objective functions given a common region of features among users, and keep different

objective functions estimated from local users’ data in different regions of the feature

space. Data augmentation approaches have been proposed [4], including a global data

distribution based data augmentation [5]. The federated training of our HAR-Wild

and SA models use a uniform data augmentation method, similar to these techniques.

2.3.2 FL Incorporating Differential Privacy

Differential privacy (DP) [92–95] offers a state-of-the-art metric for quantifying

privacy when sensitive data are involved, and it is currently deployed by organizations

such as Apple, Google, Microsoft, Facebook, and US Census Bureau [96]. An

algorithm satisfies DP when adding, removing, or changing one record does not alter

its output. The definition of DP was formalized by [93] as follows:

Definition 1 (Differential Privacy [93]). A randomized mechanismM : D → R with

domain D and range R fulfills (ε, δ)-differential privacy if for any two neighboring

30

datasets (d, d′) ∈ D that differ exactly in a single data sample and for any subset of

outputs S ∈ R, the following condition holds:

Pr[M(d) = S] ≤ eεPr[M(d′) = S] + δ (2.1)

where Pr stands for probability, ε is the privacy budget and δ is the probability

that ε-differential privacy is broken. The privacy budget ε controls the amount of

difference between the probability distributions generated by d and d′. The smaller

value of ε, the stronger privacy guarantee.

In this article, we tested FLSys with two well-known DP mechanisms for FL:

user-level DP (User-DP) [97] and sample level local DP (LDP) [98–101].

User-DP guarantees to protect clients’ participation (membership) information

in training the global model. User-DP is implemented by clipping local gradients [102]

derived from clients’ local training data. Then, DP-preserving noise in added into the

aggregation of the clipped local gradients (using federated averaging algorithm [103]).

Definition 2 (User-level Differential Privacy [97]). A randomized mechanism M :

D → R with domain D and rangeR fulfills (ε, δ)-differential privacy at user level if for

any two neighboring sets of users (u, u′) that differ in exactly one user, (Du,Du′) ∈ D

and for any subset of outputs S ∈ R, the following condition holds:

Pr[M(Du) = S] ≤ eεPr[M(Du′) = S] + δ (2.2)

In LDP, one focuses on protecting the legitimate value of a training sample of

an individual user. The definition of LDP is as follows:

31

Definition 3 (Local Differential Privacy). A randomized mechanism M satisfies

(ε, δ)-LDP if for any two inputs (x, x′) and for any subset of outputs S ∈ Range(M),

the following condition holds:

Pr[M(x) = S] ≤ eεPr[M(x′) = S] + δ (2.3)

2.3.3 Location Embedding in FL

To adapt to user mobility behavior, a naive approach in FL could be to incorporate the

user location in the model input [104–106]. However, compared with a model without

location input, such an approach increases both the model size and the computation

overhead, which leads to extra resource consumption on the mobiles. Different from

these approaches, ZoneFL balances the trade-offs between model utility and system

scalability by developing novel federated training algorithms seamlessly integrated

into a scalable mobile-edge-cloud system architecture. Furthermore, potential attacks

by an honest-but-curious server in an FL system that embeds user locations may be

able to infer user mobility traces from the model weights. In ZoneFL, such a location

privacy breach is more difficult because the fine-grained user location is not embedded

in the models.

2.3.4 Clustering and Personalization in FL

As FL being adapted in pervasive computing [107, 108], user clustering has been

proposed to improve the model accuracy of traditional FL. Clustering in FL [109,

110] groups clients by the similarity of their local updates and trains the clusters

independently. MLMG [111] uses a Multi-Local and Multi-Global model aggregation

to train the non-IID user data with clustering methods. Clustered FL [112] performs

clustering with geometric properties of the FL loss surface. However, these works

have the same scalability issue as traditional FL because they require a central server

32

to cluster users. Khan et al. [113] propose an FL scheme with a clustering algorithm

based on social awareness, which selects cluster heads to avoid a centralized server. In

OPS [114], users share their model parameters with a group of trusted friends. One

problem with these solutions is that utilizing social relationships to create clusters

carries privacy risks.

Although ZoneFL shares the idea of training models over groups of users with

clustering approaches, there is no efficient clustering method to group users by their

mobility behavior without violating users’ location privacy. ZoneFL optimizes models

to user mobility behavior and does not require centralized model updates or privacy-

sensitive user information. The edge managers do not have access to users’ locations;

they just know that the user has been in a possibly large zone. Furthermore, ZoneFL

provides a solution that can be naturally deployed at the edge for better scalability,

which is a further advantage compared to clustering approaches.

Personalized FL can also improve the FL model performance by mitigating

the issue of non-independent and identically distributed (non-IID) data, which leads

to lower performance in FL compared to centralized learning. Its key idea is to

learn a personalized model per user [115]. There are different methods for adapting

global models for individual users [116], including adding user context, transfer

learning, using personalized layers, knowledge distillation, etc. Ditto [117] leverages

global-regularized multi-task learning to provide fairness and robustness through

personalization in FL. In the adaptive personalized FL [118], each user trains a local

model incorporating certain mixed weights in the global model. Ozkara et al. [119] use

quantization and distillation for personalized compression in FL. Although effective,

these solutions demand extra computation on mobiles, which may negatively affect

their resource consumption. ZoneFL is orthogonal to personalized FL, which can be

leveraged in ZoneFL to produce personalized models for each user in each zone.

33

2.3.5 Model Pruning in FL

Model pruning can be categorized as structured pruning and unstructured pruning.

There is a large body of literature on model pruning designed for centralized

learning [120–122]. There methods are computationally demanding and require a

dataset representing the global data distribution. Therefore, they are not practical

in FL, which does not share raw data with the server, and are difficult to use on

resource-constrained mobile and IoT devices. Our CS model pruning, on the other

hand, is designed for FL on resource-constrained devices. It does not requires a

centralized dataset and eliminates explicit fine-tuning for computation efficiency. CS

applies unstructured pruning in FL, due to its freedom to update different significant

weights over FL training rounds and, thus, achieves better performance.

The recent literature contains several works on model pruning for FL. An online

learning approach [123] determines the near-optimal communication and computation

trade-off by gradient sparsity. Liu et al. [124] apply model pruning and maximize the

convergence rate. PruneFL [78] adapts the model size to find the optimal set of

model parameters that learns the “fastest”. FL-PQSU [79] is composed of a 3-stage

pipeline: structured pruning, weight quantization, and selective updating. Yu et

al. [77] present an adaptive pruning scheme, which applies dataset-aware dynamic

pruning for inference acceleration. In SubFedAvg [125], the clients use a small

subnetwork through pruning. Although most of these works achieve comparable

model accuracy with vanilla FL and save some communication when the clients send

the local updates to the server, they all impose substantial computation overhead on

clients for additional optimizations or recovering the performance loss from pruning.

In CS, pruning has very low computation overhead at the clients, as their only task

is to remove the weights that were previously non-zero in the global sparse model.

This low overhead makes CS practical for resource-constrained devices.

34

While the works mentioned so far prune model weights, other works choose to

remove neurons from the model at the clients. To cope with device heterogeneity,

Ordered Dropout (OD) [80] lets the clients train subnetworks of the original network

in an ordered fashion. However, OD cannot save any communication from the server

to the clients. In FedDrop [81], subnets are randomly generated from the global

model at the server using dropout with heterogeneous dropout rates, and the clients

only train and transmit the subnets to the server. This work saves communication

bidirectionally, but suffers from inferior model accuracy compared to vanilla FL.

CS not only reduces the bidirectional communication overhead, but also achieves

comparable performance with vanilla FL.

In addition to pruning, there are other methods targeting the overhead in

FL. Some works [126, 127] optimize the communication frequency. LotteryFL [128]

communicates the personalized lottery networks learnt by the clients. Ozkara et

al. [119] use quantization and distillation for personalized compression in FL by

manipulating the loss function at the clients. In DGC [129], the clients only send

large gradients for aggregation and leave small gradients to accumulate locally until

they become large enough. These works cannot enjoy all the benefits of using a sparse

model, such as better generalization [55] for a model to maintain good performance

on unseen data, and higher robustness to adversarial attacks [56, 57]. Since these

methods belong to different classes of model compression, we do not compare them

with CS.

2.3.6 Federated Continual Learning

Most of the works on generic FL focus on system design [11, 61], model

performance [130–133], privacy [134, 135], and communication and computation

overhead [136, 137]. Some works [112, 138–140] cluster the client models in FL.

These clustering approaches in FL assume the number of client groups is a constant,

35

and cannot be applied directly in CL scenarios. All the works mentioned here

assume the training data for the clients do not change over time, which limits the

applicability in FCL. Our work, on the other hand, focuses on making FL work well

in the presence of dynamic changes of the concepts in data.

CL allows learning continuously over time from a stream of data, while avoiding

catastrophic forgetting. Recent works addressing CL can be categorized into three

families [141]: replay [142,143], regularization [144,145] and parameter isolation [146,

147]. These techniques do not address additional challenges from FL. In addition

to its distributed nature, FL also introduces privacy restrictions. For example, FL

clients shall not share their task IDs with the server. In addition, even if the clients

can learn new concepts well without forgetting the previous ones, the aggregation may

sabotage the efforts of the clients when their learning paths diverge due to non-iid

data. This phenomenon has been demonstrated experimentally with image data in

a recent work [63]. Expanding CL to FL, our work adheres to the FL requirement

that the server only accesses the client model weights, and it handles the interference

among the clients in FL.

FCL is a new research area that combines FL and CL. FedWeIT [63] and

CFeD [70] need to share the task IDs with the server. CDA-FedAvg [64] is not

proven to work with concept drift caused by different sets of classes. FedViT [148] is

not compatible with models other than ViT. FedPC [66] focuses on P2P FL instead

of server-client FL. TARGET [62] is under an impractical assumption that all clients

train the same set of classes incrementally over time. Other works [65,67–69,149] do

not address the interference among the clients. Unlike prior works, our work tackles

catastrophic forgetting and the interference among the clients under more realistic

assumptions, such as the clients do not share any additional information with the

server beyond the model weights, and the classes can change arbitrarily over time.

36

2.4 Chapter Summary

This chapter discussed the existing studies related to FL systems, applications, and

optimizations. First, we reviewed FL preliminaries, and discussed the available FL

systems in literature. Next we discussed the state-of-art works in human activity

recognition and location prediction. Finally, we presented related works in literature

to enhance FL, including mitigating non-IID, incorporating DP, using location

embedding in FL, clustering and personalization in FL, model pruning in FL, and

tacking FCL.

37

CHAPTER 3

FLSYS: TOWARD AN OPEN ECOSYSTEM FOR FEDERATED
LEARNING MOBILE APPS

This chapter presents our experience of designing, implementing, and evaluating

an end-to-end FL system (FLsys). FLSys is co-designed with a human activity

recognition (HAR) model to specifically operate on smart phones that utilize mobile

sensing data. The two main challenges for an FL system on phones are concurrent

management of multiple FL activities under resource constraints and frequent

disconnections due to networking and battery issues. These two challenges are not

considered by any existing FL system. To solve them, we propose a novel system

architecture that provides (1) a unified system to manage resources on the phone

in the presence of multiple models, third-party apps using these models, and data

collectors for these models; and (2) an asynchronous protocol to manage the FL

process in the presence of disconnections. The FLSys components on smart phones

manage training, inference, data collection/preprocessing, and privacy to balance

model utility with resource consumption, while tolerating disconnections.

In this chapter, Section 3.1 explains the design of FLSys. Section 3.2 describes

its prototype implementation. Section 3.3 presents the HAR model and data.

Section 3.4 shows the experimental results. The chapter is summarized in Section 3.5.

3.1 FLSys Design

This section presents the design of FLSys. Specifically, it describes the system

requirements derived from an application-system co-design, the novel FLSys archi-

tecture that addresses these requirements, along with the four operation phases of

FLSys, namely data collection and processing, privacy protection, federated training,

and inference at the phones.

38

3.1.1 System Requirements

Our aim is to design and build an FL system that addresses the questions mentioned

in Subsection 1.1.1. We use the HAR model, detailed in Section 3.3, to illustrate an

entire category of FL models based on mobile sensing data collected in the wild. We

extract seven key requirements derived from this model and from other real-world FL

applications, such as next word prediction, on-device search query suggestion [13],

on-device robotic navigation [150], on-device item ranking [1], object recognition [7],

sentiment analysis, etc., and utilize them to guide our FLSys design: (R1) Effective

data collection: The data collection on the phone must balance resource consumption

(e.g., battery) with sampling rates required by different models; (R2) Support for

advanced privacy preserving mechanisms: Even though FL is privacy-preserving by

design, there are still potential privacy issues (e.g., learn user information from the

gradients) [151, 152]. Therefore, the system must provide a plugin interface for

advanced privacy protection mechanisms, such as local differential privacy; (R3)

Tolerate phone unavailability during training: Since the phones may sometimes be

disconnected from the network or choose not to communicate to save battery power,

the interaction between the phones and the cloud must tolerate such unavailability

during federated training; (R4) Scalability: The cloud-based FL server of our system

must be able to scale to large numbers of users in terms of both computation

and storage; (R5) Model flexibility: The system must support different DL models

for different application scenarios and different aggregation functions in the cloud;

(R6) Support for third-party apps: The system must provide programming support

for third party apps to concurrently access different models on the phones, while

efficiently managing resource consumption and contention; and (R7) Modularity: The

system shall not be heavy to deploy, and its policies, algorithms, and functions shall

be designed and implemented as interchangeable modules for simple, cost-effective

deployment and scalability.

39

(a) FLSys architecture.

(b) Asynchronous protocol with phone self-selection and multiple models.
Figure 3.1 FLSys architecture and asynchronous protocol.
Typical operations: 1○ Phone Manager of Client #1 registers with the Cloud Manager of
Model 1, which grants registration based on training settings. 2○ Phone Manager of Client
#1 fetches up-to-date global model from a designated storage, trains it with local data, and
uploads local gradients to a designated storage. 3○ Phone Manager of Client #2 tries to
register, but is denied. 4○ Phone Manager of Client #2 successfully registers at a later time,
but the training misses the deadline, thus its gradients upload is denied. 5○ Clients #1 and
#2 try to register during server aggregation and are denied. 6○ Each model’s Aggregator
loads the gradient updates, aggregates them, and saves the aggregated model.

40

3.1.2 FLSys Overview

FLSys addresses requirements R1−R7 synergistically in a novel system architecture.

For some requirements, we propose novel solutions, as no current FL system addresses

them, while for others we customize existing solutions for our needs in order to

provide a complete design and implementation. Figure 3.1a shows the system

architecture, and Figure 3.1b shows the overall process of one training round. These

figures emphasize five novel contributions made in FLSys, compared with existing

FL systems: (1) FLSys allows the phones to self-select for training when they have

enough data and resources; (2) FLSys has an asynchronous design (Figure 3.1b), in

which the server in the cloud tolerates client failures/disconnections and allows clients

to join training at any time. (3) FLSys supports multiple DL models that can be

used concurrently by multiple apps; each phone trains and uses only the models for

which it has subscribed; (4) FLSys acts as a “central hub” on the phone to manage

the training, updating, and access control of FL models used by different apps; and

(5) FLSys allows apps/models to use different privacy mechanisms that trade model

accuracy for privacy guarantees.

These features balance model utility with mobile device constraints and privacy,

and can help create an ecosystem of FL models and associated apps. FLSys allows

different developers to build FL models/apps and provides a simple way for users

to take advantage of these apps, as it offers a unifying system for the development

and deployment of FL models and apps that use these models. FLSys acts as a

common middleware layer for all these apps and models. The users just need to

download/install the apps, and FLSys will take care of downloading/installing the

FL models used by the apps, will perform FL training as needed, and will run FL

inference on behalf of the apps.

41

3.1.3 System Architecture

The architecture (Figure 3.1a) has two main components: (1) FL Phone Manager,

which coordinates the FL activities on the phone; and (2) FL Cloud Manager, which

coordinates the FL activities in the cloud. These two components work together

to support the four phases of the FL operation: data collection and preprocessing,

privacy protection, model training and aggregation, and mobile apps using inference.

In the following, we describe each phase and explain how the system architecture

satisfies the seven system requirements.

Data Collection and Preprocessing. The FL Phone Manager controls the

data collection using one or multiple Data Collectors. A basic Data Collector is

tasked with collecting data from one sensor at a given sampling rate. Such basic

Data Collectors could be embedded in more complex ones to collect different types

of data at the same time. It is important to have one app that coordinates data

collection because having multiple apps collecting overlapping sets of data multiple

times is inefficient. Having the FL Phone Manager to coordinate the data collection

also simplifies sensor access control.

To satisfy requirement R1, FLSys supports on-demand configuration of sensor

types, sampling rates, and the period to flush data from memory to storage. Each

model informs the FL Phone Manager of the type of data and sampling rate it needs.

In this way, the FL Phone Manager knows which Data Collectors to invoke and which

sampling rates are needed. The FL Phone Manager balances sensing accuracy (i.e.,

high sampling rate) with resource consumption.

To regulate and keep such balance aligned with the user experience, the FLSys

has three features: (1) include several built-in sampling rate settings, with empirical

values from our experience; and (2) collect key statistics of the data collection (e.g.,

CPU time consumed, battery life impact, etc.) and show them to the user, upon

42

request; and (3) provide global level controls for the user to adjust the data collection

behaviors, should the user feel that their experience is impacted by data collection.

The Data Collectors store the sensed data in the Raw Data Storage and inform

the FL Phone Manager each time new data is added to the Raw Data Storage.

For efficiency, the Data Collectors can buffer a certain amount of sensed data in

memory before committing it to the storage. The FL Phone Manager can dynamically

reconfigure the data flushing period that defines when the data is written to storage.

Data Collectors set this data flushing period. Some models may use the raw data

directly, while others may require additional processing. The FL Phone Manager

decides when to invoke the model-specific Data Processors, which will store the data

in the Processed Data Storage. This is a matter of policy and can be done any time

new data is available in the Raw Storage Data or at a regular interval. The only

constraint is to have all the data preprocessed before a new local model training

operation.

To deal with the problem of non-IID data distribution, described in

Subsection 2.3.1, the Data Preprocessor can augment the data collected locally on

the device with data received from the cloud. The augmentation dataset is

model-specific and mitigates the distortion the data classes by providing data

samples for classes with not enough data. When the users join FLSys for a new

model, their phones receive an augmentation dataset from the FL Cloud Manager

for models that use data augmentation techniques.

Privacy Threat Model and Protection. To satisfy requirement R2, the

Local Privacy Preserving Manager delivers advanced privacy protection mechanisms

on the phone component of FLSys. It is designed to work with different privacy

mechanisms, which are available on a per-model basis.

Threat Model. In this study, we focus on defending against privacy inference

attacks from an honest-but-curious server, which can attempt to infer clients’ local

43

training data. Note that the server knows the identity of the clients to coordinate the

FL training. The server may try to extract the clients’ local data or infer membership

information of specific clients’ training data samples by using training data extraction

attacks [153] and membership inference attacks [154–156], respectively, via observing

the clients’ local gradients. Third-party apps on the phones, which may or may not

use FLSys, may act maliciously by trying to access the model data or performing

inference attacks, etc. There are many OS-based, programming language-based, and

networking-based approaches that can prevent or alleviate these issues. All these

solutions can be applied outside of FLSys.

Defenses. An effective way to protect clients’ local training data against an

honest-but-curious server is to use local differential privacy (LDP) [101], specif-

ically to preserve ϵ-LDP in FL [157]. LDP provides rigorous privacy protection,

without computational overhead, compared with other techniques such as secure

multi-party computation [158] and homomorphic encryption [96]. Meanwhile,

anonymizers (shuffler [159], faking source IP, VPN, Proxy, mixnets, etc. [157]) could

be compromised or could collude with the server to extract sensitive information from

local gradients [160]. This introduces extra privacy risks for the clients’ local training

data. In addition, it is challenging for dimension reduction-based privacy-preserving

techniques to achieve good utility under rigorous privacy guarantees with complex

models and tasks [161].

Therefore, our system supports existing LDP-preserving approaches in FL,

which are currently the most suitable solutions. Existing LDP-preserving approaches

in FL can be divided into two categories: (1) Clients add noise to local gradients

to protect the values of the local gradients [162]; and (2) Clients add noise to each

training sample to protect the value of each training sample [163], and then they use

these perturbed samples to derive local gradients. For both approaches, the clients

send the LDP-preserved local gradients to the server for model updates. Our system

44

further supports User-level DP (User-DP) [97] to protect the membership information

of clients against inference attacks.

These supported mechanisms [97] use DP to provide different levels of privacy

protection. Within a DP budget allocated to a given privacy mechanism, the global

model converges without an undue cost of model utility. In User-DP, the aggregated

gradients at the FL Cloud Manager are perturbed to protect clients’ participation

(membership) information in training the global model (Definition 2, Subsection

2.3.2). In LDP, every training sample is perturbed under LDP ensuring that the

legitimate value of the training sample is protected against being inferred by the

server through observing local gradients (Definition 3, Subsection 2.3.2). As these

two mechanisms illustrate, the Model Aggregator in the cloud may (e.g., User-DP)

or may not (e.g., LDP) apply privacy preserving mechanisms. Generally speaking,

privacy mechanisms in FLSys are handled by the Local Privacy Preserving Manager

on the phones, with potential collaboration from the Model Aggregator in the cloud.

Federated Training. To satisfy requirement R3, we make two design decisions.

First, FLSys allows the phones to self-select for training when they have enough data

and resources. This is different from traditional FL architectures [1], where the server

selects the phones to participate in training, which may not be available or may not

have enough data or resources for training. Second, in FLSys, the communication

between the phones and the cloud is asynchronous to cope with phone disconnections.

The software at the cloud side is designed to tolerate missing messages from the

phones. Overall, FLSys reduces communication overhead and increases client utility,

at the expense of less control in the client sampling process, compared to [1].

In order to use a given model on the phone, the FL Phone Manager first registers

the phone with the FL Cloud Manager. If the phone model and mobile OS are known

to work with the model, the FL Cloud Manager registers the phone with the New

Model Notification Service, which works as a Publish-Subscribe cloud service, and

45

returns the subscription to the phone. This subscription allows the phone to receive

asynchronous notifications when a new global model is available for download. The

FL Phone Manager downloads the model at a time determined based on the model

usage frequency and power settings.

The training for each model is done in rounds. The FL Cloud Manager

decides the duration of a round, based on preferences associated with each model.

For example, the server may start a new aggregation (i.e., by invoking the Model

Aggregator for a certain model) when a given time interval has passed or when a

certain number of local training updates have been received from the phones. The

FL Phone Manager decides when to participate in training. This decision is done

based on local policies that attempt to balance inference accuracy, the amount of

input data for training, and the resources consumed during training. The intention

to participate in training for a given model is conveyed by a message sent to the

FL Cloud Manager. Based on the model preferences (e.g., amount of data, and the

number of users in a training round), the server may decide to ask the phone to train

for the model and to provide the FL Phone Manager with a URL to upload the results

in the Cloud Local Gradients Storage. If there is a deadline for participation in the

round, the FL Cloud Manager lets the FL Phone Manager know about it.

The FL Phone Manager invokes the Model Trainer for the given model and

passes as parameter the location of the data in the Processed Data Storage. After

the training is done, the Model Trainer stores the newly computed gradients in the

Phone Local Gradients Storage. The FL Phone Manager decides when to upload these

gradients to the Cloud Local Gradients Storage. The FL Cloud Manager will invoke

the Model Aggregator for the model when the duration for the round expires or when

enough updates have been uploaded. The Model Aggregator reads the updates from

the Cloud Local Gradients Storage, computes the aggregated weights, and stores them

in the Cloud Global Model Weights Storage. The intermediate training state is stored

46

in the Training State Storage to provide lower I/O latency compared with the other

types of cloud storage in our design. This is because FLSys needs frequent access to

these data during training. Then, the Model Aggregator sends a notification via the

New Model Notification Service to let the phones know that a new model version is

available.

The cloud-side system satisfies requirement R4, as it can scale to large numbers

of users due to its modular design that decouples computation, communication,

storage, and notification services. The cloud elasticity features of each service allow

different services to scale up or down according to the workload.

As we observe from the architecture, each model is managed individually by

FLSys, and multiple models can co-exist both at the phones and the cloud. In

the cloud, different models use independent cloud resources, which can be scaled

independently. On the phone, independent model trainers and inference runners are

responsible for different applications. The cloud contains all the models in the system,

while each phone contains only the models for which it has subscribed. This modular

design allows our system to satisfy requirement R5.

Mobile Apps Using Inference. We decouple mobile apps that need inference

on the phones from the models that provide the inference. This allows an app to use

multiple models, while the same model can be used by multiple apps. FLSys provides

an API and a library that can be used by third-party app developers to perform

inference using DL models on the phone. In this way, the system architecture satisfies

requirement R6. When an app needs inference from a model, it sends a request to the

FL Phone Manager using one of the OS IPC mechanisms. The FL Phone Manager

then generates the input for the inference from the data stored in the Processed Data

Storage or the Raw Data Storage, and then invokes the Model Runner with this input.

The Model Runner sends the result to the App using IPC. When possible, the FL

47

Phone Manager re-uses preprocessed data to reduce resource consumption or performs

one inference for several applications that invoke the same model concurrently.

Model Concurrency. Given the design of FLSys, both the FL Phone Manager

and the FL Cloud Manager are able to handle multiple models concurrently. However,

the meanings of concurrency are slightly different for each side. FL Cloud Manager

needs to handle the aggregation of all models that are registered with it. Also there

is the need to communicate to a potentially large number of clients for each model

at the same time. FLSys handles this concurrency through services provided by the

underlying cloud platform, which support concurrency by design. FLSys just needs to

orchestrate the invocation of these services. The FL Phone Manager needs to handle

concurrent training and inference. Our preliminary experiments on smart phones

show parallel training of multiple models is very slow due to resource contention. It

also affects the user experience on the phones. Therefore, we decided to train models

sequentially. The FL Phone Manager can request to participate in training rounds

for multiple models concurrently, but it locally decides a sequential order in which to

train these models, based on parameters such as frequency of model usage by apps,

the training round deadlines, and historical training latency for each model. Finally,

the inference requests from the apps are executed as soon as they are received to

maintain good user experience.

System Modularity. FLSys components are designed and implemented at fine

granularity as interchangeable modules for different policies and algorithms to satisfy

requirement R7. This design makes it easy to deploy different data collection modules,

DP-based privacy preserving mechanisms, model trainers at the clients (with different

optimizers or loss functions), and aggregation functions at the server. Furthermore,

new models can be added on-demand, based on the apps that need them. This

modular design can be readily deployed in a serverless manner in the cloud, which

48

leads to improved scalability (i.e., scale up only the components that are overloaded)

and cost-efficiency (i.e., no need to run always-on servers).

3.2 Prototype Implementation

We implemented an end-to-end FLSys prototype in Android and AWS cloud, which

have been chosen because they are the market leaders for mobile OSs and cloud

platforms, respectively. However, the FLSys design is general and it can be

implemented in other mobile OSs and cloud platforms. The prototype implements all

of the components described in the system architecture (Figure 3.1a). This section

reviews the implementation technologies, the reasons for selecting them, and then

focuses on the Android implementation and the AWS implementation of FLSys.

3.2.1 Implementation Technologies

Deep Learning Framework. We chose Deep Learning for Java (DL4J) as the

underlying framework for the on-device DL-related operations (i.e., training and

model execution) because it was the only mature framework that supported model

training on Android devices until very recently, when TensorFlow Lite [84] and

KotlinSyft [10] became available for on-device training. While the Model Aggregator

in the cloud could be implemented using other DL technologies, for consistency, we

implement it in DL4J as well. The models are stored as zipped JSON and bin files

in folders on the phone and in AWS S3 buckets in the cloud.

On-device Communication. For IPC among Android apps/services, we use

Android Bound Service and Android Intent. A bound service can efficiently serve

another application component because it does not run in the background indefinitely.

Through IPC, the FL Phone Manager can provide third-party apps with an interface

to request inference results without revealing the model or the data. Furthermore, it

can communicate with the Data Collector.

49

Cloud Platform and Services. We opt to utilize the Function-as-a-service

(FaaS) architecture for our cloud computation. The core cloud components of

FLSys are implemented and deployed as AWS Lambda functions [164]. We decided

to choose FaaS for our implementation for five reasons. First, it matches our

asynchronous, event-based design, as Lambda functions are triggered by events.

Second, it provides fine-grained scalability at the function level; therefore leading

to less resource consumption in the cloud. Furthermore, computation and storage are

scaled automatically and independently by the cloud platform. Third, unlike other

cloud platforms, it does not require running virtual machines when no computation

is necessary; this saves additional resources and reduces cost. Fourth, FaaS simplifies

the development and deployment of our prototype because it does not require software

installation, system configuration, etc. Fifth, different functions can be implemented

in different programming languages making the implementation even more flexible.

Lambda functions are triggered in different ways in our prototype. We use the

AWS API Gateway to define and deploy HTTP and REST APIs. For instance, we

create a REST API to relay clients’ requests to participate in the FL training to the

Lambda function that handles these requests. We also use the AWS EventBridge to

define rules to trigger and filter events for Lambda functions.

FLSys uses a number of cloud services for storage, authentication, and publish-

subscribe communication. For model storage, validation datasets, and FL Cloud

Manager configuration files, we use AWS S3, which offers a reliable and cost-effective

solution for data accessed infrequently. More importantly, AWS S3 buckets can be

accessed directly by phones, which simplifies the asynchronous communication in

FLSys. To authenticate clients and allow them to upload and download models from

the AWS S3, FLSys uses Identity Pool in AWS Cognito. To store data that is accessed

frequently, such as training round states and model states, we use AWS DynamoDB,

a reliable NoSQL database. AWS SNS is utilized in conjunction with the Google

50

FCM to notify clients when newly trained models are ready. The use of a Google

Cloud service in our AWS implementation was necessary in order to push notifications

directly to apps on the phones when a new global model is ready in the cloud.

3.2.2 Phone Implementation

The phone implementation (left-side of Figure 3.1a) consists of three apps: a FL

Phone Manager, a HAR Data Collector, and a Testing App used to test model

inference.

Data Collector. We implemented a HAR Data Collector app designed for

long-term and battery efficient data collection. This Data Collector was implemented

as an app that can be used independent of FLSys, but for better efficiency, the Data

Collectors can be implemented as modules of the FL Phone Manager. To that end,

sensor values are not collected at an enforced fixed high frequency, but are instead

collected independently through Android listeners whose actual frequency is variable,

determined by the underlying OS. This is appropriate for data collection in the wild.

In our experience, this tends to be much friendlier to the performance and battery

life of the user devices, lowering the risk that a user abandons FLSys prematurely due

to concerns about how it is affecting their device resources. Furthermore, users are

given the option to pause or stop data collection of all or a subset of sensors in case

they have resource consumption or privacy concerns. For simplicity, the raw data and

the processed data are stored as files.

FL Phone Manager. The FL Phone Manager app decides to initiate an

on-device training round based on evaluating a Ready To Config policy (RTCp). We

implemented a simple policy to check if the phone is charging and is connected to

the network before declaring its availability for training. If yes, it sends a Ready To

Config message (RTCm) to the FL Cloud Manager. RTCm is implemented as an

HTTP request with JSON payload and is sent to a REST API URL in AWS. The

51

FL Cloud Manger either accepts or denies the phone’s participation in this training

round, based on a simple Accept/Deny for Training policy (A/DFTp) that checks the

phone model and client identity.

The phone is accepted for a round of training when it receives an Accept For

Training message (AFTm). AFTm contains the information of the AWS S3 locations

from where to download the latest global model weights and where to upload the

local gradients. The message also contains the deadline for this training round’s

completion. The FL Phone Manager evaluates a Start To Train policy (STTp) based

on the available device resources and the round’s deadline to determine whether to

actually perform the on-device training for this round or not.

The FL Phone Manager will create the corresponding Model Trainer if it decides

to train. The Model Trainer is implemented with Android native AsyncTask class to

ensure the trainer is not terminated by Android, even when the app is idle. AsyncTask

also enables multiple trainers to train in the background. Once the training is

complete, the Model Trainer uploads the local gradients to the corresponding AWS

S3 location.

Model inference is implemented as a background service with Android Interface

Definition Language (AIDL), and it gets inference requests from third-party apps.

When such a request is received, the FL Phone Manager uses the current sensor data

from the Data Collector as input for the model, runs the inference, and responds to

the third-party apps with the inference results.

Testing App. We implemented a simple testing App to test model inference.

The App uses AidlConnection to interface with the FL Phone Manager. Let us note

that the App itself does not access any data or model.

52

3.2.3 Cloud Implementation

The cloud implementation (right-side of Figure 3.1a) consists of two main components:

FL Cloud Manager and Model Aggregator.

FL Cloud Manager. The FL Cloud Manager is implemented as a series of

Lambda Functions (FaaS service in AWS). When starting a training round, it reads a

configuration file and determines the deadline for the round (i.e., the time when the

round must finish). During the period between the start time and the deadline, the

FL Cloud Manager accepts or denies clients’ requests for training (RTCm). When the

deadline is reached, the FL Cloud Manager executes the Model Aggregator according

to the Start for Aggregation policy (SFAp). The current policy checks if enough clients

have submitted their local gradients in the AWS S3 (a configurable parameter). Then,

the Lambda function implementing the FL CLoud Manager schedules an event for

itself to perform the next training round and terminate. The training process stops

when the pre-defined number of rounds is achieved, or the desired performance (model

accuracy) is achieved, if the model developers provided a validation dataset.

Model Aggregator. For implementation simplicity, the Model Aggregator

uses the federated average technique [165], with the assumption that each client

contributes equally to the global model in each training round. When it is invoked, it

loads the uploaded local gradients, and aggregates their gradients to the global model

of this round. Once the global model is updated, the Model Aggregator invokes AWS

SNS to notify clients that they can download the newly aggregated model. Note that

the Model Aggregator is called dynamically through reflection, such that different

aggregation functions can be dynamically swapped.

3.2.4 Asynchronous Federate Averaging Implementation

Algorithm 1 shows the pseudo-code of our asynchronous federated averaging

process. The algorithm consist of three procedures, which execute asynchronously.

53

Algorithm 1 AsyncFedAveraging
1: procedure ClientLoop
2: while true do
3: readyToConfig ← evaluateReadyToConfigPolicy(powerState,

wifiState,...)
4: if readyToConfig then
5: response← sendRTCm()
6: if response == “AFT” then
7: B ← sampling(DL)
8: θl ← θt

9: for batch b ∈ B do
10: θl ← θl − η∇L(θl; b)
11: ∆l ← θl − θt

12: uploadClientGradients(∆l)
13: procedure ServerRTCmHandler(RTCm)
14: if evaluateAcceptForTrainingPolicy(RTCm) then
15: returnResponse(“AFT”)
16: else
17: returnResponse(“DFT”)
18: procedure ServerLoop
19: deadlineTriggered← false
20: setupDeadline() (deadlineTriggered← true when triggered)
21: while true do
22: if deadlineTriggered then
23: if evaluateStartForAggregationPolicy() then
24: {∆1, ...∆k} ← loadClientGradients()
25: ∆t = (

∑
k ∆k)/k

26: θt+1 ← θt + γ∆t

27: if isRoundAcceptable() then
28: acceptRound(θt+1)
29: else
30: abortRound()
31: else
32: abortRound()
33: if evaluateStartNewRoundPolicy() then
34: startNewRound()
35: deadlineTriggered← false
36: setupDeadline()
37: else
38: stopTraining()
39: else
40: wait()

“ClientLoop” (lines 1-12) runs at clients and executes a round of training (lines

7-12), if the phone self-selects for training and the cloud accepts it (lines 1-6).

“ServerRTCmHandler” (lines 13-17) is a part of the FL Cloud Manager and decides

whether a phone is accepted for training. “ServerLoop” (lines 18-40) also runs at the

54

FL Cloud Manager. It performs the aggregation of local gradients and controls the

progression of training. The clients participating in a training round must submit

their local gradients before the deadline for the round expires. When the deadline

comes, the procedure first evaluates the Start for Aggregation policy, which checks

whether there are enough local gradient updates in order to preform aggregation. If

yes, the aggregation is preformed (line 24-26); if not, this round is aborted, but the

uploaded gradient updates will be carried to the next round. After aggregation, the

procedure may check against pre-defined conditions to decide whether this

aggregation outcome should be accepted or not (lines 27-30). Finally, the procedure

checks if a new round should be started by evaluating the Start New Round policy.

If a new round is to be started, a new deadline will be set (lines 33-36). Otherwise,

the procedure terminates.

3.2.5 FLSys Setup Workflow

By design, FLSys acts as a service provider that handles multiple FL models with

minimum input from the users. The setup procedures for FLSys are divided into

two stages. The first stage involves the FL Cloud Manager and the app developers,

without user involvement. The second stage involves the FL Phone Manager and the

mobile apps that use FL models, and it requires minimum user involvement. The FL

Cloud Manager is deployed before the first stage, and the FL Phone Manager should

be installed on the user’s device before the second stage. To illustrate these stages,

let us briefly explain the setup workflow using the HAR app as an example.

In the first stage, the developers of the HAR app need to register the model

with the FL Cloud Manager. The app developers need to provide the FL model to

be trained and the training plan (e.g., training frequency, number of rounds, number

of participants in a round, etc.) to register the app. The model can be developed

by the app developers or by a third party. After registration, a unique key for the

55

authentication between the app and the FL Phone Manager in the second stage will

be provided.

The second stage is typically triggered during the installation process of the

HAR app on the user’s device. The app will communicate with the FL Phone

Manager and authenticate itself using the aforementioned unique key. Once the

app is successfully authenticated, the FL Phone Manager will perform a series of

operations and eventually become ready to serve the FL model for the app. These

operations include: (1) Register the phone with the FL Cloud Manager; (2) Set up

communication channels with the app; (3) If the model does not exist on the phone,

download the model specified by the app and the training plan from the FL Cloud

Manager; If the model already exists on the phone, establish the connection between

the app and that model; and (4) Set up the local training schedule and notify the

user. After the second stage, the FL model that the HAR app needs is installed on

the phone, ready for inference and training. The training plan can be adjusted by

the developers through the FL Cloud Manager. User-experience related parameters

can be adjusted by the user through the FL Phone Manager.

3.3 HAR-Wild: Data, Model, and Training

Human Activity Recognition (HAR) generally refers to the task of identifying and

classifying people’s physical activities and behaviors, through various types of sensors.

We focus on HAR through smart phone sensors. Recent works show that deep

learning models are effective in HAR tasks. For example, Ignatov [20] proposed

a CNN-based model to classify activities with raw 3-axis accelerometer data and

associated statistical features. Several works [21,22,26] proposed LSTM-based models

and achieved similar performance. Most research on HAR models uses centralized

learning on data collected in controlled lab environments with standardized devices

and controlled activities [23–25]. Our FLSys with HAR-Wild performs well on the

56

data from the wild which are subject to fluctuated sampling rate and non-IID data

distribution. Different from existing works, our goal is to have an end-to-end study on

HAR under FL. We collected sensor data in the wild, built a HAR-Wild model, and

implemented an FL training algorithm that works well for data collected in the wild.

Most importantly, we used this application to derive the requirements for FLSys,

described in Subsection 3.1.1.

We co-designed FLSys with a HAR model, which was used to extract the main

requirements for FLSys and, then, to demonstrate the efficiency and effectiveness

of FLSys. To show that FLSys works with different concurrent models, we also

implemented and evaluated a sentiment analysis (SA) model, as described in

Section 3.4. In this section, we describe the HAR dataset, our HAR-Wild model,

and its training algorithm using data augmentation to deal with non-IID data in the

wild.

3.3.1 Data Collection

Although there are good HAR datasets publicly available, e.g., WISDM [23], UCI

HAR [24], they are not representative for real-life situations because they were

collected in rigorously controlled environments on standardized devices and controlled

activities, in which the participants only focused on collecting sensor data with a

usually high and fixed sampling rate frequency, i.e., 50Hz or higher. Thus, given our

goal to test FLSys with data collected in the wild, we collect smartphone sensor data

(Table 3.1) “in the wild” from university students through our Data Collector app. as

subjects for the following reasons: (1) University students have relatively good access

to the smartphones and related technologies; (2) University students should be more

credible and easier to be motivated than other sources (e.g., recruiting test subjects

on crowd-sourcing websites); and (3) It will be easier for our team to recruit and

distribute rewards to students. we launched two sensor data collection runs at two

57

universities for 4 months. We asked the participants to allow the app to collect data

in the background and label some data themselves. A total of 116 participants with

valid data were recorded after the two data collection runs. The types of data that

the app can collect are listed in Table 3.1. In Table 3.2, we show the total number

of minutes of data collected from the four types of sensors that collects continuous

(relatively continuous compared with other sensors that collect data points at a much

lower rate or at certain events) data sessions. We can see that only the Accelerometer

collected a meaningful amount of data at the sampling rate higher than 5Hz. Table 3.3

shows the number of data points collected from the rest of the sensors. Note that the

Pressure sensor and the Light sensor collect data points at regular (but low) rates,

while other sensors at certain events.

Table 3.1 Types of Sensor Data Collected
Sensor Type Sampling

rate
Availability Description

Accelerometer Motion 5Hz
∼50Hz

114/116 Measures the linear acceleration (including
gravity)

Gyroscope Motion 5Hz 114/116 Measures the angular speed
Rotation Motion 5Hz 114/116 Provides the rotation vector component
GPS Position Variable 110/116 Typical GPS data
Magnetometer Position 5Hz 113/116 Measures the geomagnetic field strength
Pressure Environment 5Hz 83/116 Measures ambient air pressure
Light Environment Variable 110/116 Measures ambient light level (illumination)
Battery log Phone state Variable 116/116 Measures the smartphone’s battery level
Proximity Phone state Variable 109/116 Measures the distance between the screen

and an object
Power state Phone state Variable 115/116 Different values indicating different

state/event of the smartphone
Call log User data 98/116 Logs the calls that the user had
SMS log User data 98/116 Logs the short messages (SMS) that the

user had
*The sampling rate is estimated from observation, actual values vary
**The availability means that out of the 116 participants, how many of them provided this data type

Table 3.2 Total Time of Sensor Sessions (Continuous Sensors)

Sensor Total_time 60hz_up 50hz 40hz 20hz 5hz The_rest
Accelerometer 2278050.17 120056.98 241932.44 642.59 69136.15 1012894.06 833387.95
Gyroscope 2273397.28 110149.8 15448.17 7.39 31354.51 1795766.05 320671.36
Rotation 2290372.31 23073.62 71003.64 441.01 33341.33 2061158.39 101354.32
Magnetometer 2287446.51 870.32 4058.21 0 23.01 2193983.48 88511.49
*In a number of minutes
**Only count data sessions at least 30 seconds long

58

Table 3.3 Total Number of Data Samples
Sensor Total number of data samples
gps 1251970
pressure 971782334
light 380064951
batteryLog 7721722
proximity 3280332
powerState 794895
callLog 11362
textsLog 204728

The data collection was approved by the IRBs at both universities. Regarding

labels of activities, we provide a simple interface in our Data Collector app to quickly

select the appropriate labels. We summarize the labels into three categories: (1)

Physical activity; (2) Phone position; and (3) User location. The reported activities

cover a vast majority of daily activities that are of research interests. Each category

has several pre-defined sub-types for users to choose from. The details of all labels

can be seen in Table 3.4. Users can choose the labeling to last either for a defined

time length (e.g., 5 minutes, 10 minutes, or 20 minutes) or for an unlimited time

(i.e., in this case, users need to remember to turn off the label when the activity is

done). The phones were naturally heterogeneous, and the daily-life activities were

not constrained by our experiments.

Therefore, we collected a novel HAR dataset in the wild that is different from

the existing datasets in the following three aspects: (1) The sensors’ sampling

rates vary from time to time and from user to user, due to battery constrains,

device heterogeneity, and usage differences; (2) The same basic activity will generate

different signals since different users will have different habits of carrying smart

phones; (3) Label distributions are not just biased, but vary significantly among

users.

59

Table 3.4 Labels and the Total Number of Minutes Collected for Each Label
Label Total minutes Label Total minutes
sitting 862544.50 table 864904.00
walking 158087.40 mounted 49440.29
driving 38013.98 strap 2485.22
lying 488596.70 vehicle_car 72121.55
cycling 2589.50 vehicle_train/subway 355.24
workout_gym 3649.47 vehicle_plane 0.00
workout_running 2212.69 vehicle_bus/shuttle 0.00
workout_others 16500.13 vehicle_motorcycle 88.84
workout_recreational 0.00 home 1171968.00
palm 511092.20 outside 41886.80
bag 6446.19 travel 14094.12
pocket 99557.67 elevator 924.09

office 17562.08

3.3.2 Data Processing

For the purpose of model design and evaluation, we selected a subset of representative

labels and divided them into five activity classes: walking, sitting (not in vehicle),

in-vehicle, cycling, and workout/running.

Although data from multiple sensors was collected (Table 3.1), we found that by

using accelerometer data our HAR-Wild model can achieve a comparable results with

several baseline approaches. Following common practice [20–22,26], the accelerometer

data are processed into data segments of shape [3, 100], indicating 100 data points of

3 axis: x, y, and z.

To cope with inconsistent labels caused by the sampling rates in our Data

Collector, we design the data processing with three objectives in mind: (1) Fix or

mitigate the errors and imperfections in the raw sensor data, including gaps, repetitive

samples and fluctuating sampling rates; (2) Identify and remove inconsistency in the

labels; and (3) Convert the raw data into short segments of data points with shape

[3, 100], that are the basic input data units for DL models, where each data segment

consists of 100 3-axis data points of Accelerometer data. The processing steps are as

follows:

(1) Any duplicated data points are merged by taking the average of their sensor
values;

60

(2) Using 300 milliseconds as the threshold, continuous data sessions are
identified and separated by breaking up the data sequences at any gap that is larger
than the threshold;

(3) Data sessions that have unstable or unsuitable sampling rates are filtered
out. We keep the data sessions that have a stable sampling rate of 5Hz, 10Hz, 20Hz,
or 50Hz;

(4) The label sessions that are associated with each data session (if any) are
identified from the raw labels. Note that the label sessions are also filtered with the
following two criteria to ensure good quality: (a) The first 10 seconds and the last
10 seconds of each label session are trimmed, due to the fact that users were likely
operating the phone during these time periods; (b) Any label session longer than 30
minutes is trimmed down to 30 minutes, in order to mitigate the potential inaccurate
labels due to users’ negligence (forgot to turn off labeling);

(5) We sample data segments at the size of 100 data points with sliding windows.
Different overlapping percentages were used for different classes and different sampling
rates. The majority classes have 25% overlapping to reduce the number of data
segments, while the minority classes have up to 90% overlapping to increase the
available data segments. We sample 15% of data for testing, while the rest are used
for training (Table 3.5);

(6) All the sensor values are normalized with z-score using the mean and
standard deviation computed from the training dataset. This step is a common
practice that helps to stabilize the gradients during training;

(7) Finally, we compute the mean-variance on each data segment with a rolling
window (window size = 20), then filter out any data segment that has a variance
value less than the threshold of 0.001. This step filters out the “flat” data segments
that are labeling errors.

Data Normalization. In our models, the accelerometer data is normalized

as x ∈ [−1, 1]3 to achieve better model utility. However, unlike image data which is

naturally bounded to a fixed range, the acceleration values are not explicitly bounded.

Thus, the values must be clipped and the trade-off between keeping details in the

data (extreme values) and having a suitable range our models to work needs to be

made. We normalize the accelerometer data with the following steps: We compute

the mean and variance of each axis (i.e., X, Y , and Z) using only training data to

avoid information leakage from the training phase to the testing phase. Then, both

training and testing data are normalized with z-score, based on the mean and variance

computed from training data. Based on these results, we choose to clip the values

in between [min,max] = [−2, 2] for each axis, which covers at least 90% of possible

61

Figure 3.2 HAR-Wild model architecture.

data values. Finally, all values are linearly scaled to [−1, 1] to finish the normalization

process:

x = 2× [
x−min

max−min
− 1/2] (3.1)

3.3.3 Model Design

The design of our HAR-Wild model has two requirements: low computational

complexity and small memory footprint. Satisfying these requirements ensures the

model can work efficiently on resource-constrained phones. Figure 3.2 shows our

model architecture. For low computation complexity, HAR-Wild is based on CNN

(instead of RNN, e.g., LSTM) and tailored to work well on mobile devices. In addition,

instead of using data from multiple sensors, HAR-Wild can achieve comparable results

with several baseline approaches by using only accelerometer data, which makes the

training faster.

The accelerometer data are processed into data segments of shape [3, 100],

indicating 100 data points of 3 axis: X, Y, and Z. We leverage the recipe of ResNet

62

Figure 3.3 Number of data points of each class for each user.

model [166] into a small-size model, by using the processed accelerometer data as

input of (1) a sequence of a 1D-CNN - a Batch Norm - a 1D-CNN - a Batch

Norm - a Flatten layer, and (2) a sequence of a 1D-CNN - a Batch Norm - a

Flatten layer. The two flatten layers are concatenated before feeding them into a

sequence of a Drop Out layer - a Dense layer - and an Output layer. By doing

so, HAR-Wild can memorize and transfer the low level latent features learned from

the very first 1D-CNN, directly derived from the input data, to the output layer for

better classification. We use Global Average Pooling [167] given its small memory

footprint, instead of the popular Local Max/Average Pooling [168]. In addition

to being appropriate for resource-constrained phones, a small-size model such as

HAR-Wild is expected to perform better on data collected in the wild, since the data

will likely have more distribution drift, increasing the chance of model overfitting on

large-size models.

3.3.4 HAR-Wild Async Augmented Training

The performance of FL models is negatively affected by non-IID data distribution [4,

15, 91], and we observed this to be true for HAR-Wild as well. Figure 3.3 shows the

63

distribution of the dataset we collected for HAR-Wild. To address this problem, we

leverage data augmentation training [169] and tailor it to mitigate the distortion in

computing gradients at client-side by balancing the client data with a small number

of augmentation data samples without an undue computational cost.

The pseudo-code for HAR-Wild’s asynchronous augmented learning is shown in

Algorithm 2. This algorithm is integrated in Algorithm 1 by replacing lines 7-12 from

Algorithm 1 with the AugmentedGradients procedure in Algorithm 2. Before

the whole training process starts, the FL Cloud Manager executes the procedure

Init (lines 1-3, Algorithm 2), which first collects a small pool of random samples

for each class that will be used for data augmentation (line 2). These data can be

collected from a small number of volunteers or controlled users who share IID data

with the FL Cloud Manager in FLSys. The augmentation data pool could also come

from publicly available datasets. Then, the augmentation data pool A is delivered to

each client (line 3). In each training round, each client (i.e., phone) randomly samples

the augmentation data (line 8). Then, the sampled augmentation data DA will be

combined with the local data DL (line 10, Concatenate(DA, DL)) to compute the

local gradients (lines 11-13, LocalTraining). The local gradients are then sent to

the cloud for the asynchronous average aggregation and model update (line 14).

In order to deliver the augmentation data to the clients (line 3), we consider

two objectives: (i) privacy protection, and (ii) communication efficiency. One naive

approach is to send data to augment the missing classes at the clients in each training

round, since the local missing data can change over time. In this approach, the

FL Cloud Manager needs to know which classes are missing for each client in each

training round. This could increase the communication cost and significantly increase

data privacy risk, since the cloud learns certain aspects of the user behavior based

on the classes that miss data over time. To achieve both privacy protection and

communication efficiency, the approach implemented in FLSys (Algorithm 2) first

64

Algorithm 2 HAR-Wild Asynchronous Augmented Learning
1: procedure Init(clients)
2: augmentation pool A ← sampleAugmentData(clients)
3: deliverAugmentPool(A, clients)
4: procedure AugmentedGradients(Round t, Client i)
5: Augmentation data pool A
6: Local data pool Li

7: θl ← θt

8: augmentation data DA = sampleAugmentData(A)
9: local data DL = sampleData(Li)

10: training data DT = concatenate(DA, DL)
11: for batch b ∈ DT do
12: θl ← θl − η∇L(θl; b)
13: ∆l ← θl − θt

14: uploadClientGradients(∆i)

delivers the entire augmentation data to every client only once at the beginning of

the training process. Then, the clients use only the data necessary to augment their

missing data. The clients check the missing classes when they receive the data, and

re-check every time they accumulate enough new data (the amount of new data is a

model-specific configuration parameter).

3.4 Evaluation

The evaluation has two main goals: (i) Analyze the performance of the two FL

models, HAR-Wild and sentiment analysis (SA) with different aggregators and DP

mechanisms; (ii) Quantify the system performance of FLSys with HAR-Wild and

SA on Android and AWS. In terms of system performance, we investigate energy

efficiency and memory consumption on the phone, system tolerance to phones that

do not upload local gradients, and FL aggregation scalability in the cloud. We also

study the overall response time for third party apps that use FLSys on the phone.

For model evaluation, we use Accuracy, Precision, Recall, and F1-score metrics. For

system performance, we report execution time and memory consumption for both the

phones and the cloud, and battery consumption on the phones.

65

Table 3.5 Number of Samples in the Dataset for 51 Users

Type
Class 0
Walking

Class 1
Sitting

Class 2
In Car

Class 3
Cycling

Class 4
Running

Training 48855 51499 49185 14281 1920
Testing 8514 8828 8595 2514 319

Table 3.6 Model Settings of HAR-W and Baselines
Model Optimizer Other key parameters
HAR-Wild

(centralized) Adam LR=0.0005, dropout_rate=0.4, batch_size=1024
Sampling: Same as class distribution

HAR-Wild
(sim-FL) Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=128,

Sampling: [50, 100] samples per class, [15, 30] augment samples per class
HAR-Wild

(sim-FL with
additional

aggregators)
Adam

client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=128
degree_of_adaptivity = 1, decay_parameters = 0.1, 0.9

Sampling: [50, 100] samples per class, [15, 30] augment samples per class
HAR-Wild
(sim-FL
with DP)

Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=256
Sampling: [50, 100] samples per class, [15, 30] augment samples per class

HAR-Wild
(FLSys) Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=64

Sampling: [50, 100] samples per class, [15, 30] augment samples per class
CNN-Ig

(centralized) Adam LR=0.0005, dropout_rate=0.05, batch_size=1024
Sampling: Same as class distribution

BiLSTM
(centralized) Adam LR=0.0005, dropout_rate=0.2, batch_size=1024

Sampling: Same as class distribution

Most of the evaluation is done with HAR-Wild, which illustrates a typical FL

model based on mobile sensing data. To demonstrate that FL works for different

models, we also show results for the SA model. The rest of the section is organized

as follows: Subsection 3.4.1 compares HAR-Wild against baseline models and

evaluates the effect of data augmentation, different aggregators, and advanced privacy

mechanisms on HAR-Wild’s performance. Subsection 3.4.2 describes the sentiment

analysis (SA) model, used to demonstrate FLSys’s support for different models, and

shows its performance. Subsection 3.4.3 shows the HAR-Wild performance over the

FLSys prototype, in terms of model accuracy, fault tolerance, and scalability. Since

we did not have enough phones for larger-scale experiments, we show these results

using Android/Linux emulators to replay each user’s data. Finally, Subsection 3.4.4

presents results for HAR-Wild and SA over FLSys on two types of Android phones.

66

Table 3.7 HAR-Wild Using Centralized and FL Training vs. Baselines:
Macro-Model Performance

Model Accuracy Precision Recall F1-score
HAR-W-32-centralized 0.8186 0.8486 0.8360 0.8409
HAR-W-64-centralized 0.8249 0.8512 0.8354 0.8428
HAR-W-128-centralized 0.8262 0.8529 0.8449 0.8484
BiLSTM 0.7868 0.8074 0.7831 0.7941
CNN-Ig 0.7639 0.7970 0.7715 0.7834
CNN-Ig_featureless 0.7708 0.8004 0.7779 0.7878
HAR-W-64-fed-stock 0.5368 0.3828 0.3569 0.3190
HAR-W-64-fed-uniform 0.7181 0.7464 0.7419 0.7378
HAR-W-64-fed-yogi 0.7107 0.6865 0.7731 0.7130
HAR-W-64-fed-adam 0.7072 0.6829 0.7592 0.7058
HAR-W-64-fed-adagrad 0.6691 0.6030 0.7429 0.6358

3.4.1 HAR-Wild Model Evaluation

Table 3.5 shows the basic information of our collected dataset used for all HAR-Wild

experiments. Some users have very limited numbers of labeled activities; thus, we

select data from 51 users who labeled a reasonable amount of samples.

Comparison with Baseline Approaches. We perform centralized evaluation

to assess HAR-Wild’s utility compared to several baselines. Centralized training

works as an upper bound performance for FL models. In addition, it allows us to

fine-tune the model’s hyper parameters. The evaluation includes three variants of

HAR-Wild: HAR-W-32, HAR-W-64, and HAR-W-128, which have the numbers

of convolution-channels set to 32, 64, and 128. For comparison, we consider

two baseline models: (1) Bidirectional LSTM with 3-axial accelerometer data as

input. This is a typical model for time-series data, and we fine-tune it based

on grid-search of hyperparameters; and (2) The CNN-based models proposed by

Ignatov [20], with(CNN-Ig) and without(CNN-Ig_featureless) additional features

using the author’s recommended settings by Ignatov [20]. For a fair comparison,

we used TensorFlow implementations for all models. Table 6.1 shows all the

hyper-parameters and model configurations.

Figure 3.4 shows that HAR-Wild models outperform the baseline approaches.

While the experiments run for up to 10,000 epochs to determine the performance

67

Figure 3.4 Centralized training evaluation.

upper bound, we observe the accuracy achieves acceptable performance after 1,000

epochs. On average, HAR-W-64 performs best and achieves 82.49% accuracy

compared with 78.68%, 76.39%, and 77.08% of the BiLSTM, CNN-Ig and CNN-

Ig-featureless. The results in Table 3.7 demonstrate that our HAR-Wild models also

achieve the best performance in all the other metrics. Let us note that the absolute

performance results may appear low when compared to HAR models run on data

collected in controlled environment. This is because the data collected in the wild

is noisier and non-IID. Overall, HAR-W-64 (60,613 trainable weights) has the best

trade-off among model accuracy, convergence speed, and model size, and we use it in

all the following experiments for HAR-Wild.

Comparison of Different FL Versions of HAR-Wild. We also perform FL

simulations to compare HAR-Wild’s performance across three dimensions: (1) with

and without data augmentation (2) with different aggregators (3) with and without

advanced privacy mechanisms. Since the simulations are in TensorFlow, we can also

compare the FL results with the centralized training results. In the simulated FL, we

replay the data collected in the wild for each user.

68

Figure 3.5 Comparison of FL HAR-Wild versions, w/ and w/o data augmentation,
and w/ and w/o privacy protection.

In the following results, the basic FL HAR-Wild model without data augmen-

tation and without privacy mechanisms is called HAR-W-64-stock. The model with

data augmentation, but without privacy mechanisms, is called HAR-W-64-uniform.

The augmentation data, consisting of 640 samples of each class, is fixed and shared

with all clients.

The modular design of FLSys supports different FL aggregators. In addition

to the standard FedAvg, we train the HAR-Wild model in FL with three

aggregators designed to handle non-IID data [170]: FedYogi, FedAdam and

FedAdagrad. To evaluate privacy protection in HAR-Wild, we apply the two types

of privacy-preserving mechanisms available in FLSys (described in Section 3.1):

User-level DP (User-DP) and Local DP (LDP). We experiment with one User-DP

mechanism proposed by [97] and five LDP mechanisms: BitRand [171], Duchi [172],

Piecewise [173], Hybrid [173], Three-Outputs [174]. All the hyperparameters are

provided in Table 6.1.

Table 3.7 shows the results for different FL versions of HAR-Wild. HAR-W-

64-fed-uniform (FedAvg with data augmentation) achieves 71.8% accuracy, which is

69

Table 3.8 Macro-model Performance for HAR-W-64-fed-uniform for Different
Types of Privacy Protection Mechanisms and Different Parameters

DP Mechanism Privacy Budget Accuracy Precision Recall F1-score
Non-DP ε→∞ 0.7181 0.7464 0.7419 0.7378
User-DP ε = 2 0.5399 0.5264 0.5797 0.5259
User-DP ε = 4 0.5973 0.5603 0.6297 0.5502
User-DP ε = 8 0.6970 0.6333 0.7264 0.6523
BitRand εX = εY = 2 0.4251 0.3667 0.3715 0.3277
BitRand εX = εY = 4 0.5193 0.4607 0.5110 0.4416
BitRand εX = εY = 8 0.6943 0.6885 0.7359 0.7031
Duchi ε = 2 0.4846 0.4286 0.5233 0.4201
Duchi ε = 4 0.5122 0.4307 0.4998 0.4360
Piecewise ε = 2 0.4857 0.4086 0.4267 0.3944
Piecewise ε = 4 0.5065 0.4245 0.4686 0.4222
Hybrid ε = 2 0.4791 0.3961 0.3714 0.3714
Hybrid ε = 4 0.5353 0.4521 0.4508 0.4431
Three-Outputs ε = 2 0.2906 0.2662 0.2348 0.0192
Three-Outputs ε = 4 0.2946 0.3288 0.2424 0.2386

about 10% less than the accuracy of the centralized-trained HAR-Wild. This is the

cost of privacy-protection provided by FL.

We tested FedYogi, FedAdam and FedAdagrad with and without data augmen-

tation, and in both case they achieve comparable accuracy with FedAvg. Table 3.7

shows the results with data augmentation. Surprisingly, due to the noisy nature of

HAR sensor data, the aggregators designed to handle non-IID data do not guarantee

better performance than FedAvg. Therefore, the rest of the experiments will use

FedAvg, which is the prevailing aggregator in FL.

For privacy protection mechanisms, we train the HAR-W-64-fed-uniform model

with the aforementioned DP mechanisms. Then, we evaluated the trade-offs between

model utility and privacy budget for different versions of HAR-Wild with privacy

mechanisms, as shown in Table 3.8. As expected, the model utility decreases as

privacy budget ε tightens. From this table, we select the best User-DP model (i.e.,

the one with ε = 8) and the best LDP model (i.e., BitRand with εX = εY = 8) in terms

of accuracy, and compare them with the models with and without augmentation in

Figure 3.5. The results show that HAR-Wild with User-DP achieves a model accuracy

of 69.70%, which is just 2.11% lower than the model without privacy protection.

70

Table 3.9 SA Model Performance Per Class for Centralized and Federated
Learning

Class Accuracy Precision Recall F1-score Support
CL negative 0.81 0.75 0.69 0.72 3159

positive 0.84 0.88 0.86 5746
FL negative 0.79 0.73 0.64 0.68 3159

positive 0.81 0.87 0.84 5746

HAR-Wild with LDP (BitRand) achieves an accuracy of 69.43%, which is just 2.38%

lower than the noiseless model. Note that our defense successfully prevents the server

to reconstruct recognizable sensor signals and infer its associated ground-truth labels.

One of the reasons is that it is more challenging to infer whether a time series of sensor

signals belongs to a particular client than other domain applications. When using a

tighter privacy budget, e.g., εX = εY = 4 or 2, the gap between BitRand and Non-DP

model becomes bigger. This is due to the fact that BitRand has not been designed

for imbalanced data and cannot work well with significantly imbalanced data as our

HAR dataset, especially when reducing the privacy budget εY for protecting the

labels. Let us also emphasize that both privacy protection mechanisms offer rigorous

privacy guarantees in FLSys without significant computational overhead.

The different aggregators and privacy preserving mechanisms also showcase how

the modularity of FLSys can be used to easily exchange different implementations of

a module.

3.4.2 Sentiment Analysis (SA) Model Evaluation

FLSys is designed and implemented to be flexible, in the sense that training

and inference of multiple models can run concurrently. On the server, different

applications use independent AWS resources. On the phone, independent model

trainers and inference runners are responsible for different applications. This

subsection showcases the training performance of the SA model, a text analysis

model that interprets and classifies the emotions (positive or negative) from text

71

data. For example, with the inferred emotions of mobile users’ private text data, a

smart keyboard may automatically generate emoji to enrich the text before sending.

We build the SA model for tweet data. We use the FL benchmark dataset

Sentiment140 1, which consists of 1,600,498 tweets from 660,120 users. We select the

users with at least 70 tweets, and this sub-dataset contains 46,000+ samples from 436

users. Our SA model first extracts a feature vector of size 768 from each tweet with

DistilBERT [175]. Then, it applies two fully connected layers with ReLU and Softmax

activation, respectively, to classify the feature vector into positive or negative. The

number of hidden states of the first fully connected layer is set to 128 to balance the

convergence speed and model size. In the FL version of the model, 5% of the users

are used for data augmentation, and the rest of the users follow 4:1 train-test split.

While the reference implementation associated with this benchmark dataset

reached 70% accuracy [82] using 100 users with stacked LSTM in FL simulation, our

SA model achieves superior performance, as shown in Table 3.9. Centralized learning

achieves 81% accuracy, while FL achieves 79% accuracy (an acceptable drop). The

FL version of this SA model will be further evaluated while running over FLSys on

Android phones in Subsection 3.4.4.

3.4.3 HAR-Wild over FLSys Emulation Performance

To evaluate the performance of HAR-Wild over the FLSys prototype at scale, we use

Android emulation because we did not have enough phones for these experiments.

Furthermore, since Android emulation is slow and costly, we run several larger-scale

experiments with the same DL4J algorithms and functions in Linux, which is much

faster. We train the model in these experiments for only 1,000 rounds because the

simulation results showed that the accuracy is acceptable starting with this number

of rounds.

1http://help.sentiment140.com/home

72

Figure 3.6 HAR-Wild over FLSys using Android/Linux emulation.

Table 3.10 Performance Per Class of HAR-Wild over FLSys Using Android
Emulation

Class Accuracy Precision Recall F1-score
0

0.6907
0.7003 0.6628 0.6810

1 0.5922 0.8655 0.7032
2 0.8606 0.5443 0.6668
3 0.8324 0.6450 0.7268
4 0.6682 0.9028 0.7680

All the phone components of the prototype, except for Data Collector and Data

Preprocessor, run in the emulators. The cloud part of the prototype runs in AWS.

The Android emulators run on top of virtual machines (VMs) in Google Cloud, as

AWS does not support nested virtualization. We run 10 VMs in Google Cloud, and

each VM has 16 vCPUs and 60GB memory. On each instance, we run 4 Android

v10 emulators from AVD manager in Android Studio. Each emulator is loaded with

3 users’ data files, and each file is sampled twice as different clients. In each round,

each Android emulator participates in training on behalf of a few clients. We set the

deadline for the round in the FL Cloud Manager to 6 minutes.

73

Accuracy. Figure 3.6 shows that HAR-Wild with 64 clients emulation in both

Android and Linux on FLSys achieve comparable accuracy with the simulated FL

with TensorFlow, i.e., 69.07%, 68.50%, and 66.00%. Table 3.10 shows HAR-Wild’s

performance per class using FLSys and Android emulation. Although our data

collected in the wild are inevitably unbalanced (Table 3.5), every class performs

reasonably well with F1-scores between 66.7% and 76.8%. Figure 3.7 shows the results

of HAR-Wild with higher number of clients (up to 960) using Linux emulations. The

client data was over-sampled from the original 51 users. HAR-Wild model achieves

up to 69.17% accuracy, and more clients help the model converge quicker with better

performance.

Fault Tolerance. In daily life, some clients may fail to upload a trained

model to the FL Cloud Manager due to network or computation issues. This set

of experiments verifies the fault tolerance of FLSys in terms of model performance

as a given percentage of clients drop out randomly in each round. Figure 3.7 shows

the accuracy of HAR-Wild with up to 50% clients dropping out randomly from 480

clients in each round. With 1,000 rounds of training, the accuracy is reduced by at

most 3.11%. This is a promising result showing that FLSys can tolerate reasonably

large dropout rates during training.

Scalability. As discussed in Section 3.2, computation and storage scale

independently in the cloud for FLSys. This set of experiments verifies the scalability

of FLSys across training rounds. The only FL function that may be computationally

intensive in the cloud is the Model Aggregator. Figure 3.9 shows the Model

Aggregator in AWS scales linearly with the number of participating clients. We also

observe that the aggregation of 960 clients generally finishes in less than 4 minutes.

By interpolating these results and given the current 15 minutes execution time

limit of an AWS Lambda process [176], the FLSys prototype (with single-threaded

aggregator) can handle up to 3,600 clients, which is a sufficient number of clients, per

74

Figure 3.7 Linux emulation of HAR-Wild over FLSys, while varying total number
of users and number of users dropping from training.

training round. This number can be multiplied substantially by implementing both

thread-level and process-level parallelization to handle real-world traffic volume.

Overall, the results for accuracy, fault-tolerance, and scalability demonstrate

that FLSys and HAR-Wild can work well in real-life, where they are deployed on

Android phones and the AWS cloud.

3.4.4 FLSys Performance on Smart Phones

We benchmarked FLSys with HAR-Wild and SA on Android phones using a testing

app to evaluate training and inference performance. We also assessed the resource

consumption on the phones. We used three phones with different specs (Nexus 6P,

Google Pixels 3 and 3a). The results demonstrate the on-device feasibility of FLSys,

even for a low-end Nexus 6P phone, unveiled in 2015 and running Android 7. Since

75

Figure 3.8 Aggregation time and participating clients.

FLSys works well on such a low-end phone and people change their Android phones

every 2-3 years on average 2, we expect FLSys to work well on most of today’s phones.

Training Performance. Table 5.7 shows the training time and the resource

consumption on the phones. The training time is recorded by training 650 samples

for 5 epochs for HAR-Wild, and 100 samples for 5 epochs for SA, which are the

optimum scenarios determined in Subsection 3.4.3. Foreground training is done while

leaving the screen on, and it uses the full single core capacity. It provides a lower

bound for the training time. However, in reality, we expect training to be done

in the background, either on battery or on charger. As in practice, other apps or

system processes working in background may interfere with training. We take 10

measurements for each benchmark, and report the mean and standard deviation.

Training for one round is fast on the phones. The foreground training time on

the more powerful phone, Pixel 3, is just 0.7 min for HAR-Wild, and 0.22 min for

SA. The background training time on charger, which is the expected situation for FL

training, is good for any practical situation. The phones experience a higher training

time compared with the foreground case (completed one training round in less than 4

2https://www.statista.com/statistics/619788/average-smartphone-life/

76

Table 3.11 Training on Android Phones: Resource Consumption and Latency

Model Phone

Max
RAM
Usage
(MB)

Foreground
Training

Time
Mean/SD

(min)

Background
Training
Time on
Charger

Mean/SD
(min)

Background
Training
Time on
Battery

Mean/SD
(min)

Battery
Consumption
per Round

(mAh)

Number
of

Training
Rounds
for Full
Battery

HAR
Nexus 6P 219 4.95/0.94 39.10/26.10 45.34/24.31 35.10 98
Google Pixel 3a 156 1.23/0.01 3.94/0.04 85.82/33.07 9.72 308
Google Pixel 3 165 0.70/0.06 3.58/0.10 79.96/36.82 3.79 769

SA
Nexus 6P 139 1.62/0.08 5.04/0.13 29.79/17.13 7.94 435
Google Pixel 3a 128 0.33/0.005 0.84/0.006 25.42/5.72 2.02 1481
Google Pixel 3 136 0.22/0.002 0.76/0.02 24.19/8.12 0.76 3846

Table 3.12 Inference on Android Phones: Resource Consumption and Latency

Model Phone

Max
RAM
Usage
(MB)

Foreground
Inference

Time
Mean/SD

(millisecond)

Background
Inference
Time on
Charger

Mean/SD
(millisecond)

Background
Inference
Time on
Battery

Mean/SD
(millisecond)

Battery
Consumption

per
prediction

(µAh)

Millions
of

inferences
for
Full

Battery

HAR
Nexus 6P 161 54.65/16.36 1963.04/1540.29 7646.73/16349.49 4.49 0.77
Google Pixel 3a 158 38.48/10.07 99.73/19.76 100.11/19.69 4.12 0.73
Google Pixel 3 177 36.59/6.43 99.60/33.69 100.11/21.45 1.94 1.50

SA
Nexus 6P 114 19.66/6.06 20.10/20.04 20.25/28.11 3.35 1.03
Google Pixel 3a 108 11.90/3.71 20.65/4.45 19.58/3.93 2.3 1.30
Google Pixel 3 129 10.11/2.88 15.59/5.89 17.42/5.69 0.17 17.63

minutes). The background training time on battery is notably longer, since Android

attempts to balance computation with battery saving.

The results show training is also feasible in terms of resource consumption.

The maximum RAM usage of the app is less than 165MB, and modern phones are

equipped with sufficient RAM to handle it. While we did not perform experiments for

battery consumption in the foreground (as this test was used just for a lower bound

on computation time), we measured battery consumption for background training on

battery. The phones could easily perform hundreds of rounds of training on a fully

charged battery. It is worth noting that, typically, one round of training per day is

enough, as the users need enough time to collect new data.

Inference Performance. The results in Table 5.6 demonstrate that FLSys

can be used efficiently by third-party apps. The inference time is measured within

the third party testing app. Let us note that the inference is performed locally by

the FL Phone Manager, without any network communication. Thus, the measured

77

time consists of the inference computation time and the inter-process communication

time. We continuously perform predictions for 30 minutes and report the average

values. The inference time for the three scenarios on the third-party app, foreground,

background on charger, and background on battery, follows a similar trend as training.

FLSys and HAR-Wild/SA have reasonable resource consumption, which make them

effective in practice.

In addition to HAR and SA, many other applications may benefit from

FLSys. For example, FL models are appropriate for privacy-sensitive image and

video data collected on mobile devices. Existing research confirms that such

models are feasible on resource-constrained mobile devices. For training, Mathur et

al. [177] demonstrated that training a 2-layer DNN classifier on top of a pre-trained

MobileNet [178] on Android clients for the Office-31 dataset takes about 30 minutes to

converge. For inference, we tested the inference time of MobileNet on 224*224 images,

and it takes about 120ms for a single CPU thread. These numbers are comparable

with our results on HAR and confirm that such models could run over FLSys.

3.4.5 FLSys Performance in the Cloud

As discussed in Section 3.2, computation and storage scale independently in the cloud

for FLSys. This set of experiments verifies the scalability of FLSys in the cloud for

the Android emulation scenario presented in Subsection 3.4.3 across training rounds.

Results. The only FL function that may be computationally intensive in the

cloud is the Model Aggregator. Figure 3.9 shows the Model Aggregator in AWS

scales linearly with the number of participating clients. We also observe that the

aggregation finishes in general in less than 10 seconds. By interpolating these results

and given the current 15 minutes execution time limit of AWS Lambda [164], the

FLSys prototype can handle up to 60,000 clients per training round. This number

can be increased substantially by allocating more resources to the Lambda function

used for model aggregation. AWS Lambda supports up to 6 vCPUs and 10,240MB

78

Figure 3.9 FLSys aggregation execution time against the number of models.

of memory, while our current allocation is 1 vCPU and 2,048MB of memory. Parallel

execution of multiple Lambda functions, using in-memory processing, can further

increase the number of clients supported by FLSys per round. Given that AWS

Lambda has default concurrency limit of 1,000 (and can be increased further), there

is no doubt the system may be scaled to handle real-world traffic volume.

3.5 Chapter Summary and Lessons Learned

This paper presented our experience with designing, building, and evaluating FLSys,

an end-to-end federated learning system. FLSys was designed based on requirements

derived from real-life applications that learn from mobile user data collected in the

wild, such as human activity recognition (HAR). Compared with existing FL systems,

FLSys balances model utility with resource consumption on the phones, tolerates

client failures/disconnections and allows clients to join training at any time, supports

multiple DL models that can be used concurrently by multiple apps, provides support

for advanced privacy protection mechanisms, and acts as a “central hub” on the phone

to manage the training, updating, and access control of FL models used by different

79

apps. We built a complete prototype of FLSys in Android and AWS, and used

this prototype to demonstrate that FLSys is effective and efficient in practice in

terms of model performance, privacy protection, resource usage, and latency. We

believe FLSys can open the path toward creating an FL ecosystem of models and

apps for privacy-preserving deep learning on mobile sensing data. In terms of actual

deployment of FLSys in practice, we believe it can be offered as FL as a Service

(FLaaS) by cloud providers.

Next, we report lessons learned and future work. The lessons learned are based

on our experience with running FLSys on data collected in the wild from 50+ users

over a 4-month period. Larger scales and longer periods are necessary for additional

insights into system scalability and robustness, as well as model performance at scale.

Build mechanisms to cope with non-IID data. Since our data collection

happened during the Covid-19 pandemic, we expected to see somewhat similar data

from users who mostly stayed indoors. However, the data was non-IID, strengthening

the idea that data collected in the wild will almost always be non-IID. A future work

in FLSys is to provide support for model and data-specific augmentation and other

approaches to cope with non-IID data.

Beware the simulation pitfalls. One common practice in FL simulations is

to use the same instances/placeholders in memory for the different clients. Such

simulations must carefully reset the instances for different clients to avoid any

information leakage among clients, which can never happen in a real system. Our

initial experiments showed unexpectedly different results between simulations and

Android emulators with DL4J for the same settings. The first problem we discovered

was that Batch Normalization (BN) is not supported in DL4J for specific data shapes.

We implemented our own BN in DL4J, but the simulation results still did not match

the experimental results. Finally, we realized that BN does not work well for FL

(consistent with [179]), but it does work in the simulations due to shared instances

80

among the simulated clients. Thus, the FL models used in the reported experiments

do not use BN. The second problem we noticed was that the Adam optimizer worked

well for simulation, but not for the Android emulator experiments. This was also

caused by shared instances accessed by all clients in the simulation. This should

not happen in practice given privacy leakage through the shared instances. The

lesson learned was that simulation may show better results than experiments with

real systems for FL. Since most of FL papers in the literature are based on simulations,

their results may suffer from similar problems with the ones described here. We believe

FLSys offers an opportunity to test such FL models in real-life conditions.

Balance mobile resources and model accuracy. In the current FL

literature, there are no results to show the FL models work well on mobile devices,

while consuming a limited amount of resources on these devices (e.g., battery

power, memory). A lesson that we understood early on is that FLSys will need

to balance resource usage on mobiles with model accuracy. Therefore, FLSys used an

asynchronous design in which policies on the mobile devices are evaluated to decide

when it makes sense for the device to participate in training and consume resources.

Our results show that good model accuracy can be achieved even when a significant

number of mobile devices do not participate in training in order to save resources.

Let us also note that real systems cannot expect to run the same number of rounds

that we observe in simulations. For example, it is common to see 10,000 rounds in

simulations. However, in real life, mobile devices may not train more than once a day

due to both resource consumption and lack of enough new data. In such a situation,

running 10,000 rounds will take over 27 years. Thus, models must be optimized for a

realistic number of rounds.

Design for flexibility. FLSys was designed for model flexibility on the

phones from the beginning (i.e., allow apps to use multiple interchangeable models).

Nevertheless, we did not originally design for flexiblity in the cloud. At first, we used

81

virtual machines in the cloud and durable cloud storage for all FL operations. When

we analyzed scalability and performance issues, we realized that an FaaS solution

and different types of storage are necessary. Therefore, we changed the design of the

FLSys in the cloud to allow for different types of cloud platforms and storage options.

Thus, FLSys can easily be ported to other cloud platforms beyond AWS.

82

CHAPTER 4

ZONE-BASED FEDERATED LEARNING

In this chapter, we introduce ZoneFL to adapt to user mobility behavior in mobile

sensing data and improve the system scalability in FL. ZoneFL employs a novel

approach by dividing the physical space into geographical zones, which are then

mapped to a mobile-edge-cloud system architecture. This design enables achieving

both high model accuracy and scalability. Each zone corresponds to a federated

training model known as a zone model, which adapts well to the data and behavior

patterns of users within that specific zone. The FL nature of ZoneFL ensures that

user data privacy is protected during the training process.

The chapter is organized as follows. Section 4.1 presents the ZoneFL training

and the algorithms to dynamically adapt to user mobility. Section 4.2 describes the

design and implementation of the ZoneFL system. Section 4.3 shows the experimental

results and analysis. The paper concludes and discusses future work in Section 4.4.

4.1 ZoneFL Training

This section presents zone partition, an overview of the ZoneFL training, and then

describes our two federated training algorithms that allow ZoneFL to adapt to changes

in user mobility.

4.1.1 Zone Partition

The physical space (e.g., a city) is partitioned into non-overlapping zones, based

on administrative boundaries or other knowledge about their characteristics (e.g.,

shopping district, park, etc.). The zones are model-specific. For example, a heart

rate prediction model has different zones compared with a vehicular traffic prediction

model. In this way, ZoneFL can achieve better model performance by targeting

83

Figure 4.1 ZoneFL training architecture.

training to zones in which the user behavior is more homogeneous for a given

type of mobile sensing data. For example, the user mobility behavior in a park

(e.g., exercising) is different from the behavior in a shopping districts (e.g., leisurely

walking).

The granularity of zones can be defined based on the target application and the

size of the user pool, i.e., each zone shall be small enough for behavior differences,

while big enough to have sufficient users for better scalability-utility balance. The

zone topology is a graph defined by neighboring relations of zones. By default

the neighboring relation is adjacency (i.e., two zones are neighbors if their borders

touch each other), but this could be modified, for example to define that two zones

geographically closer than a given threshold are neighbors.

4.1.2 ZoneFL Training Overview

ZoneFL is designed to use a mobile-edge-cloud architecture, and its main goal is to

train separate zone models (i.e., separate instances of the same base model) on mobile

84

sensing data collected in each zone. Figure 4.1 shows the ZoneFL training and its

high-level architecture. Each zone is managed by an FL Zone Manager at the edge,

which maintains the latest models for its zone. A mobile is not tied to a single zone,

but collects data from all the zones visited by the user and engages in training for

each of these zones. For example, Figure 4.1 shows how User 4 moves from Zone

2 to Zone 3 and collects data in both zones. For each zone, mobiles that collected

data in that zone train the zone models jointly with the edge zone manager. Mobile

devices download the updated models their apps need from the edge managers when

they need inference in a new zone (e.g., User 4 in Zone 3). In this process, the

FL Zone Manager at the edge does not know when and where the user was in a

zone. It only knows the user has collected data in a zone, and need performance

inference. Therefore, the potential privacy information that the edge can infer is very

limited. The cloud collaborates with the edge nodes to dynamically maintain the

zone partition information for the entire space, as the geographical coordinates of the

zones may change over time, but it is not involved in training. The mobile devices

download the zone partition information and the identifiers of the edge managers

from the cloud every time new zone configuration information is available. The zone

partition information is used to associate data with different zones, perform local

training, and send the weights to the corresponding zone edge manager, which will

aggregate the zone model.

The logical architecture of ZoneFL allows for the FL Zone Managers to be

located in the cloud or at the edge. This decoupling of the software component

from the hardware is useful until edge nodes will become widespread. Currently,

the mobile-edge-cloud architecture is available only in certain major cities, etc.

Nevertheless, the mobile-edge-cloud architecture provides better scalability than a

mobile-cloud architecture because edge nodes in ZoneFL have a lower communication

and computation load than the cloud server in traditional FL. Furthermore, the edge

85

allows for faster interaction with the mobiles and for less bandwidth consumption in

the network core. Finally, let us note that we assume only one edge node per zone.

If there are multiple edge nodes in a zone, they can act as relays between the mobile

devices and the node that runs the FL Zone Manager.

A major question in ZoneFL training is how to adapt the zone models to changes

in user mobility behavior over time. We present two federated training algorithms that

address this questions in different ways. First, Zone Merge Split (ZMS) dynamically

adapts the zone partitions (i.e., the zone geographic coordinates) by either 1) merging

two neighboring zones into a larger zone, whose model performs better than each of

the individual zone models, or 2) splitting a larger zone back into previously merged

smaller zones, whose individual models perform better than the model of the larger

zone. Second, Zone Gradient Diffusion (ZGD) improves a zone model by aggregating

contextual information derived from local gradients of neighboring zones. In ZGD,

the zones do not change, but the user mobility behavior change is captured through

the diffusion of information from neighboring zones. A self-attention mechanism is

applied in ZGD to dynamically quantify the impact of each zone on its neighbors.

Different deployments of ZoneFL may use either ZMS or ZGD or a combination of

both based on trade-offs between model utility, scalability, and user mobility behavior.

4.1.3 Zone Merge and Split (ZMS)

ZMS is a dynamic zone management protocol that optimizes model utility across

zones. We use novel greedy algorithms for the two operations.

Zone Merging. Given a set of N non-overlapping zones Z = {Zi}i∈[0,N] and

its complete set of possible combinations of zones Θ, merging a zone Zi with its

neighboring zones in Z is to find the smallest set of non-overlapping and merged

zones Z = {Zj}j∈[0,|Z|] where Z ∈ Θ, |Z| is the number of non-overlapping and

merged zones in Z, and ∪jZj = ∪iZi so that: (1) The model utility across merged

86

zones
∑

Zj∈Z L(θj,Zj) is optimized (Equation 4.1); and (2) Every zone Zi achieves

better model utility after merging (Equation 4.2). Note that L(θj,Zj) is the loss

function of a zone Zj with the model parameters θj.

Z∗, {θ∗
j} = argmin

{θj},Z∈Θ

∑
Zj∈Z

L(θj,Zj) (4.1)

s.t. ∀Zi ∈ Zj : L(θ∗
j , Zi) ≤ L(θ∗

i , Zi) (4.2)

where L is a loss function, and the loss of a zone Zj is an average loss over all the users’

local data in that zone: L(θj,Zj) =
1

|Uj |
∑

u∈Uj
L(θj, u) where |Uj| is the number of

users in the zone Zj.

Zone Splitting. Splitting a large zone into a set of smaller sub-zones is the

reverse process of merging zones. Given a large zone Z = ∪i∈[0,N]Zi formed by merging

smaller sub-zones {Zi}i∈[0,N] and Θ is the set of all possible combinations of sub-zones

{Zi}i∈[0,N], splitting Z is to find a set of sub-zones S ∈ Θ, such that: (1) The model

utility across sub-zones is optimized; and (2) Every sub-zone Zi achieves better model

utility after the zone splitting.

S∗, {θ∗
j} = argmax

S∈Θ,{θ∗
j }

1

|S|
∑
Zj∈S

[L(θ∗
Z , Z)− L(θ∗

j ,Zj)] (4.3)

Equation 4.3 indicates S∗ is the set of zones which has the maximal utility

gain from the federated training of the original zone Z, i.e., 1/|S|
∑

Zj∈S [L(θ
∗
Z , Z)−

L(θ∗
j ,Zj)].

Zone Merge and Split (ZMS) Algorithm. We propose ZMS, a greedy

algorithm to dynamically adapt the zone models to changes in the user mobility

behavior over time. In simple terms, ZMS merges two zones when the model

87

Algorithm 3 Zone Merging Algorithm
Input: Zone Zi

1: C ← ∅ # initialize a list of zone merging candidates
2: N ← getNeighbors(Zi) # get neighboring zones of Zi

3: for each neighboring zone Zn ∈ N do
4: θt

in ← (θt
i + θt

n)/2 # average of two zone models
5: θt+1

in ← argminθin
L(θt

in, Zi ∪ Zn) # Equation 4.1
6: if L(θt+1

in , Zi) < L(θt+1
i , Zi) and L(θt+1

in , Zn) < L(θt+1
n , Zn) # satisfying

Equation 4.2 then
7: C ← C ∪ Zn # add Zn into a list of candidates
8: if C ̸= ∅ then
9: Z∗

n ← argmaxZn∈C
[
L
(
θt+1
in , Zi

)
−L(θt+1

i , Zi)
]
+
[
L
(
θt+1
in , Zn

)
−L(θt+1

n , Zn)
]

get the best neighboring zone
10: Merge(Zi, Z

∗
n)

performance of the merged zone is better than the performance of each of the models of

the individual zones (i.e., to be merged). Each Zone Manager makes its own decisions

regarding when to run the zone merging or zone splitting, as this decision depends

on the conditions of each zone. For instance, the users in some zones may collect

more data than the users in other zones, which may result in more frequent training.

Also, the user behavior may change in some zones, while remaining similar in others.

While running the zone merging and splitting in every training round may result in the

best zone partitioning, such a solution results in too much overhead for both mobile

users and Zone Managers. Therefore, we need to balance the trade-offs between zone

partitioning efficiency and the computation and communication overhead.

Instead of checking all possible zone merges, ZMS randomly selects a zone Zi to

check for possible zone merging at every round t. In the merging Algorithm 3), ZMS

merges Zi with its best neighboring zone Z∗
n, optimizing the zone merging objectives

in Equation 4.1 and 4.2 (Algorithm 3, Lines 2-7). The number of neighbors in

line 2 is typically a small constant in practice, and lines 4-7 repeat over it. The

additional round of training in line 5 trades computation cost for better performance

improvement guarantee. It can be omitted, and θt+1 becomes θt in lines 6 and 9.

The best neighboring zone Z∗
n is the zone that provides the maximal utility gain after

88

the zone merging among all potential merges (Algorithm 3, Line 9). To compute the

utility gain, at the next training round t+1, we quantify the improvement of the loss

in zones Zi and Zn using the zone models θt+1
i and θt+1

n trained respectively on Zi

and Zn compared with using the zone model trained on the merged zone Zi ∪ Zn.

The zone models are trained and validated in the background by the phones in

their respective zones. Mobile phones retain a small validation dataset to validate

the zone models, and send the validation results to their zone manager to be used

in merge decisions. Thus, these operations do not incur latency during merges. The

only operation that needs to be done specifically for a merge is the validation of the

model over the two zones. To reduce the overhead, the zone manager to select only a

percentage p of the phones in its zone to perform training and validation in this case.

Merging in ZMS also handles the case when the original zones set during

bootstrapping do not have enough data for adequate training. In this situation,

ZMS will merge such zones with neighboring zones, therefore improving performance.

Algorithm 4 Zone Splitting Algorithm
Input: Zone Zj = ∪iZi, level l
1: C ← getCandidates(Zj, l)
2: for each zone Zc ∈ top-k(C) do
3: θt+1

c ← argminθc L(θt
j, Zc)

4: if L(θt+1
c , Zc) < L(θt+1

j , Zc) then
5: split(Zj, Zc) # split the sub-zone Zc from the merged zone Zj

6: break
7: function getCandidates(Zj, l):
8: C ← ∅ # initialize a list of worst sub-zones
9: for Zc ∈ subZones(Zj, l) do

10: if L(θt
j, Zc) > L(θt

j,Zj) then
11: C ← C ∪ Zc

12: return sorted(C) # descending L(θt
j, Zc)

ZMS repeats this zone merging process across federated training rounds to create

a set of merged zones, denoted Z. However, over time, in response to user mobility

behavior changes, some of the merged zones may need to be split.

89

Figure 4.2 Binary tree and zone splitting.

The key idea of zone splitting is to identify the zone that performs worst in

terms of model utility and split it from an original merged zone so that the zones

after splitting perform better than the original zone. Specifically, ZMS recursively

split sub-zones of a merged zone, which have the worst model utility, such that the

splitting optimizes model utility across all sub-zones. Each of the merged zones

Zj ∈ Z is a set of sub-zones {Zi}i∈[1,N] represented by a binary tree of zone merging

history, as illustrated in Figure 4.2. Each internal node in the tree represents a merged

zone from its two sub-zones (child nodes). Each leaf node is an indivisible zone.

At each training round, ZMS randomly selects a binary tree representing a

merged zone Zj to check for a potential zone splitting. ZMS considers all the internal

nodes up to level l as potential sub-zones to split. For instance, if l = 2 in Figure

4.2, we consider {Zi}i∈[1,6] as candidates for the zone splitting (Algorithm 4, Line 1).

We select top-k sub-zones having inferior model utility (i.e., higher losses compared

with the merged zone Zj) (Algorithm 4, Lines 7-12). If a candidate zone Zc trained

independently achieves better model utility, i.e., L(θt+1
c , Zc) < L(θt+1

j , Zc) where θt+1
c

is the zone model trained on Zc and θt+1
j is the model trained on the merged zone Zj

(Algorithm 4, Line 4), then ZMS splits Zc from the merged zone Zj (Algorithm 4, Line

5). In a training round, ZMS permits at most one zone splitting (Algorithm 4, Line 6)

90

to minimize the overhead and avoid distributed consistency problems. All ancestor

nodes of Zc are removed, creating a set of new merged-zones and their associated

binary trees. For instance, in Figure 4.2, if we split zone Z9, we create a set of new

merged zones, including zones Z3 = Z7∪Z8, Z2 = Z5∪Z6, Z9, and Z10. By doing this,

we focus on keeping the best merges after a zone splitting; thus approximating the

zone splitting objective (Equation 4.3) without affecting the zone merging objectives

(Equation 4.1 and 4.2). The training and validation at the phones for split is done in

a similar way with the ones for merge.

Algorithm 5 Zone Gradient Diffusion with Self-Attention
Input: Zone Zi

1: Ni ← getNeighbors(Zi)
2: for Zn ∈ Ni do
3: ein ← σ

(
∇(θt

i , Zi) •∇(θt
i , Zn)

)
where “•” is an inner product

4: ∀Zn ∈ Ni : βin ←
exp(ein)∑

Zj∈Ni
exp(eij)

computing coefficients

5: θt+1
i ← θt

i + ∇(θt
i , Zi) +

∑
Zn∈Ni

βin∇(θt
i , Zn) # aggregating gradients from

neighboring zones

4.1.4 Zone Gradient Diffusion (ZGD)

In addition to ZMS, we propose ZGD, an algorithm that keeps the zones fixed but

adapts the model by aggregating contextual information derived from local gradients

of neighboring zones (Algorithm 5). We found that contextual information captures

changes in mobility patterns and significantly improves the utility of zone models. In

ZGD, at round t, the neighboring zones Zn of a zone Zi derive their local gradients

using the model parameters θt
i from the zone Zi by using local data Du from their

users u, as follows: ∇(θt
i , Zn) = 1/|Un|

∑
u∈Un

∇(θt
i , Du). Note that users u compute

the gradients ∇(θt
i , Du) and send the gradients to the zone manager Zn for data

privacy protection.

Intuitively, the more similar the gradients of a zone (∇(θt
iZi)) are with the

gradients of a neighboring zone (∇(θt
i , Zn)), the higher the impact of the neighboring

91

zone Zn on Zi will be. We quantify this impact through self-attention coefficients

βin by normalizing the inner product of the local gradients of the zone Zi and its

neighboring zones Zn ∈ Ni:

∀Zn ∈ Ni : βin ←
exp(ein)∑

Zj∈Ni
exp(eij)

(4.4)

where ein = σ
(
∇(θt

i , Zi) •∇(θt
i , Zn)

)
, σ is the sigmoid function, and “•” is an inner

product.

Finally, we aggregate the gradients from neighboring zones to update the zone

model θt
i at round t:

θt+1
i ← θt

i +∇
(
θt
i , Zi

)
+

∑
Zn∈Ni

βin∇
(
θt
i , Zn

)
(4.5)

By doing so, ZGD updates the zone models to diffuse contextual information

from one zone to all the remaining zones across training rounds. This operation

significantly enriches the information used to optimize zone models in ZoneFL,

compared with existing FL algorithms.

4.2 System Design and Implementation

4.2.1 System Architecture

The ZoneFL architecture has three main components, as shown in Figure 4.3: (1)

FL Phone Manager coordinates the ZoneFL activities on the phone; (2) FL Zone

Manager coordinates the ZoneFL activities at the edge; and (3) Zone Partition

Keeper maintains and provisions the latest zone partition information in the cloud.

The edge software components of the architecture can be mapped either to edge nodes

92

or to servers in the cloud. For example, some FL Zone Managers could be deployed

at the edge nodes where edge is available, while others can be hosted in the cloud

where edge is not available yet. The FL Zone Manager can be migrated between the

cloud and the edge nodes.

The software components work together to support the six phases of ZoneFL:

data collection and preprocessing, privacy protection, model training and aggregation,

mobile apps using models for inference, zone partition maintenance, and zone

partition adaptation to user mobility changes. The first four phases follow traditional

FL. The Data Collector stores the sensed data in the Raw Data Storage and informs

the FL Phone Manager each time new data is added to the Raw Data Storage. The

FL Phone Manager decides invokes the model-specific Data Processors and stores the

data in the Processed Data Storage. The Local Privacy Preserving Manager uses

differential privacy techniques to further preserve user privacy. The Model Trainer

performs local training on the phone, and the Model Aggregator aggregates the

gradients at the edge. A Publish-Subscribe edge service, New Model/Zone Partition

Notification Service, allows the phone to receive asynchronous notifications when a

new zone model is available. When an app needs inference from a model, it sends

a request to the FL Phone Manager using the OS IPC mechanisms. In response,

the FL Phone Manager generates the input for the inference from the data stored in

the Processed Data Storage, and then it invokes the Model Runner with this input.

The Model Runner sends the result to the App using IPC. Next, we explain the two

phases that are specific to ZoneFL.

Zone Partition Maintenance. The Zone Partition Keeper maintains the

latest zone partition information in the system, which is represented as a graph. Each

non-overlapping zone is a vertex, and each edge connects two neighboring zones. The

initial zone partition information is bootstrapped by the administrator of the system

based on administrative divisions of a region. The Zone Partition Keeper is also

93

Figure 4.3 System architecture.

responsible for maintaining information about the identity (e.g., IP addresses) of the

FL Zone Managers at the edge.

Initially, a phone receives the zone partition information from the Zone Partition

Keeper. Then, it maps its data to different zones, based on the geographic locations

where the data were collected. This determines the list of zones to which the phone

subscribes for training. The phone communicates with the FL Zone Managers of

these zones to jointly train the zone models. For inference, a phone may use a zone

model even if the phone did not participate in the training of the given zone. This

allows new users to quickly benefit from ZoneFL.

Zone Partition Adaptation. The Zone Adapter of each edge node is

responsible for dynamic adaptation of zone partitions in ZMS. In order to perform

merge and split, as described in Subsection 4.1.3, the system needs to perform zone

level model validation. This operation is done through the cooperation of the phones

and the edge manager. The FL Zone Manager maintains a Zone Local Model Utility

Storage for phones to report the model utility computed on their validation datasets,

and periodically aggregates the validation results. This process involves additional

94

communication between phones and the FL Zone Manager, but it mitigates potential

privacy issues, since data never leaves the phone.

4.2.2 ZoneFL Prototype Implementation

We implemented an end-to-end ZoneFL prototype on Android phones and AWS

cloud. This prototype, with ZMS for dynamic adaptation, was used in our field study,

described in Section 4.3. AWS offers AWS Local Zones [180] as its edge computing

service. However, it is not available yet in the area of our field study, and therefore the

edge components of ZoneFL are deployed in the AWS cloud. We chose Deep Learning

for Java (DL4J) as the underlying framework for DL-related operations, because it is

a mature framework that supports model training on Android devices.

Deployment and Operation Scripts. The system administrator prepares

the initial zone partition information as a geojson file, which defines the zones’

geometry as polygon coordinates. We implement Python scripts to deploy and operate

the system. These deployment script reads the geojson file provided by the system

administrator to create an independent FL Zone Manager for each zone in AWS. The

operation scrips are used to collect performance and reliability data.

FL Zone Manager. The core computing components of the FL Zone Manager

are implemented and deployed as AWS Lambda functions [164] for low overhead and

fast start time. We create a REST API to relay clients’ requests to participate in

the FL training to the Lambda function that handles these requests. We also use the

AWS EventBridge to define rules to trigger and filter events for Lambda functions.

For model storage, model utility storage, validation datasets, and configuration files,

we use AWS S3. To store data that is accessed frequently, such as training round

states and model states, we use AWS DynamoDB. AWS SNS is utilized in conjunction

with the Google FCM to notify clients when newly trained models are ready. Most

FL Zone Manager components interact only with components within their zone. The

95

only exception is the Zone Adapter, which communicates with its counterparts in

neighboring zones to implement ZMS. As public cloud providers are racing to deploy

edge computing infrastructure [180,181], we expect these cloud services or their edge-

based variants will soon be available at the edge.

Zone Partition Keeper. We use an AWS S3 bucket as the Zone Partition

Keeper of all zones. This is the only shared AWS resource in the system. All the

other AWS resources are independent among different zones. In this way, once edge

computing becomes more widespread, the FL Zone Manager can be migrated from

the cloud to the edge. The latest zone partition information is made available to

phones for download. The previous partition information is also stored for the Zone

Adapter to help with the split operation in ZMS.

Android implementation. The Android phone implementation consists of

three apps: FL Phone Manager, Data Collector, and Testing App (used to test model

inference). The Data Collector was implemented starting from ExtraSensory [182].

This app collects heart rate (HR) sensing data from a Polar HR tracking wrist

band [183], which connects to the phone over Bluetooth. In the FL Phone Manager,

the Data Preprocessor uses the geojson file with Android Google Map API to check

the zone to where each data point belongs to. Then, the Data Preprocessor generates

the model input for training. The Model Trainer is implemented with the Android

native AsyncTask class to ensure the trainer is not terminated by Android, even

when the app is idle. The Model Trainer communicates with the FL Zone Manager

of each zone to train the models sequentially. Model inference is implemented as a

background service with Android Interface Definition Language (AIDL), and it gets

inference requests from the Testing App. This app uses AidlConnection to interface

with the FL Phone Manager for the inference results.

96

4.3 Evaluation

The evaluation presents results for both model utility and system performance. The

model utility experiments have two goals: (i) Compare the performance of ZoneFL

with Global FL (i.e., traditional FL trained with all users globally); (ii) Quantify the

benefit of ZGD and ZMS. The system experiments have four goals: (i) Demonstrate

the feasibility of ZoneFL on smart phones; (ii) Investigate ZoneFL scalability; and

(iii) Quantify the ZoneFL phone training time overhead.

4.3.1 Datasets, Models, and Metrics

We use two datasets collected in the wild to evaluate two types of ZoneFL models:

(1) A human activity recognition dataset [184]; and (2) A heart rate dataset [185].

We choose these two datasets because we observe the advantages of ZoneFL with

these two real-world mobile sensing applications we have data. The attributes, other

than zone, that affect the prediction are handled by the model design.

Human Activity Recognition (HAR). The dataset has data from 51 users,

moving in a region larger than 20,000 km2. Each user provided mobile accelerometer

data, GPS coordinates, and labeled their daily activities on their personal Android

phones. The labels used in the experiments are “Walking,” “Sitting,” “In Car,”

“Cycling,” and “Running.” In the experiments, we start with 9 non-overlapping zones

over the region covered by the dataset, based on GPS coordinates. The zones are

diverse and include a university campus zone, several suburban residential zones,

a riverside urban zone, a metro zone, etc. On average, each user have 1,995 data

samples for each zone. The preprocessing and the CNN-based model architecture

follow the work associated with the dataset [184]. For this classification task, we use

accuracy as the main metric for model performance.

Heart Rate Prediction (HRP). The dataset contains 167,373 workout

records for 956 users in 33 countries. The data collected by the users using their

97

mobile/wearable devices include multiple sources of sequential sensor data such as

heart rate, speed, GPS, sport type, user gender, and weather conditions. We filter the

data such that users with at least 10 workouts are included in training and inference

(4:1 split). We exclude users having less than 10 workouts because those data points

are not significant. To evaluate ZoneFL, we assign the initial zones of each country

to its principal (largest) administrative divisions so that we can have a manageable

number of zones. Among the countries, we select the top 6 countries having at least

10 zones with a reasonable number of average data samples per zone to effectively

assess ZoneFL’s performance. We use an LSTM-based model [185] to predict the

heart rate given input features consisting of altitude, distance, and time elapsed (or

speed) of the workouts. For this prediction task, we use the root mean squared error

(RMSE) metric. We only use HRP to evaluate zone dynamic adaptation because

HRP dataset has sufficient number of zones and users.

4.3.2 Model Utility Results

ZoneFL vs. Global FL. Table 4.1 shows the performance comparison between

ZoneFL and Global FL. In this experiment, ZoneFL works only with the zones defined

at the beginning of the experiment (called Static ZoneFL), without employing ZMS or

ZGD to adapt the models to the user mobility behavior over time. Thus, it provides

a lower bound on ZoneFL’s performance, which is expected to improve with ZMS and

ZGD. Global FL trains with all the users in the datasets. Zone FL trains a different

model for each zone in the respective dataset. Some users have data and participate

in training in more than one zone. The metrics are computed per user in the test

data set and then averaged. ZoneFL models outperform the Global FL models by

6.67% for HAR and by 6.74% for HRP. This performance gain is significant given

that it is very challenging for DL models to achieve 1% improvement in HAR and

98

Table 4.1 ZoneFL vs. Global FL
Application Metrics Global FL Static ZoneFL Improvement Gain
HAR Accuracy (%) 65.27 69.63 6.67%
HRP RMSE 21.20 19.86 6.74%

Figure 4.4 Simulation results of global FL and ZoneFL algorithms.

HRP tasks as illustrated in recent studies [73,186]. As shown next, we observe further

improvement with the dynamic adaptation algorithms.

ZGD Performance. Although ZGD and ZMS adapt zone models to user

mobility behavior changes, they serve slightly different purposes. Hence, we present

the performance of ZGD and ZMS separately. ZGD is designed to work with fixed

zones that have enough data for training. ZMS is designed to adapt the zone partitions

until all of them achieve reasonable model performance. In practical terms, ZMS is

generally used for the beginning rounds of ZoneFL, while ZGD is used once the zone

model performance is relatively stable. For both algorithms, we show just the results

for HRP because its dataset is more suitable for dynamic adaptation by having more

zones.

Figure 4.4 shows the performance of ZGD for the top-6 countries in the HRP

dataset. ZoneFL with ZGD performs better than Static ZoneFL for each country, and

it clearly outperforms Global FL (by as much as 11.89% for Poland). We also observe

that Static ZoneFL performs better than Global FL for 5 countries, and slightly worse

99

Table 4.2 ZMS Improvement

Before
(RMSE)

After
(RMSE)

Improvement Gain
(%) Mean / SD

Occurrence Per
100 Rounds

Merge 23.79 21.44 9.87 / 3.11 4
Split 23.04 20.71 11.10 / 3.63 3

for one country. The reason for the worse performance for Spain is that the static

zones do not capture well the changes in user mobility behavior. ZoneFL with ZGD

is able to alleviate this problem and result in better performance than Global FL.

ZMS Performance. Table 4.2 shows the average model performance

improvement for (zone) merge and split in HRP. In merge, the improvement gain

is calculated as follows: L1+L2

2
− L12, where L1 and L2 are RMSE losses evaluated

on the two constituent zones, and L12 is RMSE loss computed on the merged zone.

The reverse formula is used for splitting a larger zone in two sub-zones. The results

demonstrate that ZMS can significantly improve the model performance. On average,

4 merges and 3 splits occur every 100 rounds of training, which shows that dynamic

adaptation needs to happen about once a month in a scenario where users train once

a day.

4.3.3 System Results

To showcase the feasibility and advantages of ZoneFL over Global FL in a real-life

deployment, we conducted an HRP field study with 63 users for 4 months. Along

with smart phone sensor data such as accelerometer, gyroscope, etc., the users were

tasked to collect heart rate data from a Bluetooth-connected heart rate tracking wrist

band for their daily activities. The region of the field study is larger than 20,000 km2,

and it was originally divided in 9 zones. The study ran the prototype of ZoneFL with

ZMS, described in Subsection 4.2.2. In the field study the ZMS split operation is

performed for only one level (l = 1, Subsection 4.1.3). The prototype worked reliably

throughout the duration of the field study. Next, we present experimental results for

our prototype.

100

Table 4.3 Training on Phones: Resource Consumption and Latency

Application Phone

Max
RAM
Usage
(MB)

Foreground
Training

Time
Mean/SD

(min)

Background
Training

Time
Mean/SD

(min)

Battery
Consumption
per Round

(mAh)

Number of
Training
Rounds
for Full
Battery

HAR Nexus 6P 232 15.21/2.89 59.99/4.06 53.86 64
Google Pixel 3 228 2.13/0.24 9.32/0.09 9.91 294

HRP Nexus 6P 266 3.09/0.39 10.97/1.08 33.18 104
Google Pixel 3 230 0.40/0.10 5.07/0.37 4.66 625

ZoneFL Feasibility on Smart Phones We benchmarked ZoneFL with HAR

and HRP on Android phones using a testing app to evaluate training and inference

performance. We also assessed the resource consumption on the phones, with different

specs (Nexus 6P and Google Pixels 3). The results demonstrate the on-device

feasibility of ZoneFL, even for the Nexus 6P phone, unveiled in 2015 and running

Android 7. Since ZoneFL works well on such a low-end phone, we expect ZoneFL to

work well on most of today’s phones.

Training Performance. Table 5.7 shows the ZoneFL training time and

resource consumption on the phones. The training time is recorded by training 1995

samples and 86 samples (i.e., the average numbers of samples per zone per user) in 5

epochs for HAR and HRP. Foreground training (screen turned on) provides a lower

bound for the training time by using the full single core capacity. In reality, we expect

training to be done in the background, while the phone is being charged. We take

10 measurements for each benchmark and report the mean and standard deviation

since other apps or system processes working in background may interfere with the

training.

Training for one round is fast on the phones. The foreground training time on

Pixel 3 is just 2.13 min for HAR, and 0.4 min for HRP. The background training time is

also good for any practical situation. The background training time is notably longer

compared with foreground training, since Android attempts to balance computation

with battery savings.

101

Table 4.4 Inference on Phones: Resource Consumption and Latency

Application Phone

Max
RAM
Usage
(MB)

Foreground
Inference

Time
Mean/SD

(millisecond)

Background
Inference

Time
Mean/SD

(millisecond)

Battery
Consumption

per
prediction

(µAh)

Millions of
inferences

for
Full

Battery

HAR Nexus 6P 161 54.65/16.36 1963.04/1540.29 4.49 0.77
Google Pixel 3 177 36.59/6.43 99.60/33.69 1.94 1.50

HRP Nexus 6P 232 528.93/53.53 1809.71/700.96 45.47 0.08
Google Pixel 3 229 167.71/6.83 669.88/112.01 5.74 0.51

The results also show training is feasible in terms of resource consumption.

The maximum RAM usage of the app is less than 266MB, and modern phones are

equipped with sufficient RAM to handle it. The phones could easily perform hundreds

of rounds of training on a fully charged battery. It is worth noting that, typically,

one round of training per day is enough, as the users need enough time to collect new

data.

Inference Performance. The results in Table 5.6 demonstrate that ZoneFL

can be used efficiently by third-party apps working in real-time. The inference time

is measured within the third party testing app. Let us note that the inference is

performed locally by the FL Phone Manager, without any network communication.

Thus, the measured time consists of the inference computation time and the inter-

process communication time. We continuously perform predictions/classifications for

30 minutes and report the average values. The inference time for the two scenarios on

the third-party app, foreground and background, follows a similar trend as training.

Scalability ZoneFL utilizes multiple FL Zone Managers to receive and aggregate

the gradients from the users. Compared with a single server in Global FL, the

communication and computation load in ZoneFL is distributed among multiple zone

servers. Considering a user may send gradients to multiple zone servers, Table 4.5

computes the average ZoneFL server load savings based on the user percentage

distribution over the number of zones in Figure 4.5. The results demonstrate ZoneFL

102

Table 4.5 Server Load in ZoneFL over Global FL
Application HAR HRP
ZoneFL server load 37.26% 34.98%

Table 4.6 ZMS in The Field Study

Merge Time
Zone X/
RMSE

Zone Y/
RMSE

Merged
Zone RMSE

2022-04-09 13:57 A/13.96 B/18.40 12.56
2022-05-29 12:53 C/44.53 D/11.86 10.84
2022-06-05 13:07 E/18.48 A/15.28 13.30
2022-07-29 21:56 F/17.40 G/39.23 14.78

Figure 4.5 User training time vs. number of zones in the user data.

scales better than Global FL because the server load is 34.98% to 37.26% of the one

in Global FL.

ZMS Performance in the Field Study Table 4.6 depicts zone merge time and

model utility gains in the field study. At the end of the field study, the number of

the zones was changed from 9 to 7 after several merges and splits. In ZMS, a merge

occurs when the merged model performs better than both individual zone models.

The highest model utility gain observed is to improve RMSE from 44.53 to 10.84. This

is because the original zones did not have enough users and data. We also observed

two splits happened during the filed study. The highest RMSE improvement for split

is from 16.38 to 11.20. These observations showcase the ZMS improvements in our

ZoneFL prototype deployed in real-life.

103

ZoneFL User Training Time Overhead In ZoneFL, the phones may have data

from and may train in multiple zones, which may introduce a certain level of overhead

compared with Global FL. For every round in Global FL, a phone trains once for all its

data. In ZoneFL, a phone may train multiple times (once per zone from where it has

data), but for a smaller fraction of data. Figure 4.5 illustrates the background training

time in Android when the phone trains the same amount of data, while varying the

number of zones the data are distributed to. The percentage of users shown under

the X axis represents the fraction of users that have data in [1, 5] zones (e.g., 8.2%

of users have data in 5 zones). The number of samples trained per zone follows the

average reported in Subsection 4.3.3. For the 49% of the users that have data in a

single zone, there is no overhead compared to Global FL (i.e., train once with all the

data). For the rest of the users, we observe a small overhead, which increases with

the number of zones. However, the training time overhead never exceeds 3.5 minutes.

Considering that the training occurs in the background, this is an acceptable overhead

for the benefits of ZoneFL in terms of model utility and server scalability.

4.4 Chapter Summary

This paper proposed ZoneFL, a mobile-edge-cloud FL system, that distributes

training across geographical zones to improve model utility and scalability compared

with traditional FL. We augmented ZoneFL with two training algorithms, ZMS and

ZGD, enabling zone models to adapt to changes in user mobility behavior. ZMS and

ZGD can work complementary during FL training rounds, with ZMS improving model

utility in the initial rounds and ZGD further improving the utility after that. Using

two different models, including human activity recognition and heart rate prediction,

and mobile sensing datasets collected in the wild, we showed that ZoneFL outperforms

traditional FL in terms of model utility and server scalability. We implemented an

104

Android/AWS prototype of ZoneFL with ZMS and demonstrated the feasibility of

ZoneFL in real-life conditions.

105

CHAPTER 5

FEDERATED META-LOCATION LEARNING FOR FINE-GRAINED
LOCATION PREDICTION

The goal of this chapter is to design a system for fine-grained location prediction from

GPS traces that works on the users’ phones. In our work, the term fine-grained refers

to both spatial and temporal scales. Specifically, we aim to achieve high prediction

accuracy, with prediction errors within the range of GPS errors. Furthermore, we

want our system to be able to predict any potential locations of the users, not just

important places identified by Place IDs as it is done by existing works. We focus on

pedestrians and bicyclists, instead of users in cars or in public transportation systems,

because their less predictable behavior makes the problem more difficult. In addition,

their lower speeds and ability to stop whenever they want are expected to enable more

applications of predictions. We also want to be able to predict at minute-scale (e.g.,

predict with a temporal step of one minute for 1, 2, ..., n minutes ahead). For example,

we want to predict where a pedestrian will be in 5 minutes with a 10m spatial error.

We propose Federated Meta-Location Learning (FMLL) on smartphones for

fine-grained location prediction using GPS traces collected on the devices. FMLL

consists of three main components: a meta-location generation module, a prediction

model, and an FL framework. The meta-location generation module represents user

location data as relative points in a 2D space, enabling learning across diverse physical

environments. The prediction model combines Bidirectional Long Short-Term

Memory (BiLSTM) and CNN. BiLSTM captures mobile users’ speed and direction,

while CNN learns additional information such as user movement preferences. The

framework operates on both user devices and a central server that coordinates learning

across all participants in the system. FL is employed in FMLL to protect user privacy

and reduce bandwidth consumption.

106

This chapter presents the meta-location generation in Section 5.1. Section 5.2

details the prediction model. Section 5.4 describes the datasets and the meta-location

preprocessing. Section 5.3 presents FMLL framework. Section 5.5 shows the

experimental evaluation. Section 5.6 discusses real-life deployment aspects and

additional use cases for our model. The chapter is summarized in Section 5.7.

5.1 Meta-Location Generation

The fundamental information to predict location is travel direction and speed. The

user movement preferences and road characteristics also help the prediction. The

GPS trajectories of each user contain this information. FMLL on the phones process

the raw location data to generate the meta-location, which represents trajectories as

relative points in an abstract 2-Dimensional (2D) space. This section presents the

process of meta-location generation and its benefits.

5.1.1 Raw Location Data

The raw location data is recorded by each phone using the embedded GPS sensor.

Let Lt = ⟨latt, lont⟩ denote the latitude and longitude of a user at time t. FMLL

performs learning based on the transportation mode, such as walking or bicycling.

Therefore, only the data specific to the desired transportation mode is selected for

further processing. In real world, if the transportation mode is not explicitly known,

it can be inferred from accelerometer data on mobile devices [187].

5.1.2 Meta-Location Input for Prediction Model

The raw location data of each user is processed on their smart phone to produce

meta-location as two types of inputs for the prediction model: fixed-length sequences

of relative points and historic region occupancy matrices of the space considered for

prediction. The input sequences contain the speed and direction information of the

user trajectories. The occupancy matrices record frequently visited places and the

107

most likely trajectories between these places. The inputs are computed offline (e.g.,

when the phones are charging) and can be updated over time based on new data to

enable re-training.

To generate the input sequences, FMLL splits the user trajectories into

fixed-length sub-trajectories. The length in time of the trajectories is determined

experimentally. Each sub-trajectory is transformed into a sequence of relative points

in an abstract 2D space. The X and Y coordinates of relative points at time t are

determined based on their offsets from the location at previous time step t-1. The

location of the very first point in a trajectory session is excluded. A location offset

is denoted as ∆Lt = ⟨latt− latt−1, lont − lont−1⟩. An input sequence of at time t

that looks back k steps is denoted as St = (∆Lt−k+1, ∆Lt−k+2, ...,∆Lt−1,∆Lt). In

its training, FMLL considers all possible k-length sequences, including overlapping

sequences.

The historic region occupancy matrices are extracted from a historic occupancy

matrix of the entire space (e.g., a city). FMLL divides the entire space into a grid

of fixed-size cells, and each cell corresponds to an element in the historic occupancy

matrix. Each element represents the number of visits of the user in its corresponding

cell. The matrix represents the occupancy of a bounded region Rt with area A,

which is centered at the physical location Lt at time t. Rt is divided into M ×M

fixed-size grid-cells, where A and M are predefined constants based on the maximum

speed of users and the desired spatial granularity for the prediction. Each historic

region occupancy matrix Ht is a M × M matrix, and it is extracted from the

historic occupancy matrix for the entire space. Once extracted, this matrix is a

meta-location input that does not maintain any relation with the physical locations

that it represents. A matrix can implicitly tell if a road exists in a given cell (i.e.,

non-zero value for the corresponding matrix element) and can also tell if adjacent

cells form routes taken frequently by the user.

108

Figure 5.1 Illustration of meta-location generation.

Figure 5.1 illustrates how the meta-location input is generated from the

sequences of physical locations. Let us note that in real world, the historic region

occupancy matrix is generated from the numbers of visits to all grid cells which do not

have to be temporal sequences of physical locations. We observe that the sequences

of relative points do not resemble the physical sequences, which helps with location

privacy protection. Overall, different physical locations can be mapped to the same

meta-locations. This not only helps repeated patterns to be extracted from different

physical locations, but also make it difficult for adversaries (i.e., the server in FL)

who attempt to infer the physical locations.

5.1.3 Meta-Location Output for Prediction Model

The location to be predicted Lt+i is mapped into the region R. FMLL builds a

prediction matrix Yt+i (Equation 5.1).

yi,j,t+i =

1, if Lt+i ∈ Ri,j

0, otherwise

(5.1)

where yi,j,t+i is an element of Yt+i, Ri,j (1 ≤ i, j ≤M) is a cell in region R.

The meta-location output is formulated as a categorical class rather than a numerical

109

value, so that we can set the spatial granularity of the prediction as a constant.

Another reason for using categories is that the historic region occupancy matrix does

not contain information to predict with spatial granularity beyond the grid-cell size.

Overall, the output is a relative grid-cell, which is translated into a physical grid-cell

on the user’s phone.

5.1.4 Meta-Location Benefits

Using meta-location has four benefits. First, different meta-location sequences have

the same magnitude, which is required for DL data. DL algorithms minimize the

distance between two data points as a loss function. During this minimization, high-

magnitude data weighs more than low-magnitude data, and it can lead to bias. For

example, if physical location sequences are used directly, the training will focus on

minimizing the loss for the data with high latitude and high longitude values. One

way to avoid this problem is to scale every sequence to the same range [188]. However,

scaling the location sequence will remove the traveling speed, which is necessary for

location prediction. Since speed cannot be assumed constant for accurate prediction,

there may not be an efficient mechanism to preserve it. With our meta-location

generation, all meta-location sequences are in the same range and can be used directly

in DL. This is especially important for FL training across all users.

The second benefit is the ability to change configuration parameters in data

representation to perform prediction at different spatial granularity. For example,

the grid-cell size can be 10m × 10m for pedestrians, and 40m × 40m for bicyclists.

Instead of predicting the coordinates as arbitrary numerical values without a

target granularity, with meta-location, we can formulate the output of the model

categorically with specified granularity, and use accuracy to quantify the model

performance. This also improves the model utility when an application requires

certain spatial and temporal granularity from the model.

110

The third benefit is location privacy protection. This is achieved in conjunction

with FL, which shares only the model gradients with the server. The data do not leave

the phones because the learning happens on the phones. However, the gradients of the

local models may still leak private location information if the FL model uses physical

location data [75]. This problem is substantially mitigated by the use of meta-location.

The meta-location input contains the essential information for location prediction,

including speed, direction, and user movement preference, while not disclosing the

physical location (Lt = ⟨latt, lont⟩) of the user to DL model.

The fourth benefit is the extraction of repeated patterns across different physical

locations. When learning directly from different physical locations, the DL models

encounter entirely different samples. However, because meta-location uses the same

abstract 2D space, it may become similar for different physical locations. This speeds

up learning because there will be more similar meta-location samples.

5.2 FMLL Model

This section presents the formal problem definition for our model, and the description

of the model architecture and its components.

5.2.1 Problem Definition

The problem is defined based on the meta-location input and output, defined in

Section 5.1. Let St ∈ R2k be the size-k sequence of relative points at time t for a

given user. Let Ht ∈ Z+M×M be the historic regional occupancy matrix of the same

user, which is a square matrix of order M centered at the user location at time t.

Our goal is to predict the relative location of this user Ŷt+i ∈ Z2
M×M for the future

ith timestamp.

Ŷt+i = F(St;Ht) (5.2)

111

Figure 5.2 Model architecture.

where F is our DL model for location prediction. The predicted location is a

cell in the M ×M grid representation of the space surrounding the current location

of the user.

5.2.2 Model Architecture

Meta-location provides a novel input and output formulation for the location

prediction problem. Existing models cannot used directly for three reasons. First,

they [29, 30, 32, 36, 37] are designed to use either sequence input or matrix input,

instead of both, so they are not able to take advantage of the benefits offered

by the complementary meta-location inputs. Second, some problems, such as

POI check-in prediction [36, 37], are naturally different from fine-grained location

prediction. The user may check-in anywhere and anytime, and consequently their

problem formulation does not bound the input and output spatially or temporarily.

Their output candidates can be any POI IDs in the dataset, while fine-grained location

prediction output can only be in the neighboring range of the current location.

Third, the heuristics of designing some location prediction models is different from

designing a fine-grained location prediction model. For example, the check-in location

112

prediction [36, 37] should be designed to learn the popularity of POIs, while the

fine-grained location prediction should learn the speed and direction of movement,

road characteristics, etc.

To learn effectively for fine-grained location prediction, we propose FMLL

model. As shown in Figure 5.2, the model fuses BiLSTM and CNN, where BiLSTM

learns the speed and direction of the user mobility from the sequences of relative

points, and CNN learns user movement preferences and likely user routes from

the historic region occupancy matrix. BiLSTM and CNN work in parallel. A

densenet-type connection is used to fuse BiLSTM and CNN, and then softmax

activation is adapted to output which grid-cell the user will be in. Batch normalization

and dropout layers are also added in both BiLSTM and CNN to avoid over-fitting,

but for simplicity they are not shown in the figure. This architecture is designed to

capture as much user-level information as possible.

For training, the phones use the meta-location input derived from physical

locations, which can be pre-computed. For prediction, the sequence input is simple

and can be generated in real-time, based on the last k recorded GPS locations. The

historic region occupancy matrix, centered at the current location, is extracted in

real-time from the pre-computed historic occupancy matrix for the entire space.

BiLSTM. Sequences of relative points contain the information of travel speed

and direction. FMLL uses BiLSTM to learn them with a targeted spatial and

temporal granularity. An LSTM unit is composed of a cell, an input gate, an output

gate, and a forget gate. The cell remembers values over arbitrary time intervals, and

the three gates regulate the flow of information into and out of the cell. In BiLSTM,

one LSTM reads the relative location sequence forward, while a second LSTM reads

it backward. The final two layers of hidden states are then concatenated, and the

concatenation of these layers captures the speed and direction of users. To avoid

overfitting, we perform both regular dropout and recurrent dropout. FMLL adopts

113

BiLSTM for three reasons: (1) LSTM works well for sequence modeling. (2) BiLSTM

augments data by using backward sequences in training. While backward sequences

are not part of the dataset, they are real sequences that could occur. (3) Unlike

unidirectional LSTM which leads to a final internal state containing more information

about the last points of a sequence (while the information about the first points is

forgotten) [29], BiLSTM preserves the sequence information equally across the relative

points.

CNN. Intuitively, knowing the exact speed and direction can determine the

next location. However, the predicted speed and direction has to be tuned with

other information for better learning. FMLL uses CNN on the historic region

occupancy matrices, associated with the sequences fed into BiLSTM, to capture

spatial features such as user movement preferences or the likelier route followed by

a user between two points. CNN can learn this type of information because the

historic region occupancy matrices contain information reflecting both occupancy

frequency (explicit) and movement trajectory (implicit). Our CNN consists of batch

normalization, convolution, max pooling, RELU activation, and dropout. With help

from convolution and pooling, CNN is able to capture local connectivity and shift

invariant. In our model, local connectivity can be the direction to which a user

prefers to turn at a given intersection. The road characteristics are shift-invariant

because the road network in a city usually follows the same urban design, and is

similar in different areas.

Fusion. Although sequences of relative points and historic region occupancy

matrices can be fit into next location by BiLSTM and CNN respectively, fusing

the complementary information learnt from them can significantly improve the

model performance. FMLL fuses the output layers from BiLSTM and CNN by

concatenation, which allows for different-length outputs from BiLSTM and CNN.

Then the concatenated output is fed into fully connected densenets, and the final

114

output is computed by softmax activation, as shown in Equation 5.3, where k

corresponds to the kth grid-cell, n = M × M is the total number of grid-cells, ŷk

is the kth element of the output Ŷ, and ϕk is the kth element of the final hidden

layer before activation. The dense layers can gradually extract features of our desired

length, and softmax converts them into probabilities. The output Ŷ contains the

predicted probabilities of the future user location in each grid cell.

ŷk =
exp(ϕk)∑n
i=1 exp(ϕi)

(5.3)

w∗ = argmin
w
− 1

n

n∑
i=1

yi · log(ŷi) (5.4)

FMLL uses cross entropy loss for optimization, which is a standard function in

multi-class classification. Therefore, the model learns the parameter w by minimizing

the cross entropy loss measurement (Equation 5.4). yi is the ith element of the ground

truth Y, where the grid cell of the user’s future location is set to 1, and all others are

0.

5.3 FMLL Learning Framework

This section describes the FMLL framework that enables training and inference,

while preserving the privacy of the user location. The section presents the system

architecture for the framework, the operation stages of FMLL, and an enhanced

training method.

115

Figure 5.3 FMLL aystem architecture.

5.3.1 System Architecture

The system architecture of our framework is shown in Figure 5.3. The framework

software runs on a server and on the phones of the users, and it uses federated

learning (FL) [74] for training across all users. The FMLL Controller on the phones

mediates the communication between the server and the phones. The Meta-Location

Generation module on the phones processes the physical location data and generates

meta-location for training. The FMLL Training and Prediction module runs on the

phones. This module performs local model training on the phones and then submits

the model gradients to the server through the Controller. The FMLL Aggregator

module at the server aggregates the gradients of the local models into a global model,

and then distributes this model to the phones. When the OS or apps need a prediction,

the Training and Prediction module is invoked. The output of the prediction is

a meta-location, which is then converted into a physical location, with help from

Meta-Location Generation module.

116

Figure 5.4 Federated Learning operation of FMLL.

5.3.2 Operation Stages

To deploy the model in real-world and evolve it while the users collect location data

over time, the FMLL learning framework has five computation and communication

stages, illustrated in Figure 5.4. During these stages, the phones and the server jointly

contribute to the model. The stages are executed periodically in rounds, similar to

Google’s FL framework [74]. In each round, the model is fine-tuned by re-training

from the existing model. In the following, we detail each stage.

(1) Initialization. Newly participating phones are required to register with the
server to ensure that the server knows when model gradients uploaded at different
times come from the same user. This could further allow the server to remove potential
malicious users who may inject fake data into the model. 1

(2) Configuration. A training/prediction round starts with the configuration
stage. The server informs the phones of the deadline to participate in training. This
deadline is the end of stage 3. The server can select a subset of the connected
phones based on the optimal number of participating phones in each round and the
availability of training data. The server sends configuration parameters to the phones
on how to generate meta-location for training. Parameters, such as sequence length,
matrix size, grid size, may vary according to the desired spatial accuracy of the
prediction. The server also sends the current global model parameters to each phone
that did not participate in the previous training round, along with a training plan,
such as gradient computation settings.

(3) Meta-location Generation and Training. Based on the configuration from
the server, the phone performs meta-location generation. Then, it uses the global
model received from the server to compute gradients based on its processed data.
Finally, the phone sends the gradients back to the server.

1Protection against such malicious users is outside the scope of the study.

117

(4) Aggregation. This is the main server computation stage. The server waits for
the phones to report gradient updates, aggregates them using federated averaging,
and updates its global model weights with aggregated gradients. Then, it deploys
the model to the phones to ensure they have the latest model because they may not
participate in a new round for a while.

(5) Prediction. The software on the phone can invoke the new FMLL model for
predictions. Up to this stage, they use the old model from the previous round. This
stage has a much larger duration than all the others. For example, training can be
done once a day for a few minutes, while predictions could be performed at any time.

5.3.3 Training with Data Augmentation

A well-reported issue that restricts the performance of FL models is non Independent

and Identically Distributed (IID) data distribution. FL trains on the dataset of each

individual user. The datasets among different users may follow different distributions,

due to user behavior differences, imbalanced class distribution, etc. While DL training

can efficiently converge models with IID data, models trained in FL settings usually

suffer from inferior performance [15]. To mitigate the non-IID issue, we leverage an

advanced data augmentation mechanism inspired by Zhao et al. [4].

In this enhanced FL training, the data from a small percentage of users (e.g.,

less than 5%) are allocated as an augmentation dataset and made available to the

aggregation server, and the server can sample and share it with the other users. This

is usually the case when a small amount of users are willing to share their data with

the server [189].

Training with data augmentation has three phases. First, the FMLL model is

trained with the augmentation dataset at the server. This model is then distributed to

the phones that will participate in FL training. Second, each phone selected in every

round randomly picks a certain number of samples from the augmentation dataset

and concatenates them with its own dataset. Third, on-device training is conducted

by initializing the model received from the server (trained with the augmentation

dataset) and further training it with the augmented local data. The rest of the FL

procedures are the same as in the basic FL technique. Thus, the local non-IID data

118

of each user are augmented with IID data from the augmentation dataset, and the

non-IID issue is mitigated.

5.4 Dataset and Meta-location Preprocessing

This section describes the two real-world public datasets that we use in our evaluation,

as well as the meta-location preprocessing to extract the inputs and outputs expected

by our system.

5.4.1 Dataset Description

We use two datasets: Open PFLOW [190] and Geolife [191]. Most experiments will

use Open PFLOW, which is much larger. Geolife is used to demonstrate model

reusability. Open PFLOW contains GPS trajectories that cover the Greater Tokyo

area. It includes GPS data for 617,040 users, sampled every minute. The dataset

covers typical movement patterns of people in the metropolitan area for one day, and

it includes five transportation modes: stay, walk, vehicle, train, and bicycle. We select

the data labeled “walk” and “bicyle”, because their lower speeds and ability to stop

whenever they want are expected to enable more applications of predictions. In real

world, the transportation mode can be inferred from accelerometer data on mobile

devices [187]. Unless specified otherwise, the experiments are for pedestrian mobility.

Bicycle data are used to demonstrate model reusability by using the pedestrian model

to predict on bicycling data directly. Geolife [191] contains GPS trajectory data for

182 users over a five-year period. From this dataset, we selected the users (73) who

labeled their trajectories with walking.

5.4.2 Meta-location Preprocessing

We choose a 200m × 200m region for both historic region occupancy matrices input

and grid output, assuming a user can walk up to 100 meters in a minute. Let us recall

that the region is centered at the current location of the user. For each experiment,

119

Figure 5.5 Heatmap of possible next minute location in Open PFLOW (left) and
Geolife (right) for 20m × 20m grid cells.

Figure 5.6 Open PFLOW 5th min
prediction heatmap of 20m × 20m
grid cells.

Figure 5.7 Open PFLOW next
minute prediction heatmap of 5m ×
5m grid cells.

we divide the region based on the accuracy we want to obtain. For example, we can

divide the region into 100 cells of size 20m × 20m, and predict the location in one

of these cells. The historic occupancy matrix is computed once and saved on mobile

devices. The historic region occupancy matrix, centered at the current location, is

extracted in real time from the overall occupancy matrix.

For the fixed-length sequences of relative points, we choose a length of 9 (i.e.,

9 locations, sampled one minute apart). Any walking session less than 9 minutes is

dropped from the input. The sequence length should contain enough information to

capture the direction and speed of movement, but it should not be too long, delaying

the time when the first prediction can happen. We selected length = 9 as a good

120

trade-off. In addition, most people in our datasets walk fewer than 15 minutes at once,

so our length is practical from this point of view. To achieve quicker convergence, the

relative points are scaled between -1 and 1.

Both datasets contain a large number of standing-still datapoints. We consider

an input sequence to be standing-still if the user does not move at all in 9 minutes

(the sequence length). Even though there is a “stay” transportation mode, about

50% of the walk data is standing-still. Our experiments presented in Section 5.5 are

without standing-still data. However, we also ran experiments with standing-still

data (not included in the paper for the sake of brevity). These experiments proved

the imbalance introduced by standing-still data is not a problem for large amounts

of data.

Figure 5.5 shows the heatmap of the next minute possible location in Open

PFLOW and Geolife after removal of standing-still data. The heatmap is generated

by counting the number of samples in the dataset leading to each grid cell output.

Since walking speed is similar for most people, in Open PFLOW, the location of next

minute is most likely in the red/orange circle. In Geolife, because of fewer samples

(three orders of magnitude fewer than in Open PFLOW), the circular pattern from

typical walking speeds becomes less evident. The heatmap also illustrates the average

number of samples per class in Open PFLOW is sufficient (i.e., 250,000). However,

in Geolife, it is only 450 on average, and a lot of classes have less than 100 samples,

which may be inadequate for training. Nevertheless, we keep this dataset to test if

our model can be reused by leveraging transfer learning.

An accurate location prediction model requires large amounts of data. As we

increase the region size to predict further into the future (Figure 5.6) or decrease the

grid cell size for higher accuracy (Figure 5.7), the number of grid cells increases

quadratically. Therefore, the number of cells with insufficient samples increases

correspondingly, and the prediction accuracy for both may suffer.

121

5.5 Experimental Evaluation

Our evaluation has three goals. First, we assess the model’s performance without

FL. This allows a fair comparison between our model and the baseline models, which

do not include privacy protection techniques such as FL. Second, we measure the

performance of the federated solution of FMLL. Third, we test the feasibility of

running FMLL on phones.

5.5.1 Model Performance Without FL

Implementation FMLL is implemented using the Keras library. The output space

of BiLSTM has dimensionality of 512 in each direction. Regular and recurrent dropout

rates are set to 0.2 in BiLSTM. Two blocks of CNN are used sequentially with output

space of 256 and 512, respectively. Both blocks include a convolutional layer with a

3×3 convolution window, a stride of 1, RELU activation, maximum pooling layer with

size 2×2, batch normalization, and a dropout rate of 0.2. The outputs of BiLSTM and

CNN are concatenated and fed into four densenet layers with output spaces of 1024,

512, 256, and 128, respectively. A dropout of 0.2 is added between the four dense

layers. The final output is fitted by a densenet layer with softmax activation. We

utilize the ADAM optimizer with learning rate of 0.001. The loss function is chosen

as categorical cross entropy, which is commonly-used for multi-class classification.

Metrics We choose three metrics for prediction performance: cross entropy loss,

categorical accuracy, and weighted F1 score (i.e., the weighted average of F1 scores of

each class divided by the number of samples in each class). A high F1 score indicates

that both precision and recall are high.

Baseline models Because the problem formulation of FMLL is unique and FMLL

is designed to learn from meta-location instead of actual physical location, there

are few comparable baseline candidates. We choose the baselines that can be

122

adapted to learn from meta-location: Bidirectional RNN [29], T-CONV [30], and HO.

Bidirectional RNN [29] is the best model in a taxi destination prediction competition.

The state-of-the-art T-CONV model, used by Lv et al. [30], has recently outperformed

the Bidirectional RNN in the taxi destination prediction. Highest Occupancy Model

(HO) is a simple statistical prediction model. In HO, the location in the next minute

is predicted as the most occupied grid cell in the historic region occupancy matrix.

If there are multiple grid-cells with the same highest occupancy, HO will randomly

select one of them.

To adapt the baseline models to be comparable with FMLL, we use the same

meta-location input as FMLL, which are fixed-length sequences of relative points and

historic region occupancy matrices. The dimensions of the hidden states and window

sizes are chosen to be same as in FMLL, and eventually fed into the same output

layers. In this way, the baselines can also demonstrate the contributions of each

individual component of FMLL, and the benefits of fusing them.

We considered and tested two other state-of-the-art POI ID prediction models

for fine-grained location prediction, ST-RNN [36] and DeepMove [37]. These models

use recall@k as metrics, which is the the proportion of correct predictions found in

the top-k recommendations. The values of recall@10 when applying these models to

fine-grained location prediction are less than 5%.

The performance of these models is so poor in our settings because they are

very different from FMLL in their problem formulation and design. First, these

models use physical locations, instead of meta-locations. With physical locations,

there are few similar trajectory samples across users. Without repeated patterns, the

deep learning models cannot learn. Second, to predict the POI ID in a given time

frame, these models formulate the problem as a recommender system that predicts

a ranking of possible POI IDs a user will check in. On the other hand, our problem

is formulated as a precise binary prediction of whether the user will be at a location

123

cell in the grid or not. Third, these models do not consider spatial granularity,

because a POI ID, such as a mall, typically covers a large area. They also do not

consider temporal granularity, as they predict the next POI IDs without knowing

when the user will visit that POI. Unlike these models, FMLL bounds the spatial

and temporal granularity in the prediction and learns features such as speed and

direction of travel, user preferences, and road characteristics. FMLL is unique in its

fine-grained prediction across both spatial and temporal scales.

Experimental Settings The experiments are conducted on a Ubuntu Linux cluster

(CPU: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 512GB memory, GPU:

4 NVIDIA P100-SXM2 with 64GB total memory), and the training and testing run

with GPU acceleration. The ratio of training, validation, and testing datasets is 4:1:1.

We choose a batch size of 256. Early stopping is used to stop the training earlier if

the accuracy has not improved in the last 10 epochs for the validation dataset. The

users are simulated in this system by replaying their location traces.

Results Unless specified otherwise, the experiments are for pedestrian mobility,

using Open PFLOW, and predicting one minute ahead for 20m × 20m grid-cells. As

discussed in Subsection 1.2.2, such short-term prediction can have significant benefits

in real life.

Comparison with baseline models. Table 5.1 shows the prediction metrics

for FMLL without FL and the baseline models. FMLL outperforms the baselines

in both loss and accuracy. The weighted F1 score indicates that both precision and

recall are high in FMLL. We notice that neither BiRNN nor T-CONV performs

well. However, by fusing BiLSTM with CNN, FMLL leads to substantially better

performance. This is because each of them captures a different type of information:

speed and direction of traveling (BiLSTM) and movement trajectory and preferences

(CNN).

124

Table 5.1 Performance of FMLL w/o FL and Baselines
Model Metrics

Loss Accuracy Weighted F1
HO NA 0.329 0.382
BiRNN 2.859 0.222 0.188
T-CONV 0.900 0.501 0.469
FMLL 0.157 0.955 0.955

0.88 0.9 0.92 0.94 0.96
20

10

5

0.955

0.894

0.878

AccuracyG
ri

d
C

el
lS

iz
e

(m
et

er
)

Figure 5.8 Prediction accuracy as a function of grid-cell size.

Performance vs. spatial scale. Figure 5.8 shows how FMLL’s accuracy

varies with spatial scale (i.e., grid-cell size). Even though the accuracy decreases as

the size of the cell decreases, FMLL can still achieve good performance (i.e., 87.8%

accuracy) for 5m × 5m cells.

Performance vs. time scale. Figure 5.9 shows how FMLL’s accuracy varies

over time (i.e., predict x minutes ahead). The performance decreases over time, but we

believe it is acceptable up to 5 minutes ahead. In addition to loss accumulation, there

are two reasons for the decrease in accuracy over time. First, the user data is just for

one day, and we cannot capture many recurring mobility patterns. Second, pedestrian

mobility is inherently difficult to predict. Nevertheless, short-term prediction can be

beneficial to many applications. For example, adjusting bit rate video streaming

based on 5G coverage prediction can allow buffering up enough video while coverage

is still good to avoid quality degradation due to predicted poor coverage in the next

few minutes.

Model Reusability. A model is reusable when it can be used directly or in

conjunction with transfer learning (TL) on another dataset. Currently, this property

125

0.7 0.8 0.9 1
1st
2nd
3rd
4th
5th

0.955

0.792

0.787

0.709

0.668

Accuracy

T
im

e
W

in
do

w
(m

in
)

Figure 5.9 Prediction accuracy as a function of time windows.

Table 5.2 FMLL w/o FL Pre-trained on Pedestrian Data and Used to Predict on
Bicycling Data w/o TL

Model Metrics
Loss Accuracy Weighted F1

Walking 0.157 0.955 0.955
Bicycling 0.955 0.853 0.849

exists mainly in image recognition and natural language processing because few

models can satisfy it.

We demonstrate that our model pre-trained on the pedestrian data from Open

PFLOW works for bicyclist data from the same dataset, even without TL. We also

demonstrate that TL works well in conjunction with FMLL when applied to the

Geolife dataset. We believe that the main reason for FMLL’s reusability is its meta-

location, which makes it less location-specific.

Table 5.2 shows the performance obtained when testing the pre-trained FMLL

(i.e., trained only with pedestrian data) on bicycling data. For comparison, we

also show the accuracy when testing on pedestrian data. Because bicycling speed

is approximately four times walking speed, the sequence input is scaled down four

times and the matrix input is scaled up four times to match the magnitude of

pedestrian data. The results show good performance, with an accuracy of 85.3%,

which demonstrates the model’s reusability.

Table 5.3 shows the performance of FMLL over the Geolife dataset in two cases:

a model trained directly on Geolife, and a TL model that pre-trained with Open

PFLOW and fine-tuned with Geolife. The results demonstrate the reusability of

126

Table 5.3 FMLL Performance on Geolife dataset: Geolife alone vs. TL from Open
PFLOW to Geolife

Model Metrics
Loss Accuracy Weighted F1

Geolife alone 2.291 0.400 0.390
TL from Open PFLOW to Geolife 2.190 0.448 0.441

Table 5.4 FMLL with FL Performance
Training method Metrics

Loss Accuracy Weighted F1
FMLL w/ FL without data augmentation 3.016 0.664 0.631
FMLL w/o FL on augmentation dataset alone 2.652 0.792 0.815
FMLL w/ FL with data augmentation 2.432 0.842 0.853

FMLL because the TL model from Open PFLOW to Geolife achieves 12.2% higher

accuracy than the model trained on the Geolife dataset alone. This result is surprising,

but it is explained by the fact that Open PFLOW is a much larger dataset than

Geolife. We also observe, as expected, that training on Geolife leads to low accuracy.

While the accuracy of the model pre-trained on Open PFLOW is significantly better,

it is still not good in absolute terms. The reason is that the two datasets cover very

different road networks. There are two types of urban planning for road networks,

either as grid or circles, and these two types are quite different. Therefore, a model

trained on one type cannot work very well on the other type.

5.5.2 Model Performance with FL

Implementation and Settings FMLL with FL is implemented using TensorFlow

Federated (TFF). For simplicity, we used the default federated averaging algorithm

in TFF [74], instead of more sophisticated averaging mechanisms that may help FL’s

accuracy [192]. The same cluster is used for the experiments but we could not use

GPU acceleration because current version of TFF (0.9.0) is not optimized for GPUs.

To simulate user participation in one FL round, we randomly sample 320 users

every round for training. Before the training, we set aside some random users’ data

for testing, and these users are not selected for training. Because the number of

samples per user is very limited (from 1 to 150, with an average of 60 in Open

127

0 5 10 15 20 25 30
2.5

3

3.5

4

4.5

5

Epoch

Lo
ss

Loss

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

Accuracy

Figure 5.10 Loss and accuracy over
epochs with 40 rounds of training.

0 20 40 60 80

2.5

3

3.5

4

4.5

Round

Lo
ss

Loss

0 20 40 60 80
0

0.2

0.4

0.6

A
cc

ur
ac

y

Accuracy

Figure 5.11 Loss and accuracy over
rounds with 24 epochs of training.

PFLOW), the batch size is set to 32. The number of users per round and the batch

size are set experimentally for the best performance. All the other model settings

are the same as in FMLL without FL.

Results Due to the lack of a centralized validation dataset in FL, it is difficult to

know when underfitting or overfitting occurs. Also, the lack of validation makes it

impossible to determine the optimum number of epochs by early stopping. Therefore,

in this experimental evaluation, we first show the model performance as the number of

training epochs increases. Next, with the optimum number of epochs to train FMLL,

we train the model with an increasing number of rounds for the best performance

possible.

Performance over number of epochs. Figure 5.10 shows the testing

performance of the models trained for 40 rounds and varying the number of epochs.

Similar to the training for the model without FL, the loss decreases as the number

of training epochs increase because the deep learning iteration process aims at

minimizing the loss. Initially the accuracy increases as the loss decreases. However,

overfitting happens as the number of epoch keeps increasing, and accuracy decreases.

The figure shows that the the best number of epochs is 24.

128

Performance over number of rounds. Figure 5.11 shows the testing

performance of FMLL with FL models over rounds, with he number of training

epochs fixed at 24. Unlike training over epochs, the performance fluctuates over

training rounds. This is because every round is a sampling process based on the

available phones, and there is no guarantee that the data quality from the sampled

phones meets the demand to further improve the model. The fluctuation is minor at

the beginning, but it increases over time. Similar with training over epochs, the loss

decreases as the number of rounds increase due to re-training and the larger amount

of sampled data. However, accuracy may not be further improved after a certain

number of rounds because the model becomes overfitted. We observe that round 59

produces the model with highest prediction accuracy.

Performance with data augmentation. Table 5.4 shows the performance of

FMLL with FL. This experiment uses the training with data augmentation described

in Subsection 5.3.3. During training, for each user selected in every round, we

randomly pick 100 samples from the augmentation dataset, which are concatenated

with the user dataset. The best performance is achieved in the 4th round while

training 20 epochs per user. FMLL with FL using data augmentation improves the

accuracy by 20% over the original FMLL with FL. These results demonstrates that

our data augmentation mechanism can effectively improve the performance of the

FGFL with FL model.

5.5.3 Model Benchmarks on Smart Phones

Inference Performance

Implementation and Settings. The prototype model used so far was

developed in TensorFlow. While TensorFlow and TensorFlow Lite training are not

supported in Android, we can download the server-trained model on the phone to

perform prediction. Since the TensorFlow model is heavier than versions developed

129

Table 5.5 Smart Phone Specs

Phone Model
Android
Version

Battery Capacity
(mAh)

CPU
(GHz)

RAM
(GB)

ZTE Blade V8 Pro 6 2213 8x2.0 3
Huawei Nexus 6P 7 2986 4x1.55; 4x2.0 3
Google Pixel 3XL 10 3082 4x2.5; 4x1.6 4

in TensorFlow Lite or DL4J, the performance and resource consumption of such a

model act as upper bounds for lighter model implementations.

We converted the server-trained model to a TensorFlow protocol buffer (pb)

file, and the model takes 67MB on the phone. We developed a benchmark app on

Android to load the model and perform predictions for a given input.

The maximum memory usage is verified using the Android Profiler in Android

Studio. The running time per prediction is calculated by averaging 100 predictions.

After leaving the app running in background for 2 hours to perform predictions in

a loop, the battery consumption is computed from the percentage of power usage

measured by Battery Historian 2. The battery statistics are reset after switching the

app to the background to make sure the app foreground usage is not included.

Results. We test the model on three phones with different specs, as shown

in Table 5.5. The results in Table 5.6 demonstrate low resource consumption and

good prediction latency. The maximum RAM usage of FMLL is less than 200MB.

The Google Pixel 3XL, a mid-range phone in 2020, can make a prediction in

46.41ms, which is fast enough for all practical purposes. On the same phone, the

battery consumption per prediction is 0.0238µAh, and 129 million predictions can be

executed with a full battery. With further optimization, such as model pruning and

compression, the resource consumption can be even lower. These results demonstrate

that the model can be deployed effectively in real life.

Training Performance

2https://github.com/google/battery-historian

130

Table 5.6 Inference Resource Consumption and Latency

Phone Model

Maximum
RAM
Usage
(MB)

Running
Time per
Prediction

(ms)

Battery
Consumption
per Prediction

(µAh)

Millions of
Predictions

for Full
Battery

ZTE Blade V8 Pro 187 207.47 1.87 1.18
Huawei Nexus 6P 192 79.68 1.11 2.69
Google Pixel 3XL 167 46.41 0.238 12.93

Implementation and Settings. Since TensorFlow and TensorFlow Lite do

not support on-device training currently, we implement FMLL in DL4J. The model

takes 50MB in a zipped bin and json format. We develop a benchmark app on

Android to load the initial model received from the server and perform one round of

training from pre-processed data. We implement the training with Android native

AsyncTask class, which will not be terminated by Android even when the app is

idle. The same tools and methods as in the previous experiment are used to measure

resource consumption.

The training time is recorded by training 200 samples for 20 epochs, which is

the optimum scenario determined in Subsection 5.5.2. Foreground training is done

while leaving the screen on, and it uses the full single core capacity. It provides a

lower bound for the training time.

As in real world, other apps or system processes may interfere with training.

We take 10 measurements for each benchmark, and report the mean and standard

deviation.

Results. Table 5.7 shows the training time and the resource consumption

on the phones. The results demonstrate that training is feasible in real-life, even

without optimizing the models. The maximum RAM usage of FMLL is less than 753

MB, and current phones are equipped with sufficient RAM to handle it. We observe

quite different training times among different phones. The foreground training time

demonstrates the full computation capacity of a single core, and the most powerful

131

Table 5.7 Training Resource Consumption and Latency

Phone Model

Maximum
RAM
Usage
(MB)

Foreground
Training

Time
Mean/SD

(min)

Background
Training Time

on Charger
Mean/SD

(min)

Background
Training Time

on Battery
Mean/SD

(min)

Battery
Consumption

per
Round
(mAh)

Number of
Training
Rounds
for Full
Battery

ZTE Blade V8 Pro 743 6.84/0.30 6.81/0.04 7.54/1.09 87.52 25
Huawei Nexus 6P 753 9.94/0.94 8.94/0.32 44.90/13.52 114.63 26
Google Pixel 3XL 592 2.65/0.34 14.34/0.10 375.49/126.57 15.16 203

phone, Pixel 3XL, has the shortest time. We do not report battery consumption on

foreground, as the screen consumes a much larger amount of energy that training.

The background training time on charger, which is the expected situation for

FL training, is reasonable in practice. On two phones, the training time is similar

with the foreground time; only one phone experiences a significantly higher training

time. The explanation for the newer phone model performing worst is related to the

newer Android version it uses (10 vs. 6 and 7 on the other two phones). According to

Google, from Android 9, to ensure that system resources are given to the apps that

need them the most, the system limits apps’ access to device resources like the CPU

or battery based on the user’s usage patterns.

We also performed experiments for background training on battery. The results

on the older phones are reasonable in terms of both training time and battery

consumption. However, the training time on the new phone is not acceptable for the

same reason discussed above. We also observe that the training time for foreground

and background on charger varies much less than background training time on battery.

This is because once the task goes to background, other apps or system processes are

more likely to interfere with the training process over a longer period of time.

To conclude, the results show that FMLL with FL is feasible in practice.

Typically, the model would not have to be trained more than once a day because

it needs enough new data to participate in a new round of training. Our results show

that all phones can perform this training in the background while charging in less

than 15 min.

132

5.6 Discussion

This section discusses issues related to real-life deployment of FMLL and expands on

the use cases presented so far.

So far, all our use cases involved software running on the phones only. However,

location prediction could also be used by Internet services accessed from the phones.

An example is represented by enhanced location-based services (LBSs) that use

predicted user locations instead of current user locations. Such an LBS could increase

the revenue associated with location-based ads by delivering only relevant ads on the

user’s predicted path. The advantage of FMLL for such a use case is that users do

not have to share location traces with enhanced LBSs, but just predictions computed

on the phones.

In FMLL, there is a trade-off between prediction accuracy and privacy.

Specifically, the accuracy is higher when FMLL does not use FL. In such a case, the

relative input data is submitted to the server, which performs training and prediction.

The output of the prediction is an abstract grid-cell, which is sent back to the phone.

The phone can translate this abstract grid-cell into a physical grid-cell. In addition to

higher accuracy, this use of FMLL reduces the computation and battery power needed

on phones when compared with FMLL using FL. Furthermore, without additional

external information, the server cannot learn the physical location of the user because

the server handles only relative data.

Nevertheless, more sophisticated location inference attacks are possible at the

server if FL is not used. If the attacker learns one physical location in a sequence

by physically observing the user, it is easy to determine the whole sequence. Then,

based on the sequence, the attacker may infer the user identity [48,49] and link it to

the visited locations.

The FMLL model can also be used for service providers that have access to

user location traces. Two examples are cellular network operators or map services

133

that provide turn-by-turn routing to destinations. While the abstract representation

of data in FMLL is not necessary for privacy protection in this use case because the

providers already know the physical locations of the users, FMLL is expected to lead

to better prediction performance than models using physical data. This is because

its abstract data representation eliminates the training bias introduced by physical

location data.

Network operators can use accurate location prediction in 5G networks at

every time scale and across all layers of the protocol stack [28]. Minute-scale

location prediction can benefit many applications, including proactive caching, load

balancing, scheduling, synchronization, topology, power control, resource allocation,

and handover [28]. At the physical layer, by tracking and predicting the change

in mobile user movements, the weights of antenna elements can be dynamically

optimized for best signal coverage while incurring minimum interference from other

users. Furthermore, our model can easily be configured for different spatial and

temporal scales, which may allow providers to use differently configured models for

different cities or different days of the week.

Premium services provided by network operators can take advantage of accurate

location predictions to free up resources at crowded target locations ahead of time to

ensure the best network performance for premium customers when they reach these

destinations. The Open Radio Access Networks (O-RAN) [193] propose to optimize

RAN resources to provide better network connectivity to smart phone users. One such

optimization can be to intelligently take advantage of accurate location prediction of

users.

5.7 Chapter Summary

This chapter propose Federated Meta-Location Learning (FMLL) on smart phones for

fine-grained location prediction, based on GPS traces collected on the phones. FMLL

134

uses FL framework with two additional components: a meta-location generation

module, a prediction model. The meta-location generation module represents the

user location data as relative points in an abstract 2D space, which enables learning

across different physical spaces. The model fuses BiLSTM and CNN, where BiLSTM

learns the speed and direction of the mobile users, and CNN learns information such

as user movement preferences. FMLL uses federated learning to protect user privacy

and reduce bandwidth consumption. Our experimental results, using a dataset with

over 600,000 users, demonstrate that FMLL outperforms baseline models in terms

of prediction accuracy. We also demonstrate that FMLL works well in conjunction

with transfer learning, which enables model reusability. Finally, benchmark results

on Android phones demonstrate FMLL’s feasibility in real life.

135

CHAPTER 6

COMPLEMENT SPARSIFICATION: LOW-OVERHEAD MODEL
PRUNING FOR FEDERATED LEARNING

In this chapter, we propose Complement Sparsification (CS), a novel pruning

mechanism through collaborative pruning performed at both the server and the

clients. CS simultaneously meets the requirements of low bidirectional communication

overhead between the server and clients, low computation overhead at the clients, and

maintaining good model accuracy, under the FL assumption that the server does not

access any raw data. At each round, CS creates a global sparse model that contains

the weights that capture the general data distribution of all clients, while the clients

create local sparse models with the weights pruned from the global model to capture

the local trends. For improved model performance, these two types of complementary

sparse models are aggregated into a dense model in each round, which is subsequently

pruned in an iterative process.

The chapter is organized as follows. Section 6.1 presents CS process, its technical

insights, and algorithm analysis. Section 6.2 shows the experimental results. The

chapter concludes in Section 6.3.

6.1 Complement Sparsification in FL

Complement Sparsification (CS) aims to reduce the bidirectional communication

overhead between the server and the clients, impose minimum computation overhead

on the system, and achieve good model performance. Figure 6.1 shows its overview.

In the initial round, the clients train from random weights and send their dense models

to the server. After aggregation, the server prunes a percentage of model weights with

low magnitude and sends the global sparse model to the clients. A pruning mask is

also sent to the clients to mark the pruned weights. A 0 in the mask means the

136

0.2 0.5 0.6

0.9 0.5 0.8

0.1 0.5 0.3

0.9 0.6 0.7

0.3 0.1 0.2

0.1 0.3 0.2

0.7 0.8 0.9

0.2 0.1 0.2

0.8 0.6 0.4

0.6 0.6 0.7

0.5 0.2 0.4

0.3 0.5 0.3

0.6 0.6 0.7

0.5 0 0

0 0.5 0

0 0 0

0 1 1

1 0 1

Average

Prune

0.6 0.7 0.7

0.5 0.3 0.2

0.1 0.9 0.8

0.6 0.6 0.7

0.6 0.8 0.9

0.4 0.6 0.2

0.7 0.7 0.8

0.4 0.3 0.5

0.6 0.8 0.1

0.6 0.6 0.7

0.5 0.7 0.5

0.7 0.5 0.4

0.6 0.6 0.7

0 0.7 0

0.7 0 0

Aggregate Prune

Train

⊙

Client 1

Server

Initial Round Consecutive Round

0.1 0.8 0.3

0.5 0.7 0.1

0.6 0.9 0.2

Train

Inverted mask

0.6 0.6 0.7

0.5 0 0

0 0.5 0

0 0 0

0 0.3 0.2

0.1 0 0.8

0 0 0

0 0.8 0.9

0.8 0 0.2

0 0 0

0 0.3 0.5

0.6 0 0.1

1 1 1

1 0 0

0 1 0

1 1 1

1 0 0

0 1 0

0 0 0

0 0.7 0.5

0.7 0 0.4

1 1 1

0 1 0
1 0 0

Pruning mask

Pruning mask

Average New pruning mask

Client 2 Client n

⊙⊙

Client 1 Client 2 Client n

+

Removed weights
Remaining weights

Figure 6.1 Overview of complement sparsification in FL.

weight is removed, while a 1 means the weight remains. In the following rounds, after

training, the clients apply the inverted mask of the global sparse model and send

their sparse models back. The server aggregates the client models with the global

sparse model from the previous round. Because the inverted mask keeps the weights

of the client models that were originally zero in the global sparse model, a full dense

model is produced by the aggregation. In the new dense model, the weights with low

magnitude are pruned away, and a new global sparse model is produced with a new

pruning mask different from the one in the previous round. The new model has a

different subset of non-zero weights because the client model weights are amplified

with a given aggregation ratio to outgrow other weights.

The accuracy of the model improves over time, as all the model weights

get eventually updated. Unlike pruning methods that require fine-tuning, the

computation overhead of CS is merely removing some weights. The bidirectional

communication overhead is also substantially reduced because both the server and

the clients transfer sparse models.

137

6.1.1 Preliminaries

In order to formulate CS, we start with the formulation of FL, which is a distributed

DL system that finds the model weights w that minimize the global empirical loss

F (w):

min
w

F (w) :=
N∑

n=1

|xn|
|x|

Fn(w) (6.1)

Fn(w) :=
1

|xn|
∑
i∈xn

fi(w) (6.2)

where Fn(w) is the local empirical loss for each client n ∈ {1, 2, .., N}, xn is the

local dataset of client n, |xn| is the dataset size of client n, |x| =
∑N

n=1 |xn| is the

dataset size of all clients, and fi(w) is the loss function of a given client for a given

data sample i in its dataset.

Each client n trains on its local data in every round.

θt+1,n = wt − ηgn (6.3)

where θ is the current local model, wt is the global model of previous round, η

is the learning rate, and gn = ∇Fn(wt) is the average gradient of wt on its local data.

This step may iterate multiple times with different batches of data, and repeat over

the whole dataset.

Without loss of generality, we assume that every client participates in aggre-

gation in every round. The server aggregates the learning outcomes from the clients

138

as shown in Equation either (6.4) or (6.5).

wt+1 = wt − η
N∑

n=1

|xn|
|x|

gn (6.4)

wt+1 =
N∑

n=1

|xn|
|x|

θt+1,n (6.5)

Equations (6.4) and (6.5) are equivalent because of (6.3). In (6.4), the server

can use a different learning rate η from the client learning rate η in (6.3).

6.1.2 CS Workflow

Initial Round. CS starts from vanilla FL. The aggregated weights wt+1 are pruned

by the server, with a pruning function (w′
t+1,mask) = Prune(wt+1). The pruning

function in CS removes the weights with low magnitude without any deliberate fine-

tuning. We choose it because of its low overhead. The pruned model w′
t+1 and the

pruning mask mask are sent to the clients for the following rounds. The pruning

mask is a binary tensor indicating where w′
t+1 has weights set to 0.

Consecutive Rounds. In a new round, each client n receives the pruned model

w′
t from the server, trains it on the local data xn , and produces a new local model

θt+1,n:

θt+1,n = w′
t − ηgn (6.6)

Next, the clients compute the inverted bit-wise ¬mask and apply the element-

wise product ⊙ between ¬mask and θt+1,n (Equation (6.7)). If we want to save

139

communication overhead and not send the mask from the server to the clients, the

clients can derive ¬mask directly from w′
t, at the expense of a trivial computation

overhead.

θ′t+1,n = θt+1,n ⊙ ¬mask (6.7)

The server receives the complement-sparsified weights θ′t+1,n from clients and

aggregates them with w′
t and an aggregation ratio η′, as shown in Equation (6.8).

wt+1 = w′
t + η′

N∑
n=1

|xn|
|x|

θ′t+1,n (6.8)

Then, the server repeats the protocol from the previous rounds, and the CS

workflow continues iteratively.

6.1.3 Algorithmic Description

Algorithm 6 shows the pseudo-code of CS. CS executes as a multi-round, iterative FL

cycle (line 4-14), involving local model updates done by the clients with batches

of data (lines 16-20), complement sparsifying the local models (line 21), server

aggregation (lines 9-12), and the global model pruning (line 13). To prune the global

model, we remove the weights with low magnitude (lines 26-29) and generate a binary

tensor masking the zero weights (lines 30-33).

140

Algorithm 6 Complement Sparsification Pseudo-code
1: procedure ServerExecute:
2: require CS aggregation ratio η′ and server model sparsity p%
3: initialize t = 0, w0 randomly, and tensor mask to zero
4: while !converged do
5: // Update Done at Clients and Returned to Server
6: for each client n do // In Parallel
7: (θn, |xn|) = n.ClientUpdate(wt,mask)
8: |x| =

∑
n |xn|

9: if t == 0 then
10: wt+1 ←

∑N
n=1

|xn|
|x| θn

11: else
12: wt+1 ← wt + η′

∑N
n=1

|xn|
|x| θn

13: (wt+1,mask)← Prune(wt+1, p)
14: t++

15: procedure ClientUpdate(w,mask)
16: // Executed at Clients
17: require step size hyperparameter η
18: xn ← local data divided into minibatches
19: for each batch b ∈ xn do
20: θn = w − η∇Fn(w; b)
21: θn ← θn ⊙ ¬mask
22: // Results Returned to Server
23: return (θn, |xn|)

24: procedure Prune(w, p)
25: // Executed at Server
26: th← pth percentile in w
27: for each element e ∈ w do
28: if e < th then
29: e← 0
30: mask ← w
31: for each element e ∈ mask do
32: if e! = 0 then
33: e← 1
34: return (w,mask)

6.1.4 Technical Insights

In FL, the clients produce models that fit the local data, while the server’s aggregation

averages out the noise in the client models and produces a global model that fits

the global data. In other words, the clients and the server are in a complementary

relationship. In every round, the clients perturb the global model to follow their local

data distribution better, and the server conciliates the client models to capture the

global data distribution. CS draws from these insights when it creates complementary

141

sparse models at the server and the clients, respectively. In this way, it can reduce the

computation and communication overhead, while achieving good model performance.

In CS, the server extracts a sparse model from the aggregated dense model. This

sparse model preserves the global data distribution. Although the server does not fine-

tune the sparse model, the clients perform implicit fine-tuning. They learn the local

data distribution and create client sparse models that reflect shifts between the local

and the global distribution. The updates are more easily reflected in the complement

set of the global sparse model weights (i.e., the weights that were previously 0).

Therefore, the clients complement-sparsify the models as in Equation (6.7), and only

send the important model updates to the server with low communication overhead.

This process also avoids overfitting the non-zero weights of the global sparse model

by the clients’ local data. The computation overhead is mostly imposed on the server,

as the clients merely apply the inverted pruning mask.

Because we want all the weights to get updated over time for an accurate model,

in every round, CS needs to produce a full dense model and generate a pruning mask

different from the previous round. This is achieved by aggregating the complementary

weights of the client models at round t + 1 with the global model weights at round

t as in Equation (6.8). More specifically, the new aggregated model weights are

calculated by adding the global sparse model weights and the weighted sum of the

client weights. The server uses a constant aggregation ratio η′ > 1 to ensure that the

pruned weights from the previous round outgrow the other weights, thus, will be less

likely to be pruned in the current round. If some client updates are always small and

are consequently removed by the server, the training can use a higher η′, but η′ shall

not be higher than 1/η to avoid gradient explosion (see Subsection 6.1.5).

142

6.1.5 Algorithm Analysis

To show that in terms of performance CS is indeed an approximation of vanilla FL,

we derive the aggregation function of vanilla FL (6.4) from CS (6.8), as follows.

wt+1 = w′
t + η′

N∑
n=1

|xn|
|x|

θ′t+1,n (6.8 revisited)

≈ w′
t + η′

N∑
n=1

|xn|
|x|

(θt+1,n − w′
t) (6.9)

= w′
t − η′η

N∑
n=1

|xn|
|x|

w′
t − θt+1,n

η
(6.10)

= w′
t − η′η

N∑
n=1

|xn|
|x|

gn (6.11)

≈ wt − η′η
N∑

n=1

|xn|
|x|

gn (6.12)

Equation (6.9) is from θ′t+1,n ≈ θt+1,n − w′
t. This is because the locally trained

client model θt+1,n differs from the previous global sparse model w′
t mostly on the

zero weights of w′
t. θt+1,n − w′

t sets the non-zero weights in w′
t to 0, similar with

θt+1,n ⊙ ¬mask in (6.7). Equation (6.10) is derived by taking −η out of the sum.

Equation (6.11) is derived by using (6.6) in (6.10). The final result in Equation (6.12)

is because the pruned weights w′
t approximate the weights before pruning wt, as they

only differ in the small magnitude weights. Comparing (6.12) with (6.4), the server

applies η′η as its learning rate. The aggregation ratio η′ is essentially the server-client

learning rate ratio used to adjust the server learning rate over the client learning

rate. In practice, because learning rate is typically chosen between 0 and 1, η′ shall

be chosen between 1 and 1/η to ensure θ′t+1,n outgrows w′
t without exploding wt+1.

143

6.2 Evaluation

The evaluation has six goals: (i) Compare the learning progress of CS and vanilla FL;

(ii) Compare the learning progress of CS and FL pruning baselines; (iii) Investigate the

effectiveness of low overhead pruning in CS; (iv) Quantify the communication savings

in CS; (v) Quantify the computation savings in CS; (vi) Investigate the trade-off

between model sparsity and model performance in CS.

6.2.1 Datasets

CS is evaluated with two benchmark datasets in LEAF [194]: Twitter and FEMNIST.

Twitter consists of 1,600,498 tweets from 660,120 users. We select the users with

at least 70 tweets, and this sub-dataset contains 46,000+ samples from 436 users.

FEMNIST consists of 80,5263 images from 3,597 users. The images are 28 by 28

pixels and represent 62 different handwritten characters (10 digits, 26 lowercase, 26

uppercase). We choose these two datasets because they represent important types

of data in DL, text and image, and also allow us to observe how CS behaves with

different scales of user pools and datasets.

In LEAF, we can choose IID or non-IID sampling scenarios. To evaluate CS

under more realistic conditions, we choose non-IID for both datasets and make sure

the underlying distribution of data for each user is consistent with the raw data. The

training dataset is constructed with 80% of data from each user, and the rest of the

data are for testing.

6.2.2 Models

We use a sentiment analysis (SA) model for the Twitter dataset, which classifies the

emotions as positive, negative, or neutral. For example, with the inferred emotions

of mobile users’ text data, a smart keyboard may automatically generate emoji to

enrich the text before sending. Our SA model first extracts a feature vector of size

768 from each tweet with pre-trained DistilBERT [175]. Then, it applies two dense

144

layers with ReLU and Softmax activation, respectively, to classify the feature vector.

The number of hidden states of the two dense layers are 32 and 3, respectively.

We use a CNN-based image classification (IC) model for the FEMNIST dataset.

This model uses three convolutional layers and two dense layers to classify an image

into one of the 62 characters. The three convolutional layers have 32, 64, and 64

channels, respectively, with 3 by 3 filters, stride of 1, and ReLU activateion. A max

pooling follows the first and the third convolutional layers. Then, the flattened tensor

is fed into two dense layers of 100 and 62 neurons, with ReLU and Softmax activation,

respectively.

The SA model has 24,707 trainable parameters, while the IC model has 164,506

trainable parameters. We choose these DL models also because we want to observe

whether CS performs differently on different model sizes.

6.2.3 Experimental Settings

Table 6.1 Training Hyper-parameters for SA and IC Models

Model Optimizer
Weight

initializer
Client
LR

Aggregation
ratio

Batch
size Epoch

SA Adam he_uniform 0.01 1.5 64 5
IC Adam he_uniform 0.01 1.5 64 5

CS is implemented with Flower [11] and Tensorflow. The experiments are

conducted on a Ubuntu Linux cluster (Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

with 512GB memory, 4 NVIDIA P100-SXM2 GPUs with 64GB total memory). We

tested CS with different hyper-parameters, and only present the convergence progress

with the hyper-parameters that led to the best results. Table 6.1 shows the training

hyper-parameters for the two models. We set the aggregation ratio (η′ in equation 6.8)

to 1.5 to avoid clients’ training outcomes being pruned away if they are too small.

We set the server model sparsity to 50%, unless otherwise specified.

145

6.2.4 Baselines

We compare CS with two recently published baselines: PQSU [79], and

PruneFL [78]. PQSU is composed of structured pruning, weight quantization, and

selective updating. PruneFL includes initial pruning at a selected client, further

pruning during FL, and adapts the model size to minimize the estimated training

time. As CS, both PQSU and PruneFL aim to reduce communication and

computation overhead in FL, and assume the server has no access to any raw data.

We run PruneFL from its GitHub repository. Since PQSU’s orginal source code

can not run continuous FL, we implement PQSU with Flower and Tensorflow, similar

to CS. To make them comparable, we use the same data, model structures, model

sparsity, and hyper-parameters.

6.2.5 Results

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Round

A
cc

ur
ac

y

vanilla FL all users
CS all users

Figure 6.2 Test set accuracy vs.
communication rounds for SA trained with
all users in every round.

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Round

vanilla FL 10 users
CS 10 users

PruneFL 10 users
PQSU 10 users

Figure 6.3 Test set accuracy vs.
communication rounds for SA trained
with 10 random users in each round.

Comparison with vanilla FL. Figure 6.2 shows the SA accuracy over

training rounds when all users participate in every training round. In terms of best

performance, the accuracy of CS is comparable with vanilla FL (73.3% vs. 76.1%).

The less than 3% difference is the cost of the significant overhead reduction in CS,

146

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

vanilla FL 10 users
CS 10 users

PruneFL 10 users
PQSU 10 users

Figure 6.4 Test set accuracy vs.
communication rounds for IC trained with
10 random users in each round.

200 250 300 350

0.66

0.68

0.7

0.72

0.74

0.76

Round

vanilla FL 10 users
CS 10 users

Figure 6.5 Zoom in of rounds 150-300
from Figure 6.4.

which will be shown later in this section. In the initial rounds, there is a gap in

accuracy due to pruning and the fact that clients did not have yet time to recover the

performance loss through local training. However, as FL proceeds, CS allows clients

to implicitly fine-tune the pruned model. The accuracy gap between CS and vanilla

FL gradually decreases, until overfitting occurs for CS. Nevertheless, the system can

use the best model for inference.

In FL on mobile and Internet of Things (IoT) devices, however, it is more

realistic that only a small portion of users participate in each training round due

to resource constraints on the devices. Figure 6.3 shows the SA accuracy over

communication rounds when 10 randomly selected users participate in each training

round. In terms of best accuracy, CS (74.3%) competes with vanilla FL (76.9%). An

advantage of CS is that its learning curve fluctuates significantly less than vanilla FL.

This is because the effect of non-IID data is alleviated by runing in CS, while it is

fully observed in vanilla FL. This phenomenon is further confirmed by the IC model.

Figure 6.4 shows the IC model accuracy over communication rounds when 10

randomly selected users participate in each round of training, which is a more realistic

case than all users participating in every round. Overall, the learning curves between

147

CS and vanilla FL are close, with best accuracy of 72.5% and 76.3%, respectively.

FEMNIST is a much larger dataset with more users than Twitter, and IC is a more

complex model, with more possible output classes than SA. Therefore, it takes IC

more rounds (up to 500) to converge. Let us note that the overfitting in Figure 6.2

does not appear in Figure 6.4. This is because a larger model is less likely to be

overfitted by smaller amounts of information (partial participation of clients every

round). Figure 6.5 shows a zoomed in portion of the graph in Figure 6.4. The results

demonstrate that vanilla FL fluctuates more abruptly than CS during the training.

This is an important advantage for CS in practice. In real-world FL over mobile or

IoT devices, the data gradually accumulate as FL proceeds, but the system can not

wait hundreds of rounds for a final best model or does not have a fully representative

test dataset to select the best model for users. In CS, it is safe to distribute the

latest model to users, while the latest model for vanilla FL may suffer from inferior

accuracy.

Comparison with baselines. Figures 6.3 and 6.4 also show the model

accuracy comparison between CS and the baselines. For SA, PruneFL and PQSU

reach best model accuracy of 71.5% and 73.4%, which are 2.8% and 0.9% lower than

CS, respectively. On the larger FEMNIST dataset, the results of IC show a clearer

advantage for CS. For IC, PruneFL and PQSU reach best model accuracy of 55.5%

and 57.9%, which are 17% and 15% lower than CS, respectively.

The original PruneFL paper [79] show comparable performance with vanilla FL

on the FEMNIST dataset. However, the experiments used only the data of 193 users

(out of 3597), the 193 users were further mixed and treated as 10 “super-users", and

all these users participated in every round of training. We believe our experiments

represent a more realistic scenario because we use all users and do not mix multiple

users into a “super-user". For PQSU, the over-optimization on clients overfits the

global model quickly. Thus, PQSU cannot benefit from additional data and training

148

rounds. To conclude, the baselines suffer from poor performance in realistic conditions

for large datasets.

Next, we present a qualitative discussion to explain that the baselines have

higher overhead. For communication overhead reduction, PruneFL uses an adaptive

process in which the model not only shrinks, but also grows to reach the final

targeted model sparsity. During the communications rounds with a grown model,

PruneFL has higher communication overhead than CS. PQSU, on the other hand, can

only save communication overhead in one direction, when clients transfer the sparse

model to server. When PQUS transfers the model from the server to the clients,

the communication overhead is higher than CS. Therefore, for the same targeted

model sparsity, both PruneFL and PQSU have higher communication overhead than

CS. For computation overhead, PruneFL imposes additional computation overhead

including importance measure, importance aggregation, and model reconfiguration,

while PQSU requires clients to further fine-tune their sparse models after the training.

Thus, they also suffer from higher computation overhead than CS, because CS only

needs to remove weights from the dense model.

Global sparse model vs. aggregated dense model. Figures 6.6 and 6.7

show the comparison between the global sparse model and the aggregated dense model

(i.e., the model before sparsification in each round) in CS for SA and IC models.

Overall, the global sparse model exhibits a smooth learning curve and outperforms

the aggregated model. This demonstrates the effectiveness of the low-overhead model

pruning in CS, which reduces communication overhead and maintains good model

performance by removing weights in low magnitude. In CS, the aggregated model not

only captures the global distribution, but also gets polluted by the noisy distribution

shift induced from the clients data. In each round, simply removing the weights with

low magnitudes from the newly aggregated model can effectively eliminate the noisy

149

distribution shift, and the global sparse model can steadily learn the global data

distribution.

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Round

A
cc

ur
ac

y

Aggregated model
Global sparse model

Figure 6.6 Global sparse model vs.
aggregated dense model accuracy for SA
with 10 random users every round.

0 50 100 150 200 250

0.6

0.65

0.7

Round

Aggregated model
Global sparse model

Figure 6.7 Global sparse model vs.
aggregated dense model accuracy for
IC with 10 random users every round.

Client model sparsity. Sparsity is the percentage of zero weights in the

model. A model with high sparsity can save both computation and communication

cost in FL. In CS, the client model applies the inverted pruning mask, but in practice

the client model sparsity is much higher than the complementary percentage of the

server model sparsity. This is because when a client trains the global sparse model,

only a portion of the zero weights in the global sparse model gets updated. Tables 6.2

and 6.3 show the client model sparsity of SA and IC averaged over the number of

rounds until they converge, while varying the server model sparsity. Let us note

that we do not include the mask in the communication overhead, due to its small

size. The server model sparsity indicates the communication cost saving from the

server to the clients, while the client model sparsity represents the saving from the

clients to the server. In general, the client model becomes sparser when the server

model is denser. The results also show that the layers with more parameters benefit

more from CS, as they are sparser than the small layers. The results demonstrate

a substantial reduction in the communication overhead. For example, in Table 6.2,

150

when the reduction in the communication from the server to the clients is 80% (i.e.,

server model sparsity), for SA, the reduction in the communication from the clients

to server is 81.2%. We observe similar results for IC (Table 6.3).

Table 6.2 Client Sparsity vs. Server Sparsity for SA
Model
layer

Server model sparsity
0.5 0.6 0.7 0.8

Client
model

sparsity

Dense (768×32) 0.933 0.885 0.841 0.812
Output (32×3) 0.887 0.851 0.833 0.810
Full model 0.932 0.884 0.841 0.812

Table 6.3 Client Sparsity vs. Server Sparsity for IC
Model
layer

Server model sparsity
0.5 0.6 0.7 0.8

Client
model

sparsity

Conv2D
(3× 3× 32) 0.569 0.528 0.587 0.788

Conv2D
(32× 3× 3× 64) 0.842 0.788 0.800 0.900

Conv2D
(64× 3× 3× 64) 0.917 0.837 0.791 0.868

Dense
(64× 16× 100) 0.920 0.863 0.853 0.909
Output (100× 62) 0.756 0.722 0.721 0.698
Full model 0.904 0.843 0.828 0.891

Table 6.4 CS Training FLOPs Saving vs. Server Sparsity for SA
Model layer/

FLOPs
Server model sparsity

0.5 0.6 0.7 0.8
FLOPs
saved
(%)

Dense/147744 31.1 36.1 41.3 47.0
Output/585 29.1 34.5 40.5 46.3
Full model/148329 31.1 36.1 41.3 47.0

Training FLOPs savings. To evaluate the reduction in the computation

overhead at the clients, we compute the training FLOPs savings based on the server

and client model sparsity. We consider the number of multiply-accumulate (MAC)

operations performed by each layer for both the forward and the backward pass during

the training. In the forward pass, the clients perform FLOPs on the non-zero weights

received from the server. In the backward pass, the MAC operations are counted for

both the hidden state and the derivative. The hidden state MAC operations are fully

counted as FLOPs. For the derivative, only the MAC operations on weights with

151

Table 6.5 CS Training FLOPs Saving vs. Server Sparsity for IC
Model layer/

FLOPs
Server model sparsity

0.5 0.6 0.7 0.8

FLOPs
saved
(%)

Conv2D/1168224 19.0 24.3 32.9 46.3
Conv2D/13381824 28.1 32.9 40.0 50.0
Conv2D/17916096 30.6 34.6 39.7 48.9
Dense/614700 30.7 35.4 41.7 50.3
Output/37386 25.1 30.6 37.2 43.1
Full model/33118230 29.1 33.6 39.6 49.3

non-zero values are counted as FLOPs. Here, the non-zero weights include both the

non-zero set of weights received from the server and the zero weights that are updated

to non-zero by the client. Let us note that the inverted pruning mask is applied after

clients training, and therefore it does not help with FLOPs savings.

Tables 6.4 and 6.5 show the CS training FLOPs savings for both SA and IC, as

a percentage of the FLOPs needed by vanilla FL. The values displayed in the second

column of the tables are the training FLOPs of a single sample in vanilla FL. We

compare them with CS training FLOPs under different server model sparsity. We

observe that CS can save up to 49.3% training FLOPs, and the savings increase as

the server model sparsity becomes higher. Similar with the communication savings,

the layers with more parameters save a higher percentage of FLOPs.

Server model sparsity vs. model accuracy. Figures 6.8 and 6.9 show how

the model accuracy varies with the server model sparsity for SA and IC. Since the

server model sparsity is a parameter that can be set to different values for different

models, it allows the system operators to achieve the desired trade-off between the

model accuracy and the reduction in communication/computation overhead. In

general, the model performs better when the server model sparsity is low. The results

show that for SA, even a sparsity of 90% can lead to good performance (an accuracy

deterioration of merely 2% compared to 50% sparsity). However, for IC, the sparsity

should be kept to at most 70% to achieve acceptable performance.

152

50 60 70 80 90
0.5

0.6

0.7

Server Model Sparsity

Figure 6.8 Accuracy as a function of
server sparsity for SA.

50 60 70 80
0.5

0.6

0.7

Server Model Sparsity

Figure 6.9 Accuracy as a function of
server sparsity for IC.

6.3 Chapter Summary

This chapter proposed Complement Sparsification (CS), a practical model pruning

for FL that can help the adoption of FL on resource-constrained devices. In CS, the

server and the clients create and exchange sparse and complementary subsets of the

dense model in order to reduce the overhead, while building a good accuracy model.

CS performs an implicit fine-tuning of the pruned model through the collaboration

between the clients and the server. The sparse models are produced with little

computational effort. We demonstrate that CS is an approximation of vanilla FL.

Experimentally, we evaluate CS with two popular benchmark datasets for both text

and image applications. CS achieves up to 93.2% communication reduction and

49.3% computation reduction with comparable performance with vanilla FL. CS also

performs better than baseline models in terms of model accuracy and overhead.

153

CHAPTER 7

FEDERATED CONTINUAL LEARNING USING CONCEPT
MATCHING

This chapter proposes an Federated Continual Learning (FCL) framework: Concept

Matching (CM). The CM framework operates by grouping client models into clusters

based on shared concepts and then constructing global models that capture different

concepts in FL over time. In each round of training, the server sends the global

concept models to the clients. To prevent catastrophic forgetting, each client selects

the concept model that best matches the concept of the current data and fine-tunes

it accordingly. To mitigate interference among client models with different concepts,

the server clusters the models that represent the same concept, aggregates the model

weights within each cluster, and updates the global concept model with the cluster

model that corresponds to the same concept. Since the server is unaware of the

concepts captured by the aggregated cluster models, we propose a novel server concept

matching algorithm that effectively updates a concept model with a matching cluster

model.

The chapter is organized as follows. Section 7.1 presents CM frame. Section 7.2

describes CM algorithms. Section 7.3 shows the evaluation results. The chapter

concludes in Section 7.4.

7.1 CM Framework

7.1.1 Motivating Application Scenarios

CM is an effective learning framework for FCL, where each client encounters a stream

of data with different concepts over time. Figure 7.1a shows an example that different

sets of image classes as different concepts over time. For the photos a client takes in

daily life, the concepts can be different types of places of interest visited (e.g., museum

154

vs. national park), or different types of meals (i.e., breakfast, lunch, dinner). The

clients may or may not be aware of the concepts of the data. In FCL, it is infeasible

for clients to store all the data (e.g., limited storage on mobile/IoT devices) or the

system cannot wait for all data to be accumulated before the training starts [195]. As

an example, a smart camera captures video footage over time, encompassing different

concepts such as day and night, or seasonal changes. However, it does not have

the capacity to store all the videos. The system has to consume the data promptly

to train one or multiple models working well for every concept. As in regular FL,

the server in FCL only receives and aggregates the model weights from the clients,

without accessing any additional information.

The number of concepts is typically a small constant estimated from the

semantics of the application. In CM framework, the system administrator can select

its value using domain knowledge. For example, a HAR model can use the locations

of the user activities as different concepts, such as home, workplace, park, etc. Image

data, on the other hand, can use the number of categories as the number of concepts.

Our evaluation demonstrates the resilience of CM, when configured with numbers of

concepts that are different from the ground truth.

7.1.2 Problem Definition

For each client n ∈ {1, 2, ..., N}, the data arrives in a streaming fashion as a

(possible infinite) sequence of learning experiences Sn = e1n, e
2
n, ..., e

t
n. Without loss of

generality, each experience etn consists a batch of samples Dt
n, where the i-th sample

is a tuple 〈xi, yi〉tn of input and target respectively. Let C = {C1, C2, ..., Ck} be the

set of K concepts hidden in entire dataset D. Each concept Ck is associated with a

probability distribution Pk(X, Y), where X denotes the input space and Y denotes the

label space. A batch of client samples follows one of the distributions Dt
n ∼ Pk(X, Y),

which may or may not be explicitly known by the client.

155

(a) FCL motivating example.

(b) CM training overview.

Figure 7.1 FCL using CM.

The goal is to learn a set of models {wk}Kk=1, and each model wk can perform well

for its corresponding concept Ck. The problem can be formulated as the Equation 7.1,

where L is the loss function, and Dn is the entire stream of data on client n.

arg min
{wk}Kk=1

K∑
k=1

N∑
n=1

L(wk,Dn) (7.1)

156

7.1.3 Learning Framework for FCL

Figure 7.1b shows the CM training in an FCL round. To initialize the learning

process (orange box), the system admin at the server side determines the number

of concepts K and designs the model. The server initializes the weights of K global

concept models randomly and sends them to the clients.

In the client operation phase (green box) of every round, each client n receives

the weights of the global concept models W t−1 = (w1, w2, ..., wK)
t−1 from the server.

To avoid catastrophic forgetting caused by training a model with the data of different

concepts, the clients perform concept matching with the local data of current round

to select the best-matching global concept model as Equation 7.2. Next, the client

fine-tunes the best-matching global concept model weights wk∗ with the local data,

produces a new local model with weights θtn, and sends it to the server.

k∗
n = ClientConceptMatch(W t−1,Dt

n) (7.2)

In the server operation phase (blue box), the server receives the client models

with weights {θtn}Nn=1. To avoid interference among client models with different

concepts, the server clusters the client models into a set of clusters of size J , denoted

as Ωt (Equation 7.3). Since the union of clients data per round may not cover all

concepts, J and K are usually different. Then, the server produces aggregated cluster

models with weights W ′t = (w′
1, w

′
2, ..., w

′
J)

t (Equation 7.4). The server does not know

the concept in a aggregated cluster model or which global concept model to update.

Therefore, it needs to match the aggregated cluster models Θt with the global concept

models W t−1, and only update the global concept models with data encountered in

this round as Equation 7.5.

157

Ωt = Cluster({θtn}Nn=1) (7.3)

W ′t = Aggregate(Ωt) (7.4)

W t = ServerConceptMatch(W ′t,W t−1) (7.5)

Algorithm 7 shows the pseudo-code of the CM framework with the local training

on clients. CM executes as a multi-round, iterative FL cycle (lines 3-9). At each round

(line 3), each client operates in parallel (line 5), including clients concept matching

(line 13), local model updates with batches of data (line 14-16), and returning the

client model weights to the server (line 18). Then, server performs clustering (line

7), aggregation (line 8), and server concept matching to update the global concept

models with the aggregated cluster models (line 9).

Algorithm 7 Concept Matching Framework Pseudo-code
1: procedure ServerExecute:
2: initialize W 0 = (w1, w2, ..., wK)

0 randomly, total number of rounds T
3: for t = 1 to T do
4: // Update Done at Clients and Returned to Server
5: for each client n do // In Parallel
6: θn = n.ClientUpdate(W t−1)
7: Ωt = Cluster({θtn}Nn=1)
8: W ′t = Aggregate(Ωt)
9: W t = ServerConceptMatch(W ′t,W t−1)

10: procedure ClientUpdate(W)
11: // Executed at Clients
12: require step size hyperparameter η, local dataset of current round D
13: k∗ = ClientConceptMatch(W,D)
14: xn ← D divided into minibatches
15: for each batch b ∈ xn do
16: θn = wk∗ − η∇L(wk∗ , b)
17: // Results Returned to Server
18: return θn

158

7.1.4 Design Discussion

The CM framework provides the flexibility to use different clustering, aggregation,

and concept matching algorithms. It can evolve as new algorithms are proposed for

different applications and models. The aggregation algorithms in FL are orthogonal

to the CM framework, and any of them can be employed to further mitigate the

challenges of non-iid data. We evaluate the CM framework with multiple clustering

algorithms, and demonstrates that CM works well with classic clustering algorithms,

such as kmean, agglomerative, and BIRCH. Some clustering algorithms, such as

DBSCAN [196] and OPTICS [197], do not require the number of clusters to be known.

As a future work, the CM framework may be extended to work in such a scenario.

In addition, dimension reduction techniques [198] can also be applied in conjunction

with clustering algorithms to mitigate the curse of dimensionality.

Regarding privacy, the CM framework is the same as vanilla FL (i.e., clients

send only their model weights to server). An adversarial server might seek to extract

information from the client model using the same techniques from vanilla FL, which

is beyond the scope of this paper. Regarding communication, the clients send a

single model trained with the local data in the same way as vanilla FL, but the

server sends multiple concept models to the clients. The number of concepts is

usually a small constant under the control of the system administrator, and the

concept models designed in CM can be smaller than the single model in vanilla

FL, because each model only learns a single concept. Nevertheless, it is essential

to balance the trade-off between model performance and communication overhead,

by taking into account the available system resources. To further improve privacy

protection and communication efficiency, CM can use existing privacy protection [199]

or communication reduction [200] techniques for FL.

The two learning scenarios [201] in FCL are class-incremental and task-

incremental. Class-incremental requires the system to learn different classes over

159

time. The changes of the classes in data causes concept drift, but the system is

not given any additional information to identify the concept drift. Task-incremental

focuses on learning different tasks over time, such as different languages in speech

recognition. This scenario can also consider the tasks to be different classes. In this

case, the difference from class-incremental is that the tasks (e.g., sedentary activities

vs. physical exercises in HAR) are known, and the concept drift is recognized by

the model. In centralized CL, the task IDs can be used to help both training and

inference. However, in FCL, the clients can utilize the task IDs, but they cannot

share them with the server due to privacy concerns.

The CM framework is designed to be compatible with both task-incremental

and class-incremental scenarios, because the clients do not need to possess any prior

understanding of concept drift in data, including task IDs. In both scenarios, the

server does not know the concepts of clients data, and it shall perform clustering and

concept matching every round. In the task-incremental scenario where the clients

know the task IDs, the clients only need to perform concept matching at the initial

rounds. The clients can maintain a mapping between the global concept model ID and

the task ID. After the client encounters all tasks, it can use the mapping to match the

data of a task with the global concept model. During inference, the clients can pick

the corresponding global concept model to perform prediction with their input data.

For class-incremental, the clients have to perform concept matching every round. At

inference, the clients can apply an ensemble model method [202] to produce an output

from all the global concept models.

7.2 Concept Matching Algorithms

The concept matching algorithms at the client and the server collaboratively and

iteratively update each global concept model with the information learnt from the

data of a matching concept, and achieve up to 100% effectiveness. The two algorithms

160

are connected through client training, server clustering and aggregation. The main

novelty of this distributed approach lies in the server concept matching algorithm,

which ensures the model updates in the correct gradient descent direction.

Algorithm 8 Server Concept Matching Pseudo-code
1: procedure ServerConceptMatch(W ′,W)
2: // Executed at Server
3: require distRecord of size K as the global record of distance between each

global concept model and the corresponding previous global concept model
4: for each aggregated cluster model w′

j ∈ W ′ do
5: candidate← null
6: candidateDist←∞
7: for each global concept model wk ∈ W do
8: tmpDist← Distance(w′

j, wk)
9: if tmpDist < distRecord[k] and tmpDist < candidateDist then

10: candidate← k
11: candidateDist← tmpDist
12: W [candidate]← w′

j

13: distRecord[candidate]← candidateDist
14: return W

Server Concept Matching. After clustering, the groups of the client models

fine-tuned with the data of different concepts are unordered, and the number of

clusters may not be the same as the total number of concepts because the clients’

data union in the current round may not cover all concepts. The server does not

know how to update the global concept models without the matching between the

aggregated cluster models and the global concept models from previous round.

To resolve this challenge, we propose a novel distance-based server concept

matching algorithm. This algorithm not only updates a global concept model with

a cluster model close in distance, but also ensures the update in the correct gradient

descent direction. Our algorithm can use different distance metrics. For a normal

size neural network such as LeNet, Manhattan or Euclidean distance can be used for

their low computational complexity. For larger neural networks, dimension reduction

techniques can be incorporated to mitigate the curse of dimensionality.

161

The pseudo-code of server concept matching algorithm is shown in Algorithm 8.

The algorithm requires a global record of the distance between each global concept

model and the corresponding previous global concept model (line 3). For each

aggregated cluster model (line 4), the algorithm tracks its best-matching candidate

(line 5) and its distance from the best-matching candidate (line 6). Each aggregated

cluster model is compared with each global concept model (line 7) by computing their

distance (line 8). If their distance is smaller than both the global distance record of

the corresponding concept k and the distance from previous matching candidate (line

9), we consider them a better match (line 10) and update the distance between the

cluster model and its matching candidate (line 11). After checking all the global

concept models, the algorithm updates the best-matching global concept model with

the aggregated cluster model (line 12), and also updates the global distance record

with the distance between the best-matching pair (line 13).

This algorithm is theoretically grounded. Intuitively, in a gradient descent

learning algorithm, as the learning curve becomes flatter over iterations, the learning

slows down. Therefore, the distance between the current model and the model of

the previous iteration becomes smaller. Theorem 1 formulates this intuition, and

Algorithm 8 utilizes this theorem. By tracking the distance record, Algorithm 8

updates each concept model with a matching cluster model only when their distance

becomes smaller than the current distance. The proof of Theorem 1 demonstrates

theoretically that Algorithm 8 updates the global concept model with a matching

cluster model in the correct gradient descent path. This allows the concept models

to learn over time without interference from other concepts.

Assumption 1. Differentiability: The loss function L(w), used to optimize a neural

network, is differentiable with respect to the model parameters w.

Assumption 2. Lipschitz continuity: The gradient of the loss function ∇L(w) is

Lipschitz continuous with a positive constant L. By Lipschitz continuity definition,

162

for any two points w1 and w2, the following inequality holds ∥∇L(w1)−∇L(w2)∥ ≤

L∥w1 − w2∥, where ∥.∥ denotes the norm.

Lemma 1. Given a loss function L(w) under assumption 1 and 2, w is updated

with gradient descent wt+1 = wt− η∇L(wt), where t is the iteration number, η is the

learning rate, and ∇L(wt) is the gradient of the loss function with respect to wt, the

following inequality holds ∥∇L(wt+1)∥ < ∥∇L(wt)∥.

Proof. To prove ∥∇L(wt+1)∥ < ∥∇L(wt)∥, we can use the assumption 2. Let L be

the Lipschitz constant. Then, we have ∥∇L(wt+1)−∇L(wt)∥ ≤ L∥wt+1 − wt∥.

Now, using the reverse triangle inequality, we can write ∥∇L(wt+1)∥ −

∥∇L(wt)∥ ≤ ∥∇L(wt+1) − ∇L(wt)∥. Substituting the previous inequality, we get

∥∇L(wt+1)∥ − ∥∇L(wt)∥ ≤ L∥wt+1 − wt∥.

Using the gradient descent update wt+1 = wt − η∇L(wt), we can write

∥∇L(wt+1)∥ − ∥∇L(wt)∥ ≤ Lη∥∇L(wt)∥. Rearranging the terms, we get

∥∇L(wt+1)∥ ≤ (1− Lη)∥∇L(wt)∥.

Since L and η are both positive, we have 1−Lη < 1. Therefore, we can conclude

that ∥∇L(wt+1)∥ < ∥∇L(wt)∥. This completes the proof.

Theorem 1. Given a loss function L(w) under assumptions 1 and 2, w is updated

with gradient descent wt+1 = wt− η∇L(wt), where t is the iteration number, η is the

learning rate, and ∇L(wt) is the gradient of the loss function with respect to wt, the

following inequality holds ∥wt+1 − wt∥ < ∥wt − wt−1∥.

Proof. From the inequality in lemma 1, ∥∇L(wt)∥ < ∥∇L(wt−1)∥, using the gradient

descent update wt+1 = wt − η∇L(wt), we write ∥wt+1 − wt∥ < ∥wt − wt−1∥. This

completes the proof.

Theorem 1 is under Assumption 1 Differentiability and Assumption 2 Lipschitz

continuity. Without requiring strong assumptions, such as convexity, Assumption 1

and 2 can be applied to most loss functions for neural networks. In the theorem,

163

gradient descent is also the prevalent algorithm to update neural networks. Therefore,

this theorem can be applied to the general optimization process of most neural

networks.

Client Concept Matching. The clients receive the global concept models

from the server every round, and each model shall learn the data distribution of each

concept. The clients need to select one of the global concept models, and fine-tune

it with the data of the current round. Since the clients may or may not be aware of

the concepts, they shall perform client concept matching to match the concept of the

current data with a global concept model.

At round t, a client n can test the global concept models of the previous round

{wt−1
k }K1 on its current local data Dt

n, and select the k∗-th concept model with the

smallest loss for further fine-tuning as Equation 7.6. Since the data do not accumulate

over a given limit in FCL, testing the models is an effective method to select the

best-matching global concept model without significant overhead.

k∗ = argmin
k

L(wt−1
k ,Dt

n) (7.6)

7.3 Evaluation

The evaluation has following goals: (i) investigate CM effectiveness in terms of model

accuracy and learning curve volatility; (ii) compare CM with state-of-the-art FCL

solutions; (iii) quantify CM algorithms effectiveness to match concepts of data to

models; (iv) investigate CM scalabilitiy in terms of number of clients and model

size; (v) understand CM resilience when configured with numbers of concepts that

are different from ground truth; (vi) quantify CM feasibility and overhead in terms

of operation time on a real IoT device; (vii) performance of different clustering

algorithms; (viii) model accuracy for class-incremental vs. task-incremental scenarios;

164

(ix) CM performance under diverse experimental settings, including datasets, concept

configuration, number of clients, and model size.

7.3.1 Experimental Setup

Datasets. We evaluate CM with two models over two “super” datasets, each

consisting of multiple datasets (i.e., one model per “super” dataset). The training,

test, and validation split of the data follows 7:2:1. The first “super” dataset consists

of six frequently used image datasets: SVHN, FaceScrub, MNIST, Fashion-MNIST,

Not-MNIST, and TrafficSigns. To simulate different concepts, the “super” dataset is

splitted into five concepts. As shown in Table 7.1, the data in the five concepts differ

across a wide spectrum of classes and number of samples. The original FaceScrub

dataset has 100 classes. In order to stress test CM, it is splitted into Concept 2 and

3 with 50 different classes each, as we aim to verify whether CM can differentiate

them successfully. Since MNIST datasets are easy to learn, we mix the three MNIST

datasets together to make it more difficult.

Table 7.1 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, and
TrafficSigns “Super” Dataset Details for Each Concept

Concept 1 2 3 4 5
Dataset SVHN FaceScrub0 FaceScrub1 MNIST, Fashion-MNIST, Not-MNIST TrafficSigns

No. Classes 10 50 50 30 43
No. Samples 88300 9898 9899 138197 45956

The second “super” dataset consists of Cifar100 and TinyImagenet. They have

100 and 200 classes respectively. The classes in Cifar100 and TinyImagenet are further

splitted into three distinct concepts each, resulting in a total of six concepts. Table 7.2

shows the number of class and samples per concept.

Table 7.2 Cifar100 and TinyImagenet “Super” Dataset Details for Each Concept
Concept 1 2 3 4 5 6
Dataset TinyImagenet0 TinyImagenet1 TinyImagenet2 Cifar100_0 Cifar100_1 Cifar100_2

No. Classes 66 67 67 33 33 34
No. Samples 33000 33500 33500 19800 19800 20400

165

Models. To compare with the baseline fairly, we use the same CNN-based

image classification model as [63] for the first “super” dataset. We believe this model

is ideal in size to learn from the dataset. This model uses two convolutional layers

and three dense layers to classify an image input (32*32*3) into one of the 183 classes.

The two convolutional layers have 20 and 50 channels, with 5 by 5 filters, stride of 1,

and ReLU activation. A 3 by 3 max pooling with stride of 2 follows them. Then, the

flattened tensor is fed into three dense layers of 800, 500 and 183 neurons respectively,

with ReLU and Softmax activation. Unless noted otherwise, the results are based on

this model with the first “super” dataset.

For the “super” dataset of Cifar100 and TinyImagenet. A simplified EfficientNet

is implementated with a multi-stage CNN that uses a balanced scaling strategy to

achieve high accuracy with fewer parameters. It starts with an initial convolutional

layer that uses a 3x3 kernel with a stride of 2 to increase the number of channels while

reducing spatial dimensions. After batch normalization and a ReLU activation, the

model includes a series of MBConv (Mobile Inverted Bottleneck Convolution) blocks,

which consist of three key phases: expansion, depthwise convolution, and projection.

The expansion phase uses a 1x1 convolution to increase the number of channels,

followed by batch normalization and ReLU activation. The depthwise convolution

phase employs a 3x3 depthwise convolution and optional squeeze-and-excitation (SE)

mechanism, where global average pooling is applied, and the output is scaled to

emphasize important features. The projection phase reduces the channel count back

to a desired size with another 1x1 convolution. The MBConv blocks also support

residual connections if the input and output have the same channel count and strides

are 1. After the MBConv blocks, the model uses global average pooling to create

a single vector representation of the input, followed by a dropout rate of 0.2 to

reduce overfitting. The classification layer at the end is a dense layer with softmax

166

activation, providing a probability distribution over the 300 classes of Cifar100 and

TinyImageNet.

The two models are compiled with the Adam optimizer and categorical cross-

entropy loss for multi-class classification, with accuracy as the primary metric. As

it is common practice in class-incremental CL, the models follow the single-head

evaluation setup [203–205], where it has one output head to classify all labels. This

setup is ideal for clients with constrained resource capacity in FL, because the clients

do not have to spend computation resources on expanding or selecting the output

head. Let us note that using the total number of labels as the model output size does

not mean we have to know the entire label space or even the label space size, because

we can use any output size not smaller than the upper bound of the number of labels.

It makes no difference in the training and testing accuracy when experimenting with

a given dataset, because the weights associated with unencountered output neurons

will not be updated in the backward pass.

Comparison solutions. We compare CM with vanilla FCL, vanilla FL,

and three state-of-the-art FCL solutions. Vanilla FCL follows the same dynamic

data scenario above. Vanilla FL represents the static FL scenario, which is less

challenging than FCL. In our case, the “super” datasets are distributed to the clients

without being split into concepts. Every round, the clients train with the entire

local dataset containing all concepts. For the three state-of-the-art FCL solutions, we

select FedWeIT, TARGET [62], and EWC [59]. FedWeIT and TARGET represent

parameter isolation and replay approaches for FCL, respectively. EWC is a commonly

employed approach in CL. We apply it on the clients’ training. For all comparisons,

we test the models with the test sets for model accuracy.

Experimental Settings. We implement CM with TensorFlow and scikit-learn.

The experiments are conducted on a Ubuntu Linux cluster (Intel(R) Xeon(R) CPU

E5-2680 v4 @ 2.40GHz with 512GB memory, 2 NVIDIA P100-SXM2 GPUs with

167

16GB total memory). Non-overlapping chunks from the five concept datasets are

further distributed randomly to the clients. At every round, the local data across

clients are non-IID. Each client encounters one of the five local concept datasets

randomly, and uses a cyclic sliding window of 320 samples in the encountered concept

dataset. Unless otherwise specified, CM is tested with 20 clients (all clients participate

in each training round), kmean clustering algorithm, FedAvg aggregation algorithm,

and Manhattan distance for the server CM algorithm. For the local training, we use

the Adam optimizer with learning rate of 0.001, weight initializer of HeUniform, and

batch size of 64. Each client maintains and uses a single Adam optimizer throughout

the training for all concepts. We train 15 epochs every round, and use early stopping

with the patience value as 3. We test CM with different hyper-parameters, and only

present the results with the hyper-parameters that lead to the best results. The

system runs 100 rounds of training for each experiment.

To quantify the overall concept matching effectiveness, we evaluate under the

class-incremental scenario, and assume the clients are not aware of the concepts and

perform the client concept matching every round. In task-incremental scenarios, the

difference is that the clients do not have to perform concept matching every round,

because they know the task IDs and the concept drift due to the transition of different

tasks. For the same experimental setting, task-incremental training would achieve the

same model performance (Figure 7.4) with lower computation overhead at the clients.

Parameters for Clustering Algorithms. Kmean, agglomerative, and

BIRCH require the number of clusters as a parameter. Unless otherwise specified,

we set this parameter to be 5. DBSCAN and OPTICS require some threshold values

tuned for the data as parameters instead of the number of clusters. We adhere to

the convention when selecting their parameters. For DBSCAN, there are two main

parameters: min_samples and ϵ. min_samples is the fewest number of points

required to form a cluster. We adjust it to be 3, which is a lower value than the

168

average number of clients per concept (20/5). ϵ is the maximum distance between

two points while the two points can still belong to the same cluster. To choose ϵ

, we firstly calculate the average distance between each point (the model weights

of a client) and its 3 (min_samples) nearest neighbors, and then we sort distance

values in the ascending order and plot them. We choose ϵ to be 20 as the point of

maximum curvature in the plot. Similarly, we set min_samples parameter to be 3

for OPTICS. The other parameters for these clustering algorithms are the default

values in scikit-learn.

Experiment Statistical Significance. The experiment statistical significance

is reported as ±1 Standard Deviation (SD) of the test set accuracy and forgetting rate

in the comparison results with the state-of-the-art solutions. The factors of variability

may include train/test split, initialization, and the stochastic nature of DL model

optimization. We assume normally distributed errors, and run each experiment five

times for SD.

IoT Device Setup. CM is evaluated on a Qualcomm QCS605 IoT device. This

device is equipped with Snapdragon™ QCS605 64-bit ARM v8-compliant octa-core

CPU up to 2.5 GHz, Adreno 615 GPU, 8G RAM, and 16 GB eMMC 5.1 onboard

storage. We choose it because its specifications are ideal for AI cameras and

image-based applications. The device is connected to Internet through WiFi with

a bandwidth of 300 Mbps. We re-use CM simulation Python code on the device.

Since the device does not support native Linux and its the operating system is rooted

Android 8.1, we need to run a Linux distribution on the Linux kernel of Android for

easy package management and better support. We achieve this goal with two open

source projects: termux-app 1 and ubuntu-in-termux 2. Termux-app is an Android

application for terminal application and Linux environment. It provides some basic

Linux commands and packages, but is not on par with a mature Linux distribution,

1https://github.com/termux/termux-app
2https://github.com/MFDGaming/ubuntu-in-termux

169

such as Ubuntu. Ubuntu-in-termux bridges the gap. Through it, we are able to install

well-maintained Python environments and libraries to execute training on-device.

The Python training process can be observed directly under adb shell, which does

not include the overhead of Termux-app or Ubuntu-in-termux.

7.3.2 Results

Effectiveness of CM. Figure 7.2 and 7.3 demonstrate that CM effectively achieves

better model accuracy than vanilla FCL and vanilla FL. Compared with vanilla FCL,

the concept model accuracy improvement is up to 26.4%. The superior performance

of CM is more apparent for difficult concepts (RBG images in Concepts 2 and 3

of Figure 7.2 and all Concepts of Figure 7.3) than for easy concepts (BW images in

Concept 4 of Figure 7.2). Specifically, the most significant difference is observed in the

concept 3 of Figure 7.3, despite the observed fluctuations caused by the challenging

nature of the dataset. However, CM exhibits a smoother learning progress than vanilla

FCL in Figure 7.2 when the concepts are more distinct. These results indicate CM

can effectively mitigate catastrophic forgetting and the potential interference among

clients. Vanilla FL exhibits the same smooth learning progress due to the unchanging

concepts. Surprisingly, CM also outperforms vanilla FL by up to 13.5%. This is

because CM employ different concept models for each concept, which is better than a

single global model even under the static data distribution. Unless otherwise specified,

the rest of the results in this section are based on the “super” dataset combining SVHN,

FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, and TrafficSigns.

Model accuracy comparison with FCL state-of-the-art solutions.

Table 7.3 shows the model accuracy comparison. CM outperforms the FCL

state-of-the art solutions and achieves 90.3(±0.07)% accuracy (weighted average over

the number of samples per concept). While EWC and TARGET performs reasonably

well (86.7% and 87.0% respectively), FedWeIT does not perform well under more

170

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 1

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Round

Concept 2

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 3

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Round

Concept 4

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 5

CM
Vanilla FL

Vanilla FCL

Figure 7.2 CM Effectiveness with SVHN, FaceScrub, MNIST, Fashion-MNIST,
Not-MNIST, and TrafficSigns: test set accuracy over training rounds.

171

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 1

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

Concept 2

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 3

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.1

0.2

Round

Concept 4

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.1

0.2

Round

A
cc

ur
ac

y

Concept 5

CM
Vanilla FL

Vanilla FCL

0 20 40 60 80 100
0

0.1

Round

Concept 6

CM
Vanilla FL

Vanilla FCL

Figure 7.3 CM effectiveness with Cifar100 and TinyImagenet: test set accuracy
over training rounds.

172

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

Round

A
cc

ur
ac

y

Concept 1

class-incremental
task-incremental

0 20 40 60 80 100
0.2

0.4

0.6

0.8

Round

Concept 2

class-incremental
task-incremental

0 20 40 60 80 100
0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 3

class-incremental
task-incremental

0 20 40 60 80 100
0.8

0.85

0.9

Round

Concept 4

class-incremental
task-incremental

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Round

A
cc

ur
ac

y

Concept 5

class-incremental
task-incremental

Figure 7.4 Class-incremental vs. task-incremental: SVHN, FaceScrub, MNIST,
Fashion-MNIST, Not-MNIST, TrafficSigns test set accuracy over communication
rounds.

173

realistic assumptions and in a larger scale experiment than its original evaluation

(i.e., 5 clients per round, 5 classes to train per client, and non-overlapping classes

over clients). Since FedWeIT applies a completely different design when learning

information across tasks or concepts, its inferior performance may be partially due to

the sparse parameters employed, which fail to separate different concepts and fully

capture the complex information (i.e. up to 50 classes) in the concepts.

Forgetting rate comparison with FCL state-of-the-art solutions.

Throughout FCL training, the model accuracy experiences declines in certain

rounds, and the extent of these accuracy drops can be viewed as an indicator of

forgetting. The forgetting rate is determined by summing the accuracy drops across

these performance-deteriorating rounds and subsequently averaging the values over

the entire span of 100 training rounds. Table 7.4 shows the results of the forgetting

rate comparison. CM has only 0.17(±0.01)% forgetting rate. Compared with CM,

the other baselines exhibit higher forgetting rates ranging from 9.3 to 18.8 times.

These results illustrate that CM can significantly mitigate the effect of catastrophic

forgetting. The mean and SD of model accuracy and forgetting rate, shown in

Table 7.3 and 7.4, also demonstrate statistical significance of the superior

performance of CM, because the improvement is at least 47 times of the SD.

Table 7.3 Model Accuracy (%) Comparison (Mean and SD) with SOTA

Concept 1 2 3 4 5 avg
FedWeIT 61.0(±0.31) 62.0(±0.35) 66.8(±0.31) 72.6(±0.24) 70.7(±0.26) 68.3(±0.27)

EWC 82.3(±0.23) 74.5(±0.21) 72.3(±0.2) 92.1(±0.03) 85.9(±0.09) 86.7(±0.11)
TARGET 82.2(±0.20) 72.4(±0.19) 73.0(±0.23) 92.0(±0.02) 87.3(±0.06) 87.0(±0.09)

CM 85.4(±0.15) 85.2(±0.16) 86.5(±0.20) 93.3(±0.02) 92.4(±0.04) 90.3(±0.07)

Table 7.4 Forgetting Rate (%) Comparison (Mean and SD) with SOTA

Concept 1 2 3 4 5 avg
FedWeIT 4.76(±0.02) 4.16(±0.02) 5.89(±0.02) 1.71(±0.01) 3.68(±0.01) 3.15(±0.01)

EWC 3.36(±0.02) 3.17(±0.02) 4.30(±0.01) 1.04(±0.01) 2.65(±0.01) 2.17(±0.01)
TARGET 2.47(±0.01) 2.84(±0.01) 2.44(±0.02) 0.70(±0.01) 2.11(±0.01) 1.58(±0.01)

CM 0.16(±0.01) 0.29(±0.01) 0.32(±0.01) 0.09(±0.004) 0.34(±0.01) 0.17(±0.01)

174

CM algorithms effectiveness to match concepts of data to models.

The matching effectiveness is defined as the percentage of correct concept matching

over the entire training process (i.e., the collaborative client/server concept matching

from the data to the models). Table 7.5 shows the concept matching effectiveness

with a variety of clustering algorithms and distance metrics. To quantify the concept

matching effectiveness separately with minimum influence from the clustering errors,

we use the cluster ID that has the most number of clients with the given data concept,

instead of the actual cluster ID for the mapping of a given client data concept. The

results demonstrate that CM achieves up to 100% concept matching effectiveness.

Table 7.5 demonstrate that CM provides the flexibility to use different clustering

algorithms and distance metrics, as it performs well with all of them. As neural

networks grow in size and complexity, the curse of dimensionality may manifest itself

and requires advanced clustering algorithms and distance metrics.

Concept matching scalability. Table 7.6 shows CM performs well as the

number of clients increases. With 80 clients, both the clustering and the CM

algorithms perform perfectly. This is because the clustering algorithms generally

perform better with larger number of samples. CM enjoys this benefit and achieves

better model performance (up to 95.4%) with a larger number of clients. We further

test CM with 20% increase or decrease in the size of CNN layer channels and dense

layer neurons. A larger model can further stress-test CM, and a smaller model can

reduce the communication overhead for CM. To avoid overfitting the model under

the given dataset, we could not further downsize the model or split the data into

more clients. Table 7.7 shows the performance metrics of CM, and there is a small

improvement (90.4%) in model accuracy when using a larger model. Tables 7.6

and 7.7 show that both the clustering and the concept matching achieve near flawless

performance.

175

Table 7.5 Matching Effectiveness (%) with 100 Rounds

Kmean Agglomerative BIRCH DBSCAN OPTICS
Manhattan 100 100 100 97.4 93.4
Euclidean 100 99.8 100 90.4 94.9
Chebyshev 98.6 99.9 100 97.7 93.6

Table 7.6 Performance vs. # of Clients

Matching
effectiveness %

Model
accuracy %

20 100 90.3
40 99.7 95.3
80 100 95.4

Resilience to number of concepts configured differently from ground

truth. CM requires an estimated number of concepts configured in the initialization

phrase. To understand its resiliency in case the system administrator fails to estimate

correctly, we vary the number of concepts from 3 to 7, with 5 being the ground truth.

As shown in Figure 7.5, when the configured number of concepts is higher (6 and

7) than the ground truth, 5 concept models (out of 6 or 7) learn the corresponding

concepts smoothly. The extra concept models do not effect the smooth learning

progress, and the average model accuracy achieves 90.5% and 90.0% respectively.

When the number of concepts is smaller (4 and 3) than the ground truth, the system

treats similar concepts (e.g., two FaceScrub concepts) as one. Although the model

accuracy on the affected concepts (2, 3, and 5) exhibit minor fluctuations, the smooth

learning progress for the other concepts (1 and 4) is not affected. Nevertheless, the

average model accuracy achieves 89.5% and 88.9% respectively, and beats the state-of-

the art solutions (87.0%). These results demonstrate CM has good resilience in terms

of the estimated number of concepts configured. Moreover, the results suggest it is

better if system administrators over-estimate the number of concepts, as performance

remains strong in such instances.

Client operation overhead. Designed for mobile or IoT devices, CM is

evaluated on a real IoT device in terms of the client end-to-end operation time.

176

Table 7.7 Performance vs. Model Size

Matching
effectiveness %

Model
accuracy %

-20% 100 90.0
original 100 90.3
+20% 100 90.4

Table 7.8 Client Operation Time (Second) on Real IoT Device for SVHN,
FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns “Super” Dataset

Receiving model Concept Matching Training Sending model Total
Vanilla FL 0.67 N/A 85.27 0.67 86.61

CM 3.35 8.52 85.27 0.67 97.81

Compared with vanilla FL, the client operation overhead comes from receiving

multiple concept models from the server and the client concept matching. Table 7.8

shows the breakdown of client operation time on the Qualcomm QCS605 IoT device

in one round. We assume the worst-case scenario that the clients do not know the

concepts, and perform concept matching every round. Compared with a multi-epoch

training process over the entire experienced data, the concept matching can be

achieved by testing only a portion of the data. The communication time is calculated

as sending or receiving the model(s) of size 25.2MB over 300 Mbps WiFi network.

The total client end-to-end operation time in one round is 97.81 seconds, which is

feasible for a real-world deployment. Overall, the total CM operation time has a

low overhead (11%) over vanilla FL operations on the IoT device. We believe the

improvement in performance achieved by CM is worth this overhead cost.

Performance of clustering algorithms. Table 7.9 shows the results for 5

clustering algorithms whose parameters are detailed in Subsection 7.3.1. A perfect

clustering can group all client models correctly with the same concept. Adjusted

Rand Index (ARI) is a commonly used metric for clustering algorithms: 1.0 stands

for perfect matching. Table 7.9 also shows the minimum ARI, as the worst clustering

performance over 100 rounds. The results show that CM with BIRCH performs best,

as it achieves up to 96 rounds of perfect clustering out of 100 and 0.994 average ARI.

177

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 1

7 concepts
6 concepts
5 concepts
4 concepts
3 concepts

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Round

Concept 2

7 concepts
6 concepts
5 concepts
4 concepts
3 concepts

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 3

7 concepts
6 concepts
5 concepts
4 concepts
3 concepts

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Round

Concept 4

7 concepts
6 concepts
5 concepts
4 concepts
3 concepts

0 20 40 60 80 100

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 5

7 concepts
6 concepts
5 concepts
4 concepts
3 concepts

Figure 7.5 Model accuracy over communication rounds with different number of
concepts configured.

178

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

Round

A
cc

ur
ac

y

Concept 1

80 clients
40 clients
20 clients

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Round

Concept 2

80 clients
40 clients
20 clients

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Round

A
cc

ur
ac

y

Concept 3

80 clients
40 clients
20 clients

0 20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

0.96

Round

Concept 4

80 clients
40 clients
20 clients

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

Round

A
cc

ur
ac

y

Concept 5

80 clients
40 clients
20 clients

Figure 7.6 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
test set accuracy vs. communication rounds as number of clients increasing.

179

0 20 40 60 80 100
0.7

0.75

0.8

0.85

Round

A
cc

ur
ac

y

Concept 1

+20%
original
-20%

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

Round

Concept 2

+20%
original
-20%

0 20 40 60 80 100
0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 3

+20%
original
-20%

0 20 40 60 80 100

0.86

0.88

0.9

0.92

Round

Concept 4

+20%
original
-20%

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Round

A
cc

ur
ac

y

Concept 5

+20%
original
-20%

Figure 7.7 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
test set accuracy vs. communication rounds for training 20 clients with different
model size.

180

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

Round

A
cc

ur
ac

y

Concept 1

80 clients, +20%
80 clients, -20%

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Round

Concept 2

80 clients, +20%
80 clients, -20%

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Round

A
cc

ur
ac

y

Concept 3

80 clients, +20%
80 clients, -20%

0 20 40 60 80 100

0.86

0.88

0.9

0.92

0.94

0.96

Round

Concept 4

80 clients, +20%
80 clients, -20%

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

Round

A
cc

ur
ac

y

Concept 5

80 clients, +20%
80 clients, -20%

Figure 7.8 SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns
test set accuracy vs. communication rounds for training 80 clients with different
model size.

181

Table 7.9 Clustering Performance with 100 Rounds Training for SVHN, FaceScrub,
MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns “Super” Dataset

Kmean Agglomerative BIRCH DBSCAN OPTICS
Rounds with perfect clustering 91 93 96 66 50

ARI (average) 0.988 0.989 0.994 0.972 0.888
ARI (minimum) 0.713 0.704 0.771 0.700 0.478

Model accuracy % (average) 90.3 90.1 90.4 88.5 88.4

Furthermore, all algorithms perform reasonably well and achieve over 88.4% average

model accuracy.

Model accuracy using CM under SVHN, FaceScrub, MNIST,

Fashion-MNIST, Not-MNIST, TrafficSigns “super” dataset with different

number of clients and model size. Figure 7.6 and 7.7 show the learning curves

using CM, under SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST,

TrafficSigns “super” dataset with different number of clients and model size. The

results show that CM can always learn smoothly under, and achieves up to 95.4%

model accuracy (weighted average over the number of samples per concept). To

stress test CM, we further investigate the model performance when training 80

clients with the network size increased and decreased 20%. The learning curves in

Figure 7.8 demonstrate CM’s smooth learning progress, as it achieves 94.3% and

94.9% average accuracy, respectively. These results illustrates CM scales well in

terms of the number of clients and the moodel size.

Model accuracy using CM under TinyImagenet and Cifar100 “super”

dataset with different number of clients and model size. Figure 7.9 and 7.10

show the learning curves using CM, under TinyImagenet and Cifar100 “super” dataset

with different number of clients and model size. The results show that CM can learn

each concepts well as number of clients or model size increasing. Because this “super”

dataset is more difficult to learn, we observe fluctuations in the learning process.

CM vs. vanilla FL with each original dataset as a concept under

SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns

182

0 20 40 60 80 100

0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 1

20 clients
40 clients
80 clients

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

Concept 2

20 clients
40 clients
80 clients

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 3

20 clients
40 clients
80 clients

0 20 40 60 80 100
0

0.1

0.2

Round

Concept 4

20 clients
40 clients
80 clients

0 20 40 60 80 100
0

0.1

0.2

Round

A
cc

ur
ac

y

Concept 5

20 clients
40 clients
80 clients

0 20 40 60 80 100
0

0.1

0.2

Round

Concept 6

20 clients
40 clients
80 clients

Figure 7.9 TinyImagenet and Cifar100 test set accuracy vs. communication rounds
as number of clients increases.

183

0 20 40 60 80 100
0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 1

+40%
+20%

original

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

Concept 2

+40%
+20%

original

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Round

A
cc

ur
ac

y

Concept 3

+40%
+20%

original

0 20 40 60 80 100
0

0.1

0.2

Round

Concept 4

+40%
+20%

original

0 20 40 60 80 100
0

0.1

0.2

Round

A
cc

ur
ac

y

Concept 5

+40%
+20%

original

0 20 40 60 80 100
0

0.1

0.2

Round

Concept 6

+40%
+20%

original

Figure 7.10 TinyImagenet and Cifar100 test set accuracy vs. communication
rounds for training 20 clients with increasing model size.

184

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 1

CM
Vanilla FL

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Round

Concept 2

CM
Vanilla FL

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Round

A
cc

ur
ac

y

Concept 3

CM
Vanilla FL

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Round

Concept 4

CM
Vanilla FL

0 20 40 60 80 100

0.4

0.6

0.8

Round

A
cc

ur
ac

y

Concept 5

CM
Vanilla FL

0 20 40 60 80 100

0.4

0.6

0.8

Round

Concept 6

CM
Vanilla FL

Figure 7.11 CM vs. vanilla FL with each original dataset as a concept: SVHN,
FaceScrub, MNIST, Fashion-MNIST, Not-MNIST, TrafficSigns test set accuracy
over communication rounds.

185

“super” dataset. We further diversify the experimental settings by treating

each original dataset of SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-MNIST,

TrafficSigns as a concept without mixing or splitting the datasets. To evaluate CM

comprehensively, we compare the test set accuracy between vanilla FL and CM.

Similar to the original experimental settings, Figure 7.11 illustrates the smooth

learning progress for CM over vanilla FL for all concepts. Compared with vanilla

FL, the weighted average accuracy over the number of samples for all the concepts is

improved from 85.5% to 88.0% as well.

7.4 Chapter Summary

Concept Matching (CM) is a novel FCL framework to alleviate catastrophic forgetting

and interference among clients by training different models for different concepts

concealed in the data. To avoid interference among clients, CM uses a clustering

algorithm to group the client models with the same concept. To mitigate catas-

trophic forgetting, the server and the clients run concept matching algorithms that

collaboratively train and update each concept model with the matching data of the

same concept. Also, the server concept matching algorithm ensures the updating

of the concept model in the correct gradient descent direction. CM achieves higher

model accuracy than state-of-the-art systems, and works regardless of whether the

clients are aware of the concepts or not. Our extensive evaluation also demonstrates

that CM performs well with a variety of clustering algorithms and distance metrics,

and scales well with the number of clients and the model size.

186

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation firstly presented our experience with designing, building, and

evaluating FLSys, an end-to-end federated learning system. We believe FLSys

can open the path toward creating an FL ecosystem of models and apps for

privacy-preserving deep learning on mobile sensing data. In the future, FLSys

can be offered as an OS service. Our long-term goals are further extending it

with robust aggregators, robust predictions, certified guarantees, advanced privacy

and security solutions. Building upon FLSys, zoneFL leverages a mobile-edge-cloud

architecture, adapting to user behaviors in different geographical zones to enhance

scalability and model utility. Both FLSys and zoneFL have been evaluated through

real-world deployments, demonstrating superior model performance, scalability, and

fault-tolerance. As future work for ZoneFL, we will investigate how ZGD and ZMS

work together to further improve model performance, and whether similarity of data

distribution among zones should be considered when defining the zone neighborhood

relationship.

Secondly, as a FL application with mobile sensing data, we proposed FMLL, a

novel system for fine-grained location prediction that protects user privacy. The main

novelties of FMLL are its meta-location concept to represent physical data and its

prediction model. Our experiments demonstrated good prediction accuracy, model

reusability, and system feasibility on smart phones. While FMLL is designed for

predictions on smart phones, its model can also be used by network/service providers

in their data centers. In the future, FMLL could be incorporated directly into smart

phone OSs to improve system and app performance using location prediction. In

addition, its GPS-based location prediction can be fused with location prediction done

187

by wireless network providers based on 5G signal fingerprinting techniques to further

improve the end-user’s experience in real-world applications such as augmented

reality, mobile gaming, and video streaming.

Thirdly, we introduce Complement Sparsification (CS) as an FL pruning

mechanism that minimizes bidirectional communication overhead between the server

and clients, reduces computation overhead at the clients, and maintains good model

accuracy. CS employs a complementary and collaborative pruning approach at

both the server and clients. We evaluate CS experimentally in two applications:

image classification and sentiment analysis. We demonstrate both analytically and

experimentally that CS is an approximation of vanilla FL, resulting in models that

perform well. Additionally, CS outperforms baseline pruning mechanisms for FL.

Since CS is a generic solution in FL, it can be further enhanced with advanced

aggregators, personalized FL mechanism, etc.

Fourthly, Federated Continual Learning (FCL) is explored as a more complex

FL scenario where data accumulates over time and undergoes distributional changes.

We propose Concept Matching (CM) for efficient FCL. The CM framework groups

client models into clusters and uses novel CM algorithms to build different global

models for various concepts in FL over time. In addition, a theoretically grounded

server CM algorithm is proposed to effectively update a global concept model with a

matching cluster model. Evaluations across multiple datasets demonstrate that CM

outperforms state-of-the-art systems, works well with different clustering algorithms,

and scales effectively with the number of clients and model size. In the future, we will

design and implement a real-world FCL system using CM to showcase its efficiency.

FL offers a path to leveraging pervasive computing for training DL models in

a privacy-preserving manner. Currently, the size of the models that can be handled

is limited by the least powerful devices in the system. However, as larger models,

such as Large Language Model, demonstrate superior performance in AI tasks, there

188

is an increasing demand for efficient collaborative training mechanisms for such

large models through pervasive computing. This demand aligns with the principles

of resource efficiency and sustainability, aiming to fully utilize idle computational

resources at our disposal. Looking ahead, FL or distributed learning in general, will

be explored to train larger models that exceed the resource capacity of individual

devices. These efficient training mechanisms and the resulting models can be further

utilized in autonomous systems in the physical world, enhancing their ability to serve

us more effectively.

189

REFERENCES

[1] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konevcnỳ, S. Mazzocchi, H. B. McMahan et al., “Towards
federated learning at scale: System design,” arXiv preprint arXiv:1902.01046,
2019.

[2] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” Proceedings of Machine Learning
and Systems, vol. 2, pp. 429–450, 2020.

[3] D. Sarkar, A. Narang, and S. Rai, “Fed-focal loss for imbalanced data classification
in federated learning,” arXiv preprint arXiv:2011.06283, 2020.

[4] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with
non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[5] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balancing federated
learning with global imbalanced data in mobile systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 01, pp. 59–71, Jan 2021.

[6] D. C. Verma, G. White, S. Julier, S. Pasteris, S. Chakraborty, and G. Cirincione,
“Approaches to address the data skew problem in federated learning,” in
Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, T. Pham, Ed., vol. 11006, International Society for Optics and
Photonics. SPIE, 2019, pp. 542 – 557.

[7] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu,
and Q. Yang, “Fedvision: An online visual object detection platform powered
by federated learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 08, 2020, pp. 13 172–13 179.

[8] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh,
H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar,
Q. Yang, M. Annavaram, and S. Avestimehr, “Fedml: A research library and
benchmark for federated machine learning,” arXiv preprint arXiv:2007.13518,
2020.

[9] FATE, “An Industrial Grade Federated Learning Framework,” https://fate.fedai.org/,
Accessed on 06/28/2024.

[10] OpenMined, “PySyft,” https://blog.openmined.org/tag/pysyft/, Accessed on
06/28/2024.

[11] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
K. H. Li, T. Parcollet, P. P. B. de Gusmão et al., “Flower: A friendly federated
learning research framework,” arXiv preprint arXiv:2007.14390, 2020.

190

https://fate.fedai.org/
https://blog.openmined.org/tag/pysyft/

[12] V. Mugunthan, A. Peraire-Bueno, and L. Kagal, “Privacyfl: A simulator for privacy-
preserving and secure federated learning,” in Proceedings of the 29th ACM
International Conference on Information and Knowledge Management, 2020,
pp. 3085–3092.

[13] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and
F. Beaufays, “Applied federated learning: Improving google keyboard query
suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[14] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions,” IEEE Signal Processing Magazine, vol. 37,
no. 3, pp. 50–60, 2020.

[15] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and
open problems in federated learning,” Foundations and Trends® in Machine
Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[16] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept
and applications,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 2, pp. 1–19, 2019.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,”
in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–1282.

[18] G. D. Jacobsen and K. H. Jacobsen, “Statewide covid-19 stay-at-home orders and
population mobility in the united states,” World Medical and Health Policy,
vol. 12, no. 4, pp. 347–356, 2020.

[19] K. R. Choi, M. V. Heilemann, A. Fauer, and M. Mead, “A second pandemic:
mental health spillover from the novel coronavirus (covid-19),” Journal of the
American Psychiatric Nurses Association, vol. 26, no. 4, pp. 340–343, 2020.

[20] A. Ignatov, “Real-time human activity recognition from accelerometer data using
convolutional neural networks,” Applied Soft Computing, vol. 62, pp. 915–922,
2018.

[21] A. Murad and J.-Y. Pyun, “Deep recurrent neural networks for human activity
recognition,” Sensors, vol. 17, no. 11, p. 2556, 2017.

[22] F. Hernández, L. F. Suárez, J. Villamizar, and M. Altuve, “Human activity recognition
on smartphones using a bidirectional lstm network,” in 2019 XXII Symposium
on Image, Signal Processing and Artificial Vision (STSIVA). IEEE, 2019,
pp. 1–5.

[23] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone
accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp.
74–82, 2011.

191

[24] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain
dataset for human activity recognition using smartphones.” in Esann, vol. 3,
2013, p. 3.

[25] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán,
and D. Roggen, “The opportunity challenge: A benchmark database for on-
body sensor-based activity recognition,” Pattern Recognition Letters, vol. 34,
no. 15, pp. 2033–2042, 2013.

[26] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “Lstm networks for mobile human
activity recognition,” in 2016 International conference on artificial intelligence:
technologies and applications. Atlantis Press, 2016, pp. 50–53.

[27] H. Zhang and L. Dai, “Mobility prediction: A survey on state-of-the-art schemes and
future applications,” IEEE Access, vol. 7, pp. 802–822, 2019.

[28] R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and H. Wymeersch,
“Location-aware communications for 5g networks: How location information
can improve scalability, latency, and robustness of 5g,” IEEE Signal Processing
Magazine, vol. 31, no. 6, pp. 102–112, Nov 2014.

[29] A. De Brébisson, E. Simon, A. Auvolat, P. Vincent, and Y. Bengio, “Artificial neural
networks applied to taxi destination prediction,” in Proceedings of the 2015th
International Conference on ECML PKDD Discovery Challenge - Volume
1526, ser. ECMLPKDDDC’15, 2015, pp. 40–51.

[30] J. Lv, Q. Sun, Q. Li, and L. Moreira-Matias, “Multi-scale and multi-scope convo-
lutional neural networks for destination prediction of trajectories,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–12, 2019.

[31] T. Hoch, “An ensemble learning approach for the kaggle taxi travel time prediction
challenge.” in Proceedings of the 2015th International Conference on ECML
PKDD Discovery Challenge, 2015.

[32] H. Wu, Z. Chen, W. Sun, B. Zheng, and W. Wang, “Modeling trajectories with
recurrent neural networks,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 3083–3090.

[33] M. Dash, K. K. Koo, J. B. Gomes, S. P. Krishnaswamy, D. Rugeles, and A. Shi-
Nash, “Next place prediction by understanding mobility patterns,” in 2015
IEEE International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), March 2015, pp. 469–474.

[34] B. T. Nguyen, N. V. Nguyen, N. T. Nguyen, and M. H. T. Tran, “A potential approach
for mobility prediction using GPS data,” in 2017 Seventh International
Conference on Information Science and Technology (ICIST), April 2017, pp.
45–50.

192

[35] Q. Wu, X. Chen, Z. Zhou, and L. Chen, “Mobile social data learning for user-centric
location prediction with application in mobile edge service migration,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 7737–7747, 2019.

[36] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A recurrent
model with spatial and temporal contexts,” in Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016,
p. 194–200.

[37] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D. Jin, “Deepmove: Predicting
human mobility with attentional recurrent networks,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 1459–1468.

[38] J. Feng, C. Rong, F. Sun, D. Guo, and Y. Li, “Pmf: A privacy-preserving human
mobility prediction framework via federated learning,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 1,
Mar. 2020.

[39] P. Wang, H. Wang, H. Zhang, F. Lu, and S. Wu, “A hybrid markov and lstm model
for indoor location prediction,” IEEE Access, vol. 7, pp. 185 928–185 940, 2019.

[40] C. H. Liu, Y. Wang, C. Piao, Z. Dai, Y. Yuan, G. Wang, and D. Wu, “Time-
aware location prediction by convolutional area-of-interest modeling and
memory-augmented attentive lstm,” IEEE Transactions on Knowledge and
Data Engineering, pp. 1–1, 2020.

[41] D. Kong and F. Wu, “Hst-lstm: A hierarchical spatial-temporal long-short term
memory network for location prediction,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, 7 2018, pp.
2341–2347.

[42] R. Wu, G. Luo, Q. Yang, and J. Shao, “Learning individual moving preference and
social interaction for location prediction,” IEEE Access, vol. 6, pp. 10 675–
10 687, 2018.

[43] Y. Wang, N. J. Yuan, D. Lian, L. Xu, X. Xie, E. Chen, and Y. Rui, “Regularity
and conformity: Location prediction using heterogeneous mobility data,” in
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’15, 2015, p. 1275–1284.

[44] R. Trasarti, R. Guidotti, A. Monreale, and F. Giannotti, “Myway: Location prediction
via mobility profiling,” Information Systems, vol. 64, pp. 350 – 367, 2017.

[45] S. Xu, J. Cao, P. Legg, B. Liu, and S. Li, “Venue2vec: An efficient embedding model
for fine-grained user location prediction in geo-social networks,” IEEE Systems
Journal, vol. 14, no. 2, pp. 1740–1751, 2019.

193

[46] D. Zhang, Y. Zhang, Q. Li, and D. Wang, “Sparse user check-in venue prediction by
exploring latent decision contexts from location-based social networks,” IEEE
transactions on Big Data, vol. 7, no. 5, pp. 859–872, 2019.

[47] J. Krumm, “A survey of computational location privacy,” Personal and Ubiquitous
Computing, vol. 13, no. 6, pp. 391–399, 2009.

[48] M. Gruteser and B. Hoh, “On the anonymity of periodic location samples,” in Security
in Pervasive Computing. Springer, 2005, pp. 179–192.

[49] T. Xu and Y. Cai, “Feeling-based location privacy protection for location-based
services,” in Proceedings of the 16th ACM conference on Computer and
Communications Security (CCS). ACM, 2009, pp. 348–357.

[50] R. Popa, A. Blumberg, H. Balakrishnan, and F. Li, “Privacy and accountability
for location-based aggregate statistics,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS). ACM, 2011,
pp. 653–666.

[51] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”
arXiv preprint arXiv:2001.08361, 2020.

[52] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, “An early
resource characterization of deep learning on wearables, smartphones and
internet-of-things devices,” in Proceedings of the 2015 international workshop
on internet of things towards applications, 2015, pp. 7–12.

[53] M. C. Mozer and P. Smolensky, Skeletonization: A Technique for Trimming the Fat
from a Network via Relevance Assessment. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1989, p. 107–115.

[54] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[55] B. Bartoldson, A. Morcos, A. Barbu, and G. Erlebacher, “The generalization-
stability tradeoff in neural network pruning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 20 852–20 864, 2020.

[56] A. S. Rakin, Z. He, L. Yang, Y. Wang, L. Wang, and D. Fan, “Robust sparse
regularization: Defending adversarial attacks via regularized sparse network,”
in Proceedings of the 2020 on Great Lakes Symposium on VLSI, ser. GLSVLSI
’20, 2020, p. 125–130.

[57] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks in federated
learning,” arXiv preprint arXiv:2011.01767, 2020.

194

[58] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of network
pruning,” arXiv preprint arXiv:1810.05270, 2018.

[59] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in
Cognitive Sciences, vol. 3, no. 4, pp. 128–135, 1999.

[60] T. M. Mitchell, Machine learning. New York, NY, USA: McGraw Hill, 1997.

[61] X. Jiang, H. Hu, T. On, P. Lai, V. D. Mayyuri, A. Chen, D. M. Shila, A. Larmuseau,
R. Jin, C. Borcea et al., “Flsys: Toward an open ecosystem for federated
learning mobile apps,” IEEE Transactions on Mobile Computing, vol. 23, no. 1,
pp. 501–519, 2022.

[62] J. Zhang, C. Chen, W. Zhuang, and L. Lyu, “Target: Federated class-continual
learning via exemplar-free distillation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 4782–4793.

[63] J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang, “Federated continual learning
with weighted inter-client transfer,” in International Conference on Machine
Learning. PMLR, 2021, pp. 12 073–12 086.

[64] F. E. Casado, D. Lema, M. F. Criado, R. Iglesias, C. V. Regueiro, and S. Barro,
“Concept drift detection and adaptation for federated and continual learning,”
Multimedia Tools and Applications, pp. 1–23, 2022.

[65] Z. Wang, Y. Zhang, X. Xu, Z. Fu, H. Yang, and W. Du, “Federated probability
memory recall for federated continual learning,” Information Sciences, vol.
629, pp. 551–565, 2023.

[66] L. Yuan, Y. Ma, L. Su, and Z. Wang, “Peer-to-peer federated continual learning
for naturalistic driving action recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp. 5249–
5258.

[67] J. Zhang, C. Chen, W. Zhuang, and L. Lv, “Addressing catastrophic forgetting in
federated class-continual learning,” arXiv preprint arXiv:2303.06937, 2023.

[68] D. Qi, H. Zhao, and S. Li, “Better generative replay for continual federated learning,”
in The Eleventh International Conference on Learning Representations, 2023.

[69] J. Dong, L. Wang, Z. Fang, G. Sun, S. Xu, X. Wang, and Q. Zhu, “Federated
class-incremental learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 10 164–10 173.

[70] Y. Ma, Z. Xie, J. Wang, K. Chen, and L. Shou, “Continual federated learning based on
knowledge distillation,” in Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, vol. 3, 2022, pp. 2182–2188.

195

[71] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”
IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[72] M. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and
F. Hussain, “Machine learning at the network edge: A survey,” arXiv preprint
arXiv:1908.00080, 2019.

[73] J. Ni, L. Muhlstein, and J. McAuley, “Modeling heart rate and activity data for
personalized fitness recommendation,” in The World Wide Web Conference,
2019, pp. 1343–1353.

[74] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan, T. V. Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards federated learning at
scale: System design,” Proceedings of Machine Learning and Systems, vol. 1,
pp. 374–388, 2019.

[75] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond inferring class
representatives: User-level privacy leakage from federated learning,” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, April
2019, pp. 2512–2520.

[76] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?” in Advances in Neural Information Processing Systems,
2014, pp. 3320–3328.

[77] S. Yu, P. Nguyen, A. Anwar, and A. Jannesari, “Adaptive dynamic pruning for non-iid
federated learning,” arXiv preprint arXiv:2106.06921, 2021.

[78] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas,
“Model pruning enables efficient federated learning on edge devices,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 34, no. 12, pp.
10 374–10 386, 2022.

[79] W. Xu, W. Fang, Y. Ding, M. Zou, and N. Xiong, “Accelerating federated learning for
iot in big data analytics with pruning, quantization and selective updating,”
IEEE Access, vol. 9, pp. 38 457–38 466, 2021.

[80] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and N. Lane, “Fjord:
Fair and accurate federated learning under heterogeneous targets with ordered
dropout,” Advances in Neural Information Processing Systems, vol. 34, pp.
12 876–12 889, 2021.

[81] D. Wen, K.-J. Jeon, and K. Huang, “Federated dropout—a simple approach for
enabling federated learning on resource constrained devices,” IEEE Wireless
Communications Letters, vol. 11, no. 5, pp. 923–927, 2022.

196

[82] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konevcnỳ, H. B. McMahan, V. Smith,
and A. Talwalkar, “Leaf: A benchmark for federated settings,” arXiv preprint
arXiv:1812.01097, 2018.

[83] Z. Feng, H. Xiong, C. Song, S. Yang, B. Zhao, L. Wang, Z. Chen, S. Yang, L. Liu, and
J. Huan, “Securegbm: Secure multi-party gradient boosting,” in 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 1312–1321.

[84] TensorFlow, “On-Device Training with TensorFlow Lite,” https://www.tensorflow.
org/lite/examples/on_device_training/overview, Accessed on 06/28/2024.

[85] D. Verma, G. White, and G. de Mel, “Federated ai for the enterprise: A web
services based implementation,” in 2019 IEEE International Conference on
Web Services (ICWS), 2019, pp. 20–27.

[86] Nvidia, “Nvidia FLARE,” https://nvidia.github.io/NVFlare/index.html, Accessed on
06/28/2024.

[87] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
K. H. Li, T. Parcollet, P. P. B. de Gusmão, and N. D. Lane, “Flower: A friendly
federated learning research framework,” arXiv preprint arXiv:2007.14390,
2020.

[88] J. Zhang, Y. Zheng, D. Qi, R. Li, and X. Yi, “Dnn-based prediction model
for spatio-temporal data,” in Proceedings of the 24th ACM SIGSPACIAL
International Conference on Advances in Geographic Information Systems, ser.
SIGSPACIAL ’16, 2016, pp. 92:1–92:4.

[89] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information
leakage from collaborative deep learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017, pp.
603–618.

[90] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine learning on
encrypted data,” in International Conference on Information Security and
Cryptology. Springer, 2012, pp. 1–21.

[91] J. Konevcný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization:
Distributed machine learning for on-device intelligence,” in NIPS Optimization
for Machine Learning Workshop, 2015.

[92] C. Dwork, “A firm foundation for private data analysis,” Communications of the ACM,
vol. 54, no. 1, pp. 86–95, 2011.

[93] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data,
ourselves: Privacy via distributed noise generation,” in Advances in Cryptology
- EUROCRYPT 2006: 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, 2006, pp. 486–503.

197

https://www.tensorflow.org/lite/examples/on_device_training/overview
https://www.tensorflow.org/lite/examples/on_device_training/overview
https://nvidia.github.io/NVFlare/index.html

[94] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Theory of Cryptography: Third Theory of
Cryptography Conference, 2006, pp. 265–284.

[95] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,”
Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4,
pp. 211–407, 2014.

[96] S. Wagh, X. He, A. Machanavajjhala, and P. Mittal, “Dp-cryptography:
marrying differential privacy and cryptography in emerging applications,”
Communications of the ACM, vol. 64, no. 2, pp. 84–93, 2021.

[97] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially
private recurrent language models,” in International Conference on Learning
Representations, 2018.

[98] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches in privacy
preserving data mining,” in Proceedings of the Twenty-Second ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, ser. PODS
’03, 2003, p. 211–222.

[99] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, “What
can we learn privately?” SIAM Journal on Computing, vol. 40, no. 3, pp.
793–826, 2011.

[100] U. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggregatable
privacy-preserving ordinal response,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’14, 2014,
p. 1054–1067.

[101] M. Kim, O. Günlü, and R. F. Schaefer, “Federated learning with local differential
privacy: Trade-offs between privacy, utility, and communication,” IEEE, pp.
2650–2654, 2021.

[102] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ser. ICML’13.
JMLR.org, 2013, p. III–1310–III–1318.

[103] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning
of deep networks using model averaging,” arXiv preprint arXiv:1602.05629,
vol. 2, no. 2, 2016.

[104] X. Jiang, S. Zhao, G. Jacobson, R. Jana, W.-L. Hsu, M. Talasila, S. A. Aftab,
Y. Chen, and C. Borcea, “Federated meta-location learning for fine-grained
location prediction,” in 2021 IEEE International Conference on Big Data (Big
Data). IEEE, 2021, pp. 446–456.

198

[105] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun, L. Do, and
M. Kopp, “Asynchronous federated learning for geospatial applications,” in
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2018, pp. 21–28.

[106] A. Li, S. Wang, W. Li, S. Liu, and S. Zhang, “Predicting human mobility with
federated learning,” in Proceedings of the 28th International Conference on
Advances in Geographic Information Systems, 2020, pp. 441–444.

[107] S. EK, F. PORTET, P. LALANDA, and G. VEGA, “A federated learning aggregation
algorithm for pervasive computing: Evaluation and comparison,” in 2021
IEEE International Conference on Pervasive Computing and Communications
(PerCom), 2021, pp. 1–10.

[108] A. Usmanova, F. Portet, P. Lalanda, and G. Vega, “A distillation-based approach
integrating continual learning and federated learning for pervasive services,”
arXiv preprint arXiv:2109.04197, 2021.

[109] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical clustering of
local updates to improve training on non-iid data,” in 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–9.

[110] R. Presotto, G. Civitarese, and C. Bettini, “Fedclar: Federated clustering for person-
alized sensor-based human activity recognition,” in 2022 IEEE International
Conference on Pervasive Computing and Communications (PerCom). IEEE,
2022, pp. 227–236.

[111] Y. Qin and M. Kondo, “Mlmg: Multi-local and multi-global model aggregation for
federated learning,” in 2021 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops), 2021, pp. 565–571.

[112] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 8, pp.
3710–3722, 2020.

[113] L. U. Khan, M. Alsenwi, Z. Han, and C. S. Hong, “Self organizing federated
learning over wireless networks: A socially aware clustering approach,” in 2020
International Conference on Information Networking (ICOIN). IEEE, 2020,
pp. 453–458.

[114] C. He, C. Tan, H. Tang, S. Qiu, and J. Liu, “Central server free federated learning over
single-sided trust social networks,” arXiv preprint arXiv:1910.04956, 2019.

[115] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches for personalization
with applications to federated learning,” arXiv preprint arXiv:2002.10619,
2020.

199

[116] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization techniques for
federated learning,” in 2020 Fourth World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4). IEEE, 2020, pp. 794–797.

[117] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated learning
through personalization,” in International Conference on Machine Learning.
PMLR, 2021, pp. 6357–6368.

[118] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive personalized federated
learning,” arXiv preprint arXiv:2003.13461, 2020.

[119] K. Ozkara, N. Singh, D. Data, and S. Diggavi, “Quped: Quantized personalization
via distillation with applications to federated learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 3622–3634, 2021.

[120] J. Guo, W. Ouyang, and D. Xu, “Multi-dimensional pruning: A unified framework
for model compression,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 1508–1517.

[121] V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity by
fine-tuning,” Advances in Neural Information Processing Systems, vol. 33, pp.
20 378–20 389, 2020.

[122] Y. Wang, X. Zhang, L. Xie, J. Zhou, H. Su, B. Zhang, and X. Hu, “Pruning from
scratch,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 12 273–12 280.

[123] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification for efficient
federated learning: An online learning approach,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS). IEEE,
2020, pp. 300–310.

[124] S. Liu, G. Yu, R. Yin, and J. Yuan, “Adaptive network pruning for wireless federated
learning,” IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1572–
1576, 2021.

[125] S. Vahidian, M. Morafah, and B. Lin, “Personalized federated learning by
structured and unstructured pruning under data heterogeneity,” in 2021 IEEE
41st International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, 2021, pp. 27–34.

[126] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan,
“Adaptive federated learning in resource constrained edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–
1221, 2019.

[127] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold:
Stochastic controlled averaging for federated learning,” in International
Conference on Machine Learning. PMLR, 2020, pp. 5132–5143.

200

[128] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li, “Lotteryfl: Personalized
and communication-efficient federated learning with lottery ticket hypothesis
on non-iid datasets,” arXiv preprint arXiv:2008.03371, 2020.

[129] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient Compression:
Reducing the communication bandwidth for distributed training,” in The
International Conference on Learning Representations, 2018.

[130] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning global model via
data-free knowledge distillation for non-iid federated learning,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 10 174–10 183.

[131] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, “Feddc: Federated learning with
non-iid data via local drift decoupling and correction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022,
pp. 10 112–10 121.

[132] X. Jiang, T. On, N. Phan, H. Mohammadi, V. D. Mayyuri, A. Chen, R. Jin, and
C. Borcea, “Zone-based federated learning for mobile sensing data,” in 2023
IEEE International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2023, pp. 141–148.

[133] W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in heterogeneous
federated learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 10 143–10 153.

[134] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy
is it to break privacy in federated learning?” Advances in Neural Information
Processing Systems, vol. 33, pp. 16 937–16 947, 2020.

[135] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 3454–3469, 2020.

[136] X. Jiang and C. Borcea, “Complement sparsification: Low-overhead model pruning
for federated learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, no. 7, 2023, pp. 8087–8095.

[137] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “Safa: A semi-asynchronous
protocol for fast federated learning with low overhead,” IEEE Transactions on
Computers, vol. 70, no. 5, pp. 655–668, 2020.

[138] X. Ouyang, Z. Xie, J. Zhou, G. Xing, and J. Huang, “Clusterfl: A clustering-based
federated learning system for human activity recognition,” ACM Transactions
on Sensor Networks, vol. 19, no. 1, pp. 1–32, 2022.

201

[139] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient framework for
clustered federated learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 19 586–19 597, 2020.

[140] Y. Zhang, M. Duan, D. Liu, L. Li, A. Ren, X. Chen, Y. Tan, and C. Wang,
“Csafl: A clustered semi-asynchronous federated learning framework,” in 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, 2021,
pp. 1–10.

[141] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh,
and T. Tuytelaars, “A continual learning survey: Defying forgetting in
classification tasks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.

[142] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experience replay
for continual learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[143] D. Isele and A. Cosgun, “Selective experience replay for lifelong learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[144] H. Ahn, S. Cha, D. Lee, and T. Moon, “Uncertainty-based continual learning with
adaptive regularization,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[145] R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task-free continual learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 11 254–11 263.

[146] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by
iterative pruning,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2018, pp. 7765–7773.

[147] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forgetting
with hard attention to the task,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4548–4557.

[148] X. Zuo, Y. Luopan, R. Han, Q. Zhang, C. H. Liu, G. Wang, and L. Y. Chen, “Fedvit:
Federated continual learning of vision transformer at edge,” Future Generation
Computer Systems, 2023.

[149] Y. Guo, T. Lin, and X. Tang, “Towards federated learning on time-evolving
heterogeneous data,” arXiv preprint arXiv:2112.13246, 2021.

[150] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learning: a learning
architecture for navigation in cloud robotic systems,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4555–4562, 2019.

202

[151] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2018.

[152] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-
preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17, 2017,
p. 1175–1191.

[153] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson et al., “Extracting training data from large
language models,” arXiv preprint arXiv:2012.07805, 2020.

[154] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized
and federated learning,” in 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 2019, pp. 739–753.

[155] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against collaborative
inference,” in Proceedings of the 35th Annual Computer Security Applications
Conference, ser. ACSAC ’19, 2019, p. 148–162.

[156] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the GAN: information
leakage from collaborative deep learning,” CoRR, vol. abs/1702.07464, 2017.

[157] L. Sun, J. Qian, and X. Chen, “LDP-FL: Practical private aggregation in federated
learning with local differential privacy,” International Joint Conference on
Artificial Intelligence, 2021.

[158] Y. Tian, R. Wang, Y. Qiao, E. Panaousis, and K. Liang, “Flvoogd: Robust and privacy
preserving federated learning,” arXiv preprint arXiv:2207.00428, 2022.

[159] R. L., Y. C., H. C., R. G., and M. Y., “FLAME: differentially private federated
learning in the shuffle model,” vol. 35, no. 10, pp. 8688–8696, 2021.

[160] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta,
“Amplification by shuffling: From local to central differential privacy via
anonymity,” in Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2019, pp. 2468–2479.

[161] R. Liu, Y. Cao, M. Yoshikawa, and H. Chen, “Fedsel: Federated sgd under local differ-
ential privacy with top-k dimension selection,” in International Conference on
Database Systems for Advanced Applications, 2020, pp. 485–501.

[162] M. Malekzadeh, B. Hasircioglu, N. Mital, K. Katarya, M. E. Ozfatura, and
D. Gündüz, “Dopamine: Differentially private federated learning on medical
data,” arXiv preprint arXiv:2101.11693, 2021.

203

[163] L. Lyu, Y. Li, X. He, and T. Xiao, “Towards differentially private text represen-
tations,” in Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2020, pp. 1813–1816.

[164] Amazon Web Services, “Serverless Computing - AWS Lambda ,” https://aws.amazon.
com/lambda/, Accessed on 06/28/2024.

[165] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,”
in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–1282.

[166] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[167] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400,
2013.

[168] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. Cambridge,
United States: MIT press Cambridge, 2016, vol. 1, no. 2.

[169] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Communication-efficient
on-device machine learning: Federated distillation and augmentation under
non-iid private data,” arXiv preprint arXiv:1811.11479, 2018.

[170] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konevcný, S. Kumar,
and H. B. McMahan, “Adaptive federated optimization,” in International
Conference on Learning Representations, 2021.

[171] P. Lai, H. Phan, L. Xiong, K. P. Tran, M. Thai, T. Sun, F. Dernoncourt,
J. Gu, N. Barmpalios, and R. Jain, “Bit-aware randomized response for local
differential privacy in federated learning,” https://openreview.net/forum?id=
ZUXZKjfptc9, Accessed on 06/28/2024.

[172] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and statistical
minimax rates,” in 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, 2013, pp. 429–438.

[173] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and
G. Yu, “Collecting and analyzing multidimensional data with local differential
privacy,” in 2019 IEEE 35th International Conference on Data Engineering
(ICDE), 2019, pp. 638–649.

[174] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K.-Y. Lam,
“Local differential privacy-based federated learning for internet of things,”
IEEE Internet of Things Journal, vol. 8, no. 11, pp. 8836–8853, 2021.

[175] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

204

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://openreview.net/forum?id=ZUXZKjfptc9
https://openreview.net/forum?id=ZUXZKjfptc9

[176] Amazon Web Services, “Lambda quotas,” https://docs.aws.amazon.com/lambda/
latest/dg/gettingstarted-limits.html, Accessed on 06/28/2024.

[177] A. Mathur, D. J. Beutel, P. P. B. de Gusmao, J. Fernandez-Marques, T. Topal,
X. Qiu, T. Parcollet, Y. Gao, and N. D. Lane, “On-device federated learning
with flower,” arXiv preprint arXiv:2104.03042, 2021.

[178] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

[179] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Federated learning on non-
iid features via local batch normalization,” arXiv preprint arXiv:2102.07623,
2021.

[180] “Deployment-aws local zones,” https://aws.amazon.com/about-aws/
global-infrastructure/localzones/, Accessed on 06/28/2024.

[181] Microsoft Azure, “Azure private multi-access edge compute (mec),” https://azure.
microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec/,
Accessed on 06/28/2024.

[182] Y. Vaizman, “A mobile application for behavioral context recognition and data
collection in the wild,” http://extrasensory.ucsd.edu/ExtraSensoryApp/,
Accessed on 06/28/2024.

[183] Polar, “SDK for Polar sensors,” https://github.com/polarofficial/polar-ble-sdk,
Accessed on 06/28/2024.

[184] H. Hu, X. Jiang, V. D. Mayyuri, A. Chen, D. M. Shila, A. Larmuseau, R. Jin,
C. Borcea, and N. Phan, “Flsys: Toward an open ecosystem for federat-
edlearning mobile apps,” arXiv preprint arXiv:2111.09445, 2021.

[185] J. Ni, L. Muhlstein, and J. McAuley, “Modeling heart rate and activity data for
personalized fitness recommendation,” in The World Wide Web Conference,
ser. WWW ’19, 2019, p. 1343–1353.

[186] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning for sensor-based
human activity recognition: Overview, challenges, and opportunities,” ACM
Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–40, 2021.

[187] M. A. Shafique and E. Hato, “Use of acceleration data for transportation mode
prediction,” Transportation, vol. 42, no. 1, pp. 163–188, 2015.

[188] C. M. Bishop, Neural networks for pattern recognition. Oxford, United Kingdom:
Oxford University Press, 1995.

205

https://docs.aws.amazon.com/lambda/latest/dg/ gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/ gettingstarted-limits.html
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://azure.microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec/
https://azure.microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec/
http://extrasensory.ucsd.edu/ExtraSensoryApp/
https://github.com/polarofficial/polar-ble-sdk

[189] S. Zhao, R. Bharati, C. Borcea, and Y. Chen, “Privacy-aware federated learning for
page recommendation,” in Proceedings of 2020 IEEE International Conference
on Big Data, 2020.

[190] T. Kashiyama, Y. Pang, and Y. Sekimoto, “Open pflow: Creation and evaluation of an
open dataset for typical people mass movement in urban areas,” Transportation
Research Part C: Emerging Technologies, vol. 85, pp. 249 – 267, 2017.

[191] Y. Zheng, L. Wang, R. Zhang, X. Xie, and W. Ma, “Geolife: Managing and under-
standing your past life over maps,” in The Ninth International Conference on
Mobile Data Management (MDM 2008), 2008, pp. 211–212.

[192] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Federated
learning with matched averaging,” arXiv preprint arXiv:2002.06440, 2020.

[193] O-RAN Alliance, “O-ran use cases and deployment scenarios,”
https://mediastorage.o-ran.org/white-papers/O-RAN.WG1.
Use-Cases-and-Deployment-Scenarios-White-Paper-2020-02.pdf, Tech.
Rep., Accessed on 06/28/2024.

[194] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konevcný, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated
settings,” arXiv preprint arXiv:1812.01097, 2018. [Online]. Available:
https://arxiv.org/abs/1812.01097

[195] V. Lomonaco and D. Maltoni, “Core50: a new dataset and benchmark for continuous
object recognition,” in Conference on Robot Learning. PMLR, 2017, pp.
17–26.

[196] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in KDD’96:
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, vol. 96, no. 34, 1996, pp. 226–231.

[197] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering points
to identify the clustering structure,” ACM SIGMOD record, vol. 28, no. 2, pp.
49–60, 1999.

[198] M. A. Carreira-Perpinán, “A review of dimension reduction techniques,” Department
of Computer Science, University of Sheffield, Technical Report, CS-96-09,
vol. 9, pp. 1–69, 1997.

[199] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and
G. Srivastava, “A survey on security and privacy of federated learning,” Future
Generation Computer Systems, vol. 115, pp. 619–640, 2021.

[200] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware
acceleration for neural networks: A comprehensive survey,” Proceedings of the
IEEE, vol. 108, no. 4, pp. 485–532, 2020.

206

https://mediastorage.o-ran.org/white-papers/O-RAN.WG1.Use-Cases-and-Deployment-Scenarios-White-Paper-2020-02.pdf
https://mediastorage.o-ran.org/white-papers/O-RAN.WG1.Use-Cases-and-Deployment-Scenarios-White-Paper-2020-02.pdf
https://arxiv.org/abs/1812.01097

[201] D. Maltoni and V. Lomonaco, “Continuous learning in single-incremental-task
scenarios,” Neural Networks, vol. 116, pp. 56–73, 2019.

[202] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple Classifier
Systems: First International Workshop. Springer, 2000, pp. 1–15.

[203] D. Shim, Z. Mai, J. Jeong, S. Sanner, H. Kim, and J. Jang, “Online class-incremental
continual learning with adversarial shapley value,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 11, 2021, pp. 9630–9638.

[204] Z. Mai, R. Li, H. Kim, and S. Sanner, “Supervised contrastive replay: Revisiting the
nearest class mean classifier in online class-incremental continual learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 3589–3599.

[205] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner, “Online continual learning
in image classification: An empirical survey,” Neurocomputing, vol. 469, pp.
28–51, 2022.

207

	INTRODUCTION
	Federated Learning Systems for Mobile Devices
	FL System Driven by Real-life Mobile Applications
	Zone-based FL System

	Federated Learning Applications with Mobile Sensing Data
	Human Activity Recognition
	Fine-Grained Location Prediction

	Federated Learning Optimizations
	Low-Overhead Model Pruning for FL
	Federated Continual Learning Using Concept Matching

	Contributions of Dissertation
	FL System Driven by Real-life Mobile Applications
	Zone-based FL System
	Federated Meta-Location Learning
	Complement Sparsification to Reduce Overhead
	Concept Matching for FCL

	Contributors to this Dissertation
	Structure of the Dissertation

	LITERATURE REVIEW
	Federated Learning Background
	FL Preliminaries
	FL Systems

	Federated Learning Applications with Mobile Sensing Data
	Human Activity Recognition
	Location Prediction

	Enhancing Federated Learning
	Coping with Non-IID Data in FL
	FL Incorporating Differential Privacy
	Location Embedding in FL
	Clustering and Personalization in FL
	Model Pruning in FL
	Federated Continual Learning

	Chapter Summary

	 FLSYS: TOWARD AN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS
	FLSys Design
	System Requirements
	FLSys Overview
	System Architecture

	Prototype Implementation
	Implementation Technologies
	Phone Implementation
	Cloud Implementation
	Asynchronous Federate Averaging Implementation
	FLSys Setup Workflow

	HAR-Wild: Data, Model, and Training
	Data Collection
	Data Processing
	Model Design
	HAR-Wild Async Augmented Training

	Evaluation
	HAR-Wild Model Evaluation
	Sentiment Analysis (SA) Model Evaluation
	HAR-Wild over FLSys Emulation Performance
	FLSys Performance on Smart Phones
	FLSys Performance in the Cloud

	Chapter Summary and Lessons Learned

	ZONE-BASED FEDERATED LEARNING
	ZoneFL Training
	Zone Partition
	ZoneFL Training Overview
	Zone Merge and Split (ZMS)
	Zone Gradient Diffusion (ZGD)

	System Design and Implementation
	System Architecture
	ZoneFL Prototype Implementation

	Evaluation
	Datasets, Models, and Metrics
	Model Utility Results
	System Results

	Chapter Summary

	FEDERATED META-LOCATION LEARNING FOR FINE-GRAINED LOCATION PREDICTION
	Meta-Location Generation
	Raw Location Data
	Meta-Location Input for Prediction Model
	Meta-Location Output for Prediction Model
	Meta-Location Benefits

	FMLL Model
	Problem Definition
	Model Architecture

	FMLL Learning Framework
	System Architecture
	Operation Stages
	Training with Data Augmentation

	Dataset and Meta-location Preprocessing
	Dataset Description
	Meta-location Preprocessing

	Experimental Evaluation
	Model Performance Without FL
	Model Performance with FL
	Model Benchmarks on Smart Phones

	Discussion
	Chapter Summary

	COMPLEMENT SPARSIFICATION: LOW-OVERHEAD MODEL PRUNING FOR FEDERATED LEARNING
	Complement Sparsification in FL
	Preliminaries
	CS Workflow
	Algorithmic Description
	Technical Insights
	Algorithm Analysis

	Evaluation
	Datasets
	Models
	Experimental Settings
	Baselines
	Results

	Chapter Summary

	FEDERATED CONTINUAL LEARNING USING CONCEPT MATCHING
	CM Framework
	Motivating Application Scenarios
	Problem Definition
	Learning Framework for FCL
	Design Discussion

	Concept Matching Algorithms
	Evaluation
	Experimental Setup
	Results

	Chapter Summary

	CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES

