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ABSTRACT

The process by which humans synchronize to a musical beat is believed to occur through error-correction where an individual’s estimates
of the period and phase of the beat time are iteratively adjusted to align with an external stimuli. Mathematically, error-correction can be
described using a two-dimensional map where convergence to a fixed point corresponds to synchronizing to the beat. In this paper, we show
how a neural system, called a beat generator, learns to adapt its oscillatory behavior through error-correction to synchronize to an external
periodic signal. We construct a two-dimensional event-based map, which iteratively adjusts an internal parameter of the beat generator to
speed up or slow down its oscillatory behavior to bring it into synchrony with the periodic stimulus. The map is novel in that the order of
events defining the map are not a priori known. Instead, the type of error-correction adjustment made at each iterate of the map is determined
by a sequence of expected events. The map possesses a rich repertoire of dynamics, including periodic solutions and chaotic orbits.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013771

Music is an important part of human society. As humans, we have
an innate ability to quickly recognize rhythmicity and reproduce
it by moving our body to the music. To bring our movements into
sync with the music, we make a series of adjustments to speed
up or slow down in a process known as error-correction. The
time between successive movements, such as claps, serves as an
estimate of the beat period, and is compared to the actual time
between musical beats. The exact timing of each clap compared
to the beat time determines whether or not our clapping phase
is aligned with the beat. Using these two comparisons, we make
a judgment on whether we need to speed up or slow down our
clapping. In this paper, we explore how such an error-correction
scheme could be implemented by a neuronal network. Our work
focuses on the derivation and analysis of a two-dimensional map
to describe how an error-correction scheme can bring a neural sys-
tem into sync with a periodic external drive. Importantly, the map
can describe situations in which the order of events changes. This
is critical because we often aperiodically alternate between being
too early and too late when learning a beat, i.e., on one cycle, we
may clap just before the beat, while on the next, we clap after it.
We call this property order-indeterminacy.

I. INTRODUCTION

Humans can easily recognize rhythmicity within speech and
music, which spans the range of 0.5–10 Hz.1 The ability to discern
and track a periodic structure in music is called beat perception.
While a piece of music may be quite complex in terms of its rhythmic
structure, experimental studies have shown that neurons in various
parts of the brain exhibit oscillations in their voltage profiles that
match the beat frequency.2,3 A primary way to assess beat percep-
tion is through finger tapping experiments where participants tap at
what they perceive to be the beat or along to an isochronous (evenly
spaced in time) metronome.4,5 Intertap intervals are compared to
interbeat intervals to measure the participants ability to match the
period. The exact timing of each tap is compared to beat times
to measure the phase of tapping. These two measures, period and
phase, have led to a set of error-correction models.6,7 These iterative
algorithms attempt to describe how humans use error measure-
ments at each event to correct their tap times for subsequent events.
In essence, the schemes define a two-dimensional, event-based
map.

Event-based maps refer to a class of dynamical systems where
the set of dependent variables are updated at the occurrence of a
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particular event, such as a trajectory crossing a Poincaré section.
Event-based maps arise in other contexts besides error-correction.
In neural systems, maps based on spike timing are often derived.
For example, using a phase response curve in the presence of a weak-
coupling assumption between neurons is used to assess the existence
and stability of phase-locked solutions.8,9 In cardiac systems, maps
have been used to study the repolarization of the left and right
ventricles.10 In the field of robotic movement, event-based maps
are used to implement specific control strategies for stabilization of
walking.11

In a previous work,12 we developed a mathematical model to
describe how humans learn to generate a beat. We proposed a bio-
physical framework whereby a neuronal oscillator, called a beat
generator (BG), learns the period and phase of an external,
isochronous tone sequence (S). The BG was formulated to cor-
respond to the frequency range of interest for musical beats
(≈0.5–6 Hz) as well as to capture the dynamics of various behav-
ioral results from finger tapping experiments. We derived a set of
error-correction rules that adjusts the intrinsic period of the BG on
a cycle-by-cycle basis allowing it to synchronize its voltage spikes to
the tone times. The rules are based on the well-established literature
of error-correction schemes,6,7,13 but target a biophysical parame-
ter of the BG rather than adjusting the tap period directly. Updates
to this parameter occur at BG spikes and stimulus tones, akin to a
mixed-resetting model;13 as such, they are characterized as events
and form the basis of the event-based map. For a range of parame-
ters, we demonstrated that the BG could quickly adapt its firing pat-
tern to match that of an external periodic stimulus. Using a discrete
counter to measure time intervals, we showed that after an initial
learning period the BG spike times remain in the vicinity of the stim-
ulus tone times, but do not exactly match them, as seen in human
tapping experiments.4,5 We also studied the model’s response to per-
turbations, such as tempo changes and phase shifts. We found that
slowing down the BG took longer than speeding it up, while nega-
tive phase shifts results in longer re-convergence times than positive
phase shifts. In this work, we perform a mathematical analysis of the
corresponding event-based map and highlight how the stability of
its fixed points affects the re-convergence times and dynamics.

In the ideal case, the learning process can be described in a
1-to-1 manner in which every BG spike is followed by an S tone
and vice versa. This leads to a situation of monotone convergence
to the synchronized solution in which the order of events is pre-
served. However, when tapping to a beat, our tap times typically
jitter in a neighborhood of the actual stimulus tone onset times. For
example, if we tap too late, we might compensate by tapping at a
faster rate. This may then result in the next tap occurring before the
next tone. These situations can be described as order-indeterminant
because at the moment of any one event, say a tap, it is not a priori
known whether the next event will be a tone or a tap. The event itself
depends on the adjustments made on the fly by the listener in an
attempt to synchronize to the tone sequence. Modeling this situation
mathematically is a challenge as one can no longer make a 1-to-1
(order preserving) assumption about events. Instead, we derive
a novel two-dimensional order-indeterminant event-based (OIEB)
map that can predict whether and how the BG will synchronize
with the stimulus, even when the order of events is not prescribed
from cycle-to-cycle. The main difficulty in deriving this map is that

different adjustments are made at stimulus tones and BG spikes.
Thus, when the order is unknown, the sequence of updates is
unknown. One of the important contributions of this paper is to
show how to systematically overcome this obstacle to make the
appropriate number and type of updates per iteration of the map.

An interesting property of the OIEB map is that it is piecewise-
smooth, with a discontinuity arising due to the update rule for
phase learning. As such, our study falls within the category of low-
dimensional discontinuous maps, which are seen in a variety of con-
texts. From a theoretical point of view, some of the earliest studies
of this type involved piecewise linear one-dimensional maps.14 Dis-
continuous maps arise more generally in switching systems, where
the vector field changes discontinuously across a lower dimensional
manifold.15 Biological applications have provided an abundance of
examples. In particular, systems defined on periodic phase spaces
such as a circle or torus lead to discontinuous maps. Applications
of such maps include cardiac dynamics,16 circadian rhythms,17 and
sleep rhythms,18 to name just a few.

The organization of this paper is based on deriving the OIEB
map from a series of intermediate steps to build maps of increas-
ing complexity. The simplest such map is one-dimensional and
accounts just for period learning. We will show the conditions under
which this one-dimensional map has a stable fixed point, which
corresponds to a learned period and then describe how the loss of
stability leads to higher periodicity orbits. The next level of complex-
ity involves phase learning, leading to the two-dimensional order
preserving map. Here, we conduct a linear stability analysis for the
synchronized (learned) solution. We demonstrate that while there
are regions of parameter space in which the synchronized solution
is stable, only part of the parameter space corresponds to order
preserving solutions. This leads us to derive the OIEB map where
information from the stability analysis in the order preserving case
will be used to explain the observed dynamics of the OIEB map.
This map possesses a rich set of dynamics that include not just the
existence of fixed points, but also various periodic orbits, as well as
chaotic solutions.

II. MODEL FOR BEAT GENERATION

We briefly introduce the important aspects of our beat gen-
eration model.12 We first define a periodic stimulus tone sequence
with an initial tone time, t0 and inter-stimulus onset interval of Tstim,
such that tones occur at t = t0 + kTstim, where k = 0, 1, 2 . . .. We
then define a beat generator (BG) as a neuronal oscillator with easily
identifiable spike times whose interspike interval can be controlled
by parameters. There are a variety of biophysical models based on
the Hodgkin–Huxley formalism that we could choose. Here, we uti-
lize perhaps the simplest, the leaky integrate-and-fire (LIF) model,
to allow us to focus on the mathematical results. The LIF is given by

v′ = (I − v)/τ , (1)

with the reset condition v → 0, when v crosses the firing thresh-
old, set (without loss of generality) at 1. At the moment of reset, the
BG is said to exhibit a spike. The variable v represents voltage, the
parameter I provides an external drive, and τ = 1000 ms is a time
constant. For I < 1, the system has a stable fixed point at v = I. The
discontinuous reset condition leads to a bifurcation at I = 1, and the
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system exhibits oscillatory behavior for I > 1. The period of these
oscillations is given by

T(I) = τ ln

(

I

I − 1

)

, (2)

which is a one-to-one invertible function on the domain I > 1, with
inverse

I(T) =
1

1 − e−T/τ
. (3)

Thus, each value of the period results from a unique value of the
drive and vice versa. In the map, the value of I is updated at each BG
spike and at each stimulus tone time, until the period and spike times
of the BG exactly match those of the stimulus. Hence, I is a variable
of the two-dimensional map. To update I, we must keep track of the
time between consecutive BG spikes (period) and the time between
the BG spike and stimulus tone (phase). The phase of the BG φ is the
second variable of the map. The phase is updated at every tone time.
Thus, the two-dimensional map will exhibit a type of asynchronous
updating where one of the variables, I, is updated more frequently,
than the other, φ.

III. ORDER PRESERVING TWO-DIMENSIONAL MAP

We begin by deriving the order preserving map under the
assumption of 1-to-1 firing. In particular, every spike of the BG is
followed by a stimulus tone and vice versa. The goal is to show the
process by which the BG learns the exact spike times of the stim-
ulus as well as the interonset interval between tones. To do so, we
introduce two learning rules, a period correction rule and a phase
correction rule. Both rules update the value of I, which we treat as
a variables of the map. Period correction updates are done at every
spike of the BG, while phase correction updates are performed at
every stimulus tone time. In Sec. IV, we will extend these results to
derive the OIEB map.

A. Period correction leads to a one-dimensional map

Consider a periodic stimulus oscillating with a period Tstim with
initial spike at t0 = 0. For the BG to match the stimulus period, it
must learn the value of I associated with that period. We define the
following one-dimensional, period correction map,

Ij+1 = Ij + δT [T(I) − Tstim], (4)

which iteratively increases (decreases) I to decrease (increase) the
oscillatory period of the BG, until it is the same as the stimulus
period Tstim. The parameter δT is the strength of the period correc-
tion rule. Updates are associated with the spike times of the BG. In
particular, once the update to Ij+1 is made, the next interspike inter-
val is uniquely determined by this new value. Using (2), we rewrite
(4) as

f(I) = I + δT

[

τ ln

(

I

I − 1

)

− Tstim

]

, (5)

and Ij+1 ≡ f(Ij).
The map has a unique fixed point at I∗ = 1/(1 − exp(−Tstim/τ)),

whose stability is determined using f′(I∗) = 1 − δTτ/(I∗(I∗ − 1)).
The fixed point is stable for |f′(I∗)| < 1, and, as such, δT < 2I∗(I∗

− 1)/τ . Given that T is a monotonically decreasing function of I,
it follows that to converge to a stable fixed point at larger periods,
smaller δT is required. The graph of f(I) has a vertical asymptote at
I = 1, a local min at I = (1 +

√
1 + 4τδT)/2. It is convex and in the

limit as I → ∞ has a slant asymptote at I − δTT. The slope of f(I) is
less than 1 for finite I and tends to 1 as I → ∞. Thus, the graph
intersects the diagonal at exactly one point, corresponding to the
unique fixed point. As Tstim increases, the map shifts down in the
I–f(I) plane [Fig. 1(a)], and the unique fixed point becomes unsta-
ble when the slope at the intersection decreases below −1. For a
fixed period, increasing δT decreases the slope of the curve at the
fixed point [Fig. 1(b)]. Combining these two findings, one notes

FIG. 1. Period learning is stable provided learning rates are sufficiently small. (a) The 1D period correction map for different stimulus periods with δT = 0.005. Each
curve crosses the diagonal at exactly one point, corresponding to a fixed point. As the stimulus period is reduced, the fixed point moves up the diagonal. Additionally, the
slope at the fixed point increases as the period is reduced, becoming unstable for Tstim = 1000ms. (b) The 1D map for a fixed period (Tstim = 500ms) and varying the
learning rate δT . Increasing δT increases the slope at the fixed point but does not change the location of the fixed point. Stability is lost when the slope becomes less than−1
(δT = 0.02). (c) Cobweb diagram showing the iterates for a transition from Tstim = 500ms to Tstim = 250ms (red) and Tstim = 250ms to Tstim = 500ms (blue). Convergence
to Tstim = 500ms requires significantly less iterates as the slope at the fixed point is close to zero.
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that there are privileged parameter pairs that lead to fast conver-
gence. For example, by choosing a δT = 0.005, the slope at the fixed
point associated with the Tstim = 500 ms map is zero. For this same
value of δT, the slope of the Tstim = 250 ms is positive, but less than
1. Thus, a tempo change from Tstim = 250 to 500 ms will converge
much faster than a change from 500 to 250 ms [Fig. 1(c)].

The fixed point remains stable so long as f′(I∗) > −1. The δT

value for which stability is lost can be calculated by solving f′(I∗)
= −1, for δT (Fig. 2). Convergence to the fixed point is fastest when
f′(I∗) = 0. Hence, solving f′(I∗) = 0 for δT gives the optimal δT value
for a given period (dashed line). Notice that these values are highly
dependent on the stimulus period, with smaller periods allowing for
significantly larger δT values consistent with what is shown in Fig. 1.
The fixed point loses stability when f(I∗) < −1 and in that case, it
is possible to obtain periodic and bounded oscillatory solutions of
the map provided that the local minimum of f(I) is greater than
1 (blue region). This necessary condition on the minimum of f(I)
guarantees that iterates of the map fall in the domain of the map,
(1, ∞). Periodic solutions are obtained in the usual manner, namely,
by searching for fixed points of suitable composition of the map with
itself, e.g., period-2 solutions arise as solutions of f2(I) = f(f(I)) = I.
For parameter values that lie in the blue region, we were able to
find period-2, period-4 points, etc. Moreover, we found values of
parameters at which the solution does not converge for any initial
value, indicative of chaotic behavior. To illustrate the existence of
chaos for this map, consider the period doubling route to chaos.19

Fixing Tstim = 500 ms, we found that period-1 solutions emerged

FIG. 2. Critical δT values as a function of period. The map converges to the
synchronous solution (T(I) = Tstim) for parameter values under the first solid
curve (green) and diverges for parameter values above the second solid curve
(pink). Between these two regions, we see oscillatory solutions, including chaotic
attractors (blue). Convergence is fastest when the slope at the fixed point is zero
(dashed curve).

at δT = 0.007 84, period-2 solution at δT = 0.009 77, period-4 at
δT = 0.010 22, period-8 at δT = 0.010 31, and period-16 at
δT = 0.010 34. Computing the bifurcation interval ratios, we found
that F3 = 4.328, F4 = 4.619, and F5 = 4.655. Thus, the period dou-
bling behavior suggests that the value Fn converges to the value F
≈ 4.669, the so called Feigenbaum constant,20 giving strong indica-
tion that the one-dimensional period correction map does exhibit
chaos. The findings presented here will be instructive when we
consider the dynamics of the OIEB map in later sections.

B. Phase correction leads to a two-dimensional map

The period rule brings the stimulus and BG periods into align-
ment, but pays no regard to the phase of the BG events relative
to the stimulus events. As such, an additional rule is required, a
phase correction rule. This rule also targets the drive I in order to
speed up/slow down the BG oscillations. It works in concert with
the period correction rule, sequentially making adjustments to I. We
define the phase of the BG φ as the time since the last BG event
divided by the stimulus period. If φ < 0.5 when a stimulus event
occurs, the BG is interpreted to be firing before the tone and needs
to be slowed down, decreasing both I and φ. If φ > 0.5, the oppo-
site interpretation is taken and the BG should speed up, increasing I
and φ. The maximal correction occurs close to 0.5. The phase update
rule occurs at every stimulus event and will update the I value by an
amount δφ1Iφ(φ), where

1Iφ(φ) = sgn(φ − 0.5)φ(1 − φ), (6)

sgn(x) is the sign function and δφ > 0 is the strength of the update
rule.

The two-dimensional map requires that the I value is updated
at both BG spikes (period correction) and S tones (phase correction).
The phase φ is only updated once per iteration of the map, at a BG
spike. An iteration of the map is defined as an oscillatory cycle of
the BG, the nth iteration begins at the nth BG spike and ends at the
n + 1th spike. A complete iteration of the two-dimensional map
takes (In, φn) to (In+1, φn+1) through a sequence of intermediate
steps. At the S tone, phase correction is applied

Itemp = In + δφ1Iφ(φn). (7)

The BG voltage (1) evolves with this new value Itemp until its next
spike. At the BG spike, I is updated again using the period rule. To
apply the period rule, we must calculate the BG cycle period Tn. This
cycle period is comprised of two parts, the time between the nth BG
spike and the nth tone, and the time between the nth tone and the
n + 1th BG spike,

Tn(I, φ) = φTstim + τ ln
I + δφ1Iφ(φ) − v(I, φ)

I + δφ1Iφ(φ) − 1
, (8)

where

v(I, φ) = I
(

1 − e−Tstimφ/τ
)

(9)

and the second term in (8) is obtained by integrating (1) from the
initial value v(In, φn) to 1. Then the period correction is given by

In+1 = Itemp + δT1IT(In, φn), (10)
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where 1IT(I, φ) = [Tn(I, φ) − Tstim]. At the (n + 1)th BG spike, we
also update the phase for the next iteration,

φn+1 = φn +
Tstim − Tn(In, φn)

Tstim
. (11)

The system can then be written as a two-dimensional map, with
updates to I and φ on every iteration defined by the paired event of
an S tone and a BG spike,

In+1 = F1(In, φn), (12)

φn+1 = F2(In, φn). (13)

The functions F1 and F2 are given by

F1(I, φ) = I + δφ1Iφ(φ) + δT1IT(I, φ), (14)

F2(I, φ) = φ +
Tstim − Tn(I, φ)

Tstim
. (15)

A fixed point of the map satisfies the algebraic conditions
I = F1(I, φ) and φ = F2(I, φ). For Tstim = 500, we graph the surfaces
F1(Iφ) and F2(I, φ) in separate three-dimensional spaces [Figs. 3(a)
and 3(b)] and examine their intersection with the two-dimensional
planes z = I and z = φ, respectively. The ensuing curves of inter-
section are then projected onto the φ − I domain [Fig. 3(c)] and
their intersection yields the fixed points of the map. Note that here
and in all subsequent phase plane figures, φ is labeled along the x
axis. As expected, the fixed points are located at [I∗(Tstim), 0] and
[I∗(Tstim), 1]. Though the fixed points at φ = 0 and φ = 1 corre-
spond to the same synchronous solution, we will show later that the
stability properties of each differ. Note that φ = 0.5 constitutes a line
of discontinuities of the map, due to the sgn function that appears in
the phase update rule. This discontinuity is clearly seen in the pro-
jections onto the φ − I plane [Fig. 3(c)]. The blue curve separates

regions of φ − I space where the surface z = F2(I, φ) lies above the
diagonal plane z = φ or below it. In the projection, the region above
the blue curve represents where the surface lies above the diagonal
plane. Similarly, the region above the red curve is where the surface
z = F1(I, φ) lies below the diagonal plane z = I.

It is useful to recast the φ − I phase plane by placing the ori-
gin at I = I∗ and at the dual values φ = 0 and 1 [Fig. 4(a)], as
both phase values correspond to the synchronized solution. Thus
the entire vertical axis corresponds to both values φ = 0 and 1 and,
as such, the BG spike and stimulus tone occurring at the same time.
The horizontal axis is ordered to show how the phase changes, keep-
ing in mind the dual role of the origin. In the left half-plane, phase
decreases (left to right) toward the origin. In the right half-plane,
phase increases (right to left) moving toward the origin. This recast
phase plane allows us to easily identify how I and φ should be
updated in each region, and in which direction the iterates should
move. In particular, in the upper right first quadrant (Q1), the phase
indicates that the BG spiked after the stimulus tone, and is thus late.
As a result, the phase rule will try to speed up the BG. However, the
current value of In is too large; thus, the BG is too fast and will have
an interspike interval less than Tstim. Thus, the period rule will tend
to slow down the BG. For example, the iterates of the map with ini-
tial value (φ0, I0) = (0.75, 2.62) (green) systematically decrease the
In value to slow the BG down, while simultaneously increasing the
phase toward the value 1 (i.e., convergence to the origin). Note that
the iterates quickly converge to the red curve along which In+1 = In.
In a vicinity of this curve, the strengths of the phase and period rules
are relatively balanced allowing the convergence toward synchrony
to be monotone in phase. The initial condition (φ0, I0) = (0.25, 2.47)
(purple) lying in Q3 (lower left) corresponds to the BG being ini-
tially too slow, but also too early. Thus the period rule needs to
increase the In value, to speed up the BG, while the phase rule seeks
to slow it down to decrease the phase. Again, the two-step updates

FIG. 3. Fixed points of the period and phase map correspond to the synchronous solution. (a) The surface F1(I,φ) (red), which corresponds to updates of the I vari-
able in the 2D map, and the surface z = I (grey). There are no updates to I where the two surfaces intersect. There is a discontinuity at φ = 0.5 due to the sgn
function in the phase update rule. (b) The surface F2(I,φ) (blue), corresponding to updates to φ in the 2D map, and the surface z = φ (grey). The phase φ is con-
stant where the two surfaces intersect. The discontinuity at φ = 0.5 appears here also. (c) A projection of the intersections for the I (red) and φ (blue) surfaces
with z = I and z = φ, respectively. Where the red and blue curves intersect, at φ = 0 and φ = 1, correspond to the fixed points. Parameter values are given in
the Appendix.
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eventually come into balance as can be seen the iterates move back
and forth between Q2 and Q3 for a number of iterates, before
converging toward the origin from Q2 (upper left) along the red
curve.

The time courses for the two examples clearly display how the
system convergences toward the synchronized solution in an order
preserving manner [Figs. 4(b) and 4(c)]. Initial condition lying in

FIG. 4. System can phase delay or phase advance during convergence to the
synchronous solution. (a) Recast phase plane with dual origin (φ = 0 and 1) cor-
responding to the synchronized solution. Note the non-standard ordering of the
phase along the horizontal axis. Iterates for two different initial conditions show
that the phase is systematically decreased to φ = 0 when the BG is too early
(purple) and increased toward φ = 1 when the BG is too late (green). (b) BG
spike times (purple) and stimulus tone times (black) for the sequence of iterates
that converges to φ = 0 via phase delay. (c) BG spike times (green) and stimulus
tone times (black) corresponding to the iterates that converges toφ = 1 by phase
advance. (d) Time course of I obtained by simulating the LIF model (1), where I is
adjusted subject to the learning rules. The purple/green trace corresponds to the
scenario shown in (b)/(c), and the dots mark the value of I at each iteration of the
map [as shown in (a)]. Parameter values are given in the Appendix.

Q3 shows a systematic phase delay in its time course [Fig. 4(b)];
the BG spike time (purple) moves toward the stimulus tone time
(black) that follow it. Note that due to the way phase is defined, a
delay implies that the phase decreases. If the initial condition lies in
Q1, then it is in the basin of attraction of the φ = 1 fixed point, and
the BG spike times systematically phase advance [Fig. 4(c)]; the BG
spike time (green) moves toward the stimulus tone time (black) that
precedes it.

We solve the LIF model (1), adjusting I according to the period
and phase rules, to illustrate how I changes as a function of time
[Fig. 4(d)]. The initial conditions from Figs. 4(b) and 4(c) are used
for the purple and green traces, respectively. Note how I changes at
the stimulus tones and at the BG spikes. The change at the stimulus
tone corresponds to the intermediate update Itemp, while the update
to In+1 occurs at the BG spike and is marked with a dot. Note how the
time spent at each value is non-constant and depends on the phase
of the BG relative to the stimulus tone.

C. Assessing stability of fixed points through

linearization

As demonstrated in Fig. 4, depending on initial values, iterates
of the map can converge to either the φ = 0 or φ = 1 fixed point.
The convergence properties depend on the learning rule parameters
δT and δφ as well as Tstim. To better understand how the dynam-
ics depend on these parameters, we assess the stability of the fixed
points of the two-dimensional map by computing the eigenvalues of
the Jacobian matrix,

J =

(

1 + δTg(I∗) −δφ(1 − δTg(I∗)(1 − φ∗))

− 1
Tstim

g(I∗) 1 + δφ

Tstim
g(I∗)(1 − φ∗))

)

, (16)

where (I∗, φ∗) denotes a fixed point and g(I) = dT(I)/dI. The eigen-
values of J are given by

λ± = 1 +
1

2
(δT +

δφ

Tstim
(1 − φ∗))g(I∗)

±
1

2

√

(δT +
δφ

Tstim
(1 − φ∗))

2

g(I∗)2 + 4
δφ

Tstim
g(I∗). (17)

A fixed point of the map is stable if both eigenvalues at the
linearization lie inside the unit circle. We compute the stability
boundaries for a fixed stimulus period Tstim in the δT − δφ param-
eter plane [Fig. 5(a)] by solving |λ| = 1 (17). This condition is met
when an eigenvalue is real and equals ±1 or is complex with mag-
nitude equal to 1. Although the fixed points at φ∗ = 0 and φ∗ = 1
correspond to the synchronous solution, they have different sta-
bility characteristics. The solid green lines correspond to the fixed
point φ∗ = 1 for Tstim = 500. The line emanating from the ori-
gin is where the eigenvalues are complex with magnitude equal to
one; the other when one of the eigenvalues equals −1. The solid
purple line corresponds to φ∗ = 0 for Tstim = 500 when an eigen-
value equals −1. The shaded green (purple) region corresponds to
parameter values for which the φ = 1 (φ = 0) fixed point is sta-
ble. It is straightforward to show that dg/dI > 0, which implies that
the stability boundary curves for λ = −1 shift to the right and for
|λ| = 1 have smaller slope as Tstim is decreased. In turn, this implies
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that there is a larger set of parameters for which the φ = 0 and 1
fixed points are both stable when Tstim is decreased [dashed lines
in Fig. 5(a)].

In the 1D period map, the slope at the fixed point determined
how quickly the system converged to the fixed point. When the abso-
lute value of the slope was close to 0, less iterates were required
for convergence. For the two-dimensional map, the magnitude of
the eigenvalues is indicative of how quickly the system converges.
When the maximal eigenvalue is close to 1, we expect convergence
to be slow, whereas if it is close to 0, the system will converge in
fewer iterates. To demonstrate this, we once again simulate the LIF
model (1) and investigate the resynchronization times after the stim-
ulus period Tstim is changed. After a tempo change of 400–500 ms,
the system converges toward the φ = 0 fixed point by sequentially
phase delaying the BG spike times [Fig. 5(b) blue]. Comparing the
eigenvalues of the φ = 0 fixed point at for the parameter values 1, 2,
and 3 [Fig. 5(a)], we find that the maximal eigenvalues are 0.6996,
0.6798, and 1.2568, respectively. The corresponding time courses
confirm that resynchronization is fastest for parameter values 2,
within just a few iterates of the map. Note that the value of I does
not converge to the fixed point for parameter values 3, but rather
oscillates around it. Inspecting the time course of the stimulus tone
and BG spike times, the ability of the BG to reproduce the stimulus
sequence is not greatly affected by the fluctuations in I. Similarly for
parameter values 1, although the value of I has not yet converged at
the end of the simulation, the BG spike times approach the stimulus
tones after only a handful of updates. This suggests that the BG neu-
ron need not learn the stimulus period exactly to accurately match
the stimulus tone sequence.

A tempo change from 500 ms to 400 ms was also exam-
ined [Fig. 5(b) yellow], to demonstrate that the convergence times

also depend on Tstim. For parameter values 1, convergence to
the fixed point is longer for Tstim = 400 ms than Tstim = 500 ms,
whereas this is reversed for parameter values 2. In addition, the
system converges to the fixed point for parameter values 3 with
Tstim = 400 ms but not for Tstim = 500 ms. The resynchroniza-
tion dynamics also exhibit both over and undershoots (depend-
ing on the direction of the tempo change). The resynchronization
time courses are consistent with the classic findings of Michon,21

who demonstrated that large, detectable tempo changes produced
overshoots. Previous error-correction models also report over-
shoots for large tempo changes.4 Although not shown here, the
resynchronization time course does not exhibit an overshoot for
small tempo changes, in agreement with the results of Hary and
Moore.22

Contrary to convention, stability of the fixed points is not suffi-
cient to determine whether iterates of the map will actually converge
to them. The reason is that the two-dimensional map is built under
the order preserving assumption, namely, that every BG spike is fol-
lowed by a stimulus tone. Looking at the time course for the tempo
change from 500 ms to 400 ms with parameter values 1 [Fig. 5(b)
yellow], one can see that the order of the BG spikes and stimulus
tones change at around 3500 ms. The order preserving map can-
not describe that situation. The φ = 1 fixed point is a stable spiral
point, and as such the iterates initially spiral in toward φ = 1. At
∼3500 ms, the BG spike and stimulus tone are almost aligned; how-
ever, the value of I is too large. Hence, the BG is too fast and the BG
spikes too early on the next iteration. The phase of the BG is now
close to φ = 0 and will spiral in toward this fixed point, until another
order switch occurs. These switches violate the 1-to-1 assumption
of the map. In Sec. IV, we address how to handle these types of
situations.

FIG. 5. Stability of fixed point indicative of resynchronization times. (a) The solid purple line shows the stability boundary for λ = −1 for the fixed point at φ∗ = 0 with
Tstim = 500ms. The fixed point is stable to the left of the purple curve. The solid green lines are stability boundaries for φ∗ = 1, where the boundary emanating from the
origin is for the complex eigenvalue condition |λ±| = 1 and the other curve is for λ = −1. The fixed point is stable for parameter pairs lying between these two boundaries.
The dashed line indicates how the boundaries change when Tstim is reduced to 400ms. (b) Resynchronization time course for the three parameter value pairs labeled in
(a). The BG is initially synchronized to the stimulus, but must resynchronize after a tempo change at 1000 ms (dashed line). Blue (yellow) corresponds to a tempo changes
from 400ms to 500ms (500ms to 400ms). For parameter values 1, although the value of I converges to the fixed point outside the time interval shown (∼15 000ms for
the tempo decrease to 500ms, ∼25 000ms for the tempo increase to 400ms), the timing errors become small within a few iterates of the map. For parameter values 2, the
convergence is very fast. For parameter values 3, the value of I never converges to the fixed point for the tempo decrease and continues to oscillate indefinitely. Parameter
values are given in the Appendix.
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IV. ORDER-INDETERMINANT TWO-DIMENSIONAL

MAP

As suggested in Sec. III, convergence to the synchronous solu-
tion is not always order preserving. For example, if the BG spikes
just before the stimulus tone, the phase correction may decrease I
too much and slow the BG down such that it does not fire again
until after the next stimulus tone [Fig. 6(a); iterates 1 and 6]. Simi-
larly, if the period rule over-corrects when speeding up the BG, the
BG may fire again before the next stimulus tone [Fig. 6(a); iterate 4].

As with the order preserving map, in the order-indeterminant
case, we say that an iteration of the map corresponds to a full oscil-
latory cycle of the BG. However, the number of stimulus events per
iteration can vary. For example, if there are two consecutive BG
spikes, then there would be no stimulus spikes on this iteration,
and if there are two consecutive stimulus tones, then both tones are
said to occur on the same iteration. The solution shown in Figs. 6(c)
and 6(d) is a period-3 solutions, where the first iteration (green) con-
tains two stimulus events, the second (blue) contains one stimulus
event and the third (pink) contains no stimulus events.

On each iteration of the map, we compare the expected period
of the BG (the period should no further updates happen) to the
amount of time to the next stimulus spike. If the expected period
is greater than this amount of time, the BG spike is followed by a
stimulus tone, if not, it is followed by another BG spike. This leads
us to define a function HS, which will be zero if the expected period
is less than the time to the next stimulus tone, and 1 otherwise,

HS(I, φ) = 2(T(I) − Tstimφ), (18)

where 2(x) is the Heaviside function equal to 0 for x < 0 and to 1
for x ≥ 0 and T(I) is given by (2). If there is a second stimulus tone
before the next BG spike, we do not make another phase update, as
we do not have sufficient information about the phase at this time.
The BG has not spiked yet, so although we know that it is too late,
we do not know by how much. Once the BG spikes again, the period
rule will act to speed up the BG. As such, there is at most one phase
update per iteration.

Using (18), we write the order-indeterminant version of (14) as

F1(I, φ) = I + HS(I, φ)δφ1Iφ(φ) + δT1IT(I, φ). (19)

For the phase variable φ, we note that if there are two or more
stimulus spikes in a particular iteration, (15) updates the phase to
a negative number. We include a modulo 1 function to convert this
to the proportion of time until the next stimulus tone rather than
from the previous tone,

F2(I, φ) = mod

(

φ +
Tstim − Tn(I, φ)

Tstim
, 1

)

. (20)

The values (I∗(Tstim), 0) and (I∗(Tstim), 1) are also fixed points
of the OIEB map. However, due to the discontinuity induced by
the Heaviside function, it is not possible to linearize about the fixed
points. Thus, we cannot directly obtain stability information. How-
ever, the OIEB map reduces to the order preserving map of Sec. III
whenever a sequence of BG spikes and stimulus tones occur consec-
utively. Hence, we can estimate the stability of the fixed points of the

FIG. 6. Order of BG spikes and stimulus tones is not always 1-to-1. (a) Demonstration of order switching behavior in the transient to synchronization. The BG switches
between being too early and too late, before ultimately converging to the synchronous state where the BG spikes and stimulus tones occur at the same time. (b) I − φ phase
plane for (a) depicting the phase and I value at the start of each iteration. A order switch corresponds to the iterates crossing the φ = 0 – φ = 1 line. Crossing from the
φ = 0 side into the φ = 1 signifies two consecutive stimulus tones, while crossing from φ = 1 to φ = 0 indicates two consecutive BG spikes. (c) Time course for a period-3
solution. (d) Phase plane corresponding to (c). Parameter values are given in the Appendix.
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FIG. 7. Stability characteristics of the order preserving map. Solid lines indicate
the stability boundaries, while the dashed lines show where the fixed points transi-
tion from nodes to spirals. The purple lines correspond to the fixed point at φ = 0,
while the green lines are for the fixed point at φ = 1. The phase plane is divided
into nine distinct regions, whose stability characteristics are listed in Table I. The
red points correspond to the parameter value used in Fig. 6 (L—left, R—right), and
gray points mark the parameter values used for the phase planes of the OIEBmap
shown in Fig. 8.

OIEB map using the order preserving map and use that information
to describe its dynamics.

Before doing so, we return to describe the observed dynamics
of Fig. 6. During the transient to synchronization, the order of BG
spikes and stimulus tones may alternate [Fig. 6(a)]. The BG is ini-
tially too slow and early, at the first stimulus spike (t = 0ms) phase
correction acts to slow down the BG further. At the next stimu-
lus event (t = 500 ms), no updates occur as the phase has not been
updated. Shortly afterward, the BG spikes and I is increased to speed
up the BG and the phase is updated to φ ≈ 0.8. This marks the end
of the first iteration of the map (yellow). The second iteration con-
tains one stimulus tone, and as φ ≈ 0.8, phase correction increases
I, speeding up the BG. On the fourth iteration (red), the BG is too
fast and the BG spikes again before the next stimulus event. Hence,
there is no phase correction on this iteration. The order switches
again on the sixth iteration (orange), when the BG is too slow and
there are two consecutive stimulus tones. As with the first iteration,
phase correction occurs at the first stimulus tone, but not the second.
The iterates of the map can be viewed on the φ − I-plane [Fig. 6(b)].
In general, when an order switch occurs, the iterates cross from the
left plane to the right plane for consecutive stimulus tones or from
right to left for consecutive BG spikes. Thus, the number of transi-
tions between half-planes is equal to the number of order switching

events. The iterates In and φn correspond to the value of I and φ at
the start of the nth iteration, i.e., the value at the nth BG spike after
period correction has been applied. The eight iterations shown in the
time course [Fig. 6(a)] are colored accordingly in the phase plane
and the remaining iterates before convergence to the synchronous
solution are shown in gray.

The map also exhibits periodic behavior [Figs. 6(c) and 6(d)]. A
period-3 solutions is shown, where the first iteration of the periodic
orbit (green) contains two stimulus tones, the second (blue) contains
one stimulus tone, and the third does not contain any stimulus tones
(pink). At the first stimulus tone, the BG is too early and slightly too
slow (I1 < I∗, φ1 < 0.5). The phase correction rule decreases I and
slows down the BG. As a result, the BG doesn’t spike again until
after the next stimulus tone, and there are two stimulus tones on
this iteration. Period correction is applied at the next BG spike and
I is increased such that I2 > I1. The BG is now too fast, but also late
(φ > 0.9). On the second iteration, phase correction increases the
value of I and period correction decreases it. We note that the phase
correction is stronger as I3 > I2. With a large phase φ ≈ 1 and I3 >

I∗, the BG spikes again before the next stimulus tone. Hence, phase
correction is not applied and the period rule acts to slow down the
BG. The period-3 cycle then repeats.

A. Dynamics of the OIEB map

Given that we cannot linearize the OIEB map at its fixed points,
we will use stability information from the fixed points of the order
preserving two-dimensional map to infer what the dynamics of the
OIEB map should be. We will study how the stability of the order
preserving fixed points changes as a function of the parameters δT

and δφ . When the fixed point is a stable node, we see monotone
convergence to φ = 0 or φ = 1, but when the fixed point is a spi-
ral the iterates jump from converging toward φ = 0 to converging
toward φ = 1 when there are two consecutive stimulus spikes and
from converging to φ = 1 to converging to φ = 0 when there are
consecutive BG spikes. To quantify this, we calculate where the dis-
criminant of the eigenvalue given in (17) is 0 for Tstim = 500 ms
(Fig. 7). The solid lines correspond to the stability boundaries, as in
Fig. 5, while the dashed curves represent the real-complex bound-
aries. For φ = 0 (purple) and φ = 1 (green), the eigenvalues are real
to the right of the dashed curves. The curves separate the δT-δφ plane
into nine regions, labeled I–IX (Table I).

TABLE I. Stability characteristics of fixed points of order preserving map.

Region φ = 0 φ = 1

I Stable node Stable node
II Stable node Stable spiral
III Stable spiral Stable spiral
IV Stable spiral Unstable spiral
V Stable node Unstable spiral
VI Unstable node Unstable spiral
VII Unstable node Stable spiral
VIII Unstable node Stable node
IX Unstable node Unstable node
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Region I is the only part of parameter space where the eigenval-
ues of both fixed points are real and of magnitude less than one. As a
result, it is the only region where convergence to a fixed point is con-
sistently order preserving, as seen in Fig. 4. In region II, initial condi-
tion in the basin of attraction of φ = 0 will exhibit order-preserving
convergence, but those in the basin of attraction of φ = 1 will not.
As φn increases through 1, it is reset to close to 0 (two consecutive
BG spikes) and then converges monotonically to φ = 0 from there
[Fig. 8(a)]. Both fixed points are stable spirals in region III, and iter-
ates initially spiral in toward one of the two fixed points, but when
two consecutive BG spikes or stimulus tones occur, the iterates cross
into the other plane and spiral toward the other fixed point as seen
in Figs. 6(a) and 6(b). These crossings continue to occur until the
system ultimately converges to the synchronized solution.

Moving into regions IV and V, the fixed point at φ = 1
becomes unstable. In region IV, for parameter values suitably
close to the stability boundary for φ = 1, the system behavior is
similar to that seen in region III, the iterates switch back and
forth between the two fixed points but ultimately converge to the
synchronized solution. If δφ is increased further, we observe periodic

orbits [Fig. 8(b)]. This is a period-5 orbit with two order switches.
The iterates orbit φ = 0 in a counterclockwise direction (starting
with iterate in Q2), until the phase correction acts to slow down
an already too slow BG, resulting in two consecutive stimulus event
(iterate moves from left-half to right-half plane). The iterates switch
to orbiting φ = 1, also in a counterclockwise direction. Also in this
region, periodic orbits with unequal numbers of BG spikes and stim-
ulus tones exist [Fig. 8(c)]. This solution corresponds to a period-4
orbit with four BG spikes, but only three stimulus tones. In general,
a periodic orbit can have the number of BG spikes differ from the
number of stimulus tones by at most one. In region V, the system
exhibits behavior akin to that of region II close to the φ = 1 sta-
bility boundary and periodic behavior as we move away from the
boundary.

Both fixed points are unstable in region VI. Close to the stabil-
ity boundaries periodic behavior exists. However, as δφ is increased,
chaotic solutions arise [Fig. 8(d)]. The iterates follow similar tra-
jectories, but never return to the same point twice. In this region,
further increasing δφ leads to divergence, where I is decreased below
1 and the BG stops oscillating [Fig. 8(e)].

FIG. 8. OIEB map exhibits a rich set of dynamics. Phase planes for the points labeled (a)–(f) in Fig. 7. (a) Iterates originally spiral in toward the fixed point at φ = 1, but
there are two consecutive BG spikes and the iterates cross the φ = 0–φ = 1 line and then converge to the synchronous solution from the left-half plane. (b) A period 5
solution where the iterates move counterclockwise around the fixed point at φ = 0 and then φ = 1. (c) A period-4 solution where the number of BG spikes (four) and stimulus
tones (three) are unequal. (d) A chaotic attractor where In and φn remain bounded but do not converge to either the synchronous solution or a periodic orbit. (e) Divergent
behavior; phase correction acts to slow down the BG but reduces In below 1. (f) A period-104 orbit where order switching is frequent (many crossings of the φ = 0–φ = 1
line). Parameter values are given in the Appendix.
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In regions VII and VIII, the φ = 1 fixed point is stable, but the
φ = 0 fixed point is not. For parameter choices close to the φ = 0
stability boundary, the system converges to φ = 1 with a number
of order switches in the transient. For parameter values away from
the stability boundary, periodic solutions emerge. In particular, we
see large period cycles [Fig. 8(f)], with periods on the order of 100
or larger. Further increasing δT or δφ in these regions once again
leads to chaotic attractors and then divergence when the minimum
of F1(I, φ) falls below 1. Both fixed points are unstable in region IX.
As in region VI, we observe periodic behavior close to the φ = 1 sta-
bility boundary. As δT is increased, chaotic attractors arise. Indeed,
this follows naturally from our results on chaotic dynamics in the
one-dimensional map of Sec. III A. Recall that when the fixed point
of that map lost stability, there exists a set of δT values over which
period doubling bifurcations occur leading to chaos. For fixed Tstim

that set lies on the δφ = 0 axis in Region IX of Fig. 7. Thus, for δφ

sufficiently small, it is reasonable to intuit that such period dou-
bling routes to chaos persist. Finally, when δT is increased further,
the system diverges as minimum of F1(I, φ) falls below 1.

The above analysis demonstrates that the linearization at the
fixed points of the order preserving map are useful in predicting
and explaining the dynamics of the OIEB map. In particular, the
characterization of the stability characteristics shown in Table I
allowed us to explain why certain iterates spiraled around the dual
origin and either ended up converging as Fig. 6(a) or remained
bounded away from the origin as in Fig. 8(b). While we have not
exhaustively explored parameter space, a more detailed parsing of
parameter space would reveal additional boundaries that separate
different types of behavior within the same regions, e.g., a bound-
ary curve separating the behavior in Region V from chaotic 6(d) to
divergent 6(e).

V. DISCUSSION

In this paper, we have derived and analyzed a two-dimensional
map that addresses how a beat generator (BG) neuronal network
can learn the period and phase of an external periodic signal, such
as a metronome. This map represents a type of error-correction
algorithm4–7 in which we define separate learning rules for period
and phase that in turn adjust a biophysical parameter, I, of the BG to
allow it to synchronize to the stimulus tones. The map originates
from our prior work,12 where we introduced an error-correction
algorithm that relied on the dynamics of neuronal oscillators. Here,
we have simplified that presentation to create an event-based map,
where iterations of the map correspond to oscillatory cycles of the
BG. Given that the order of BG spikes and stimulus events may alter-
nate, we devised the map independent of the order of events. This
led to what we termed an order-indeterminant event-based (OIEB)
map. At each event, whether it be a BG spike or stimulus tone, the
current values of I and φ are used to determine what the next event
is. Period correction is said to occur at BG spikes, while phase cor-
rection occurs at stimulus tones. As an iteration of the map is defined
as an oscillatory cycle of the BG, period correction occurs on every
iteration, but phase correction may not.

Our analysis showed that there exists only a small region
of (δT, δφ) (learning rate) parameter space (region I in Fig. 7)
in which the synchronous solution was stable and approachable

monotonically. In this region, order preserving convergence signi-
fies that the system is learning a beat by sequentially speeding up
(phase advance) or slowing down (phase delay). In other regions
(e.g., IV), the BG converges to the synchronous solution but does
so in an order-indeterminant way, much in the manner a human
participant would when learning a beat. As the strength of the
period or phase rule becomes stronger, the BG loses the capability
of convergence to the synchronous solution. This loss has two key
implications: (1) there is a balance between how much either the
phase or period rule can contribute to stable synchrony and (2) the
learning rates cannot be too large and, as such, convergence cannot
be too fast.

In our previous work,12 we found, for a biophysical model of
the BG and fixed learning rates, that the resynchronization time for
tempo decreases was longer than for tempo increases. Here, we have
demonstrated mathematically that this finding is parameter depen-
dent. It is possible to tune parameters such that tempo decreases
or tempo increases result in longer resynchronization times. The
resynchronization results are consistent with experimental studies
and previous modeling studies, which show overshoots in the react-
ing to significant tempo changes.4,21 In addition, our results show
that the BG is capable of quickly learning a beat, resynchronizing
within a couple of seconds after a tempo change [Fig. 5(b)]. Even
when convergence is longer or not actually achieved, the timing
errors quickly become small and remain so. We also note the diver-
sity in resynchronization times as the learning rates δT and δφ are
varied. Human tapping experiments report a wide range of abilities
in terms of beat synchronization,4,5 a result that can be reproduced
by the model using different learning rates. In addition, the rate at
which humans learn to keep a beat improves with training. We pro-
pose that musical training involves fine tuning the learning rates δT

and δφ , which could be achieved with the inclusion of a longer term
plasticity mechanism.

In the one-dimensional period correction map as well as the
two-dimensional period and phase correction map, we established
the existence of both periodic and chaotic solutions. Chaos can
arise in strictly continuous systems, such as the logistic map, but
also occurs due to discontinuities in the definition of the map,
as in switching systems. The discontinuity at φ = 0.5 constitutes
a switching manifold. It would be of interest to see if the well-
developed bifurcation theory15 of such systems is applicable to OIEB
maps. Chaos also occurs in systems that exhibit border collision
bifurcations in which a fixed point of the map depends continuously
on parameters, but the eigenvalues at the linearization are discontin-
uous across a relevant border.23,24 Here, the fixed points of relevance
remain at φ = 0 and φ = 1, independent parameters, but the one-
sided derivatives of the linearization of the order preserving map do
exhibit discontinuities at the identified point φ = 0 and φ = 1. We
leave as an open question how to more strongly relate this finding to
the potential existence of border collision bifurcations.

An alternate strategy for keeping a beat involves direct
periodic forcing to entrain a set of mutually excitatory reso-
nant oscillators.25,26 These systems typically rely on weak cou-
pling assumptions27 and can be analyzed by classical methods of
phase response curves.28 Another recently introduced possibility for
learning a beat is to employ a pulse-forced adaptable competition
system consisting of units that ramp up at adjustable rates to a fixed
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threshold to produce specific time intervals.29 This approach follows
the error-correction paradigm in that the ramping rate is subject to
a learning rule. Our approach here is distinct from either of these
strategies. We propose that the BG is a type of adaptive oscilla-
tory system that is trying to develop an internal representation to
an external dynamic source, the metronome. Our approach may be
considered as a temporal analogue in the case of timing of repetitive
events to Kalman filtering in visual systems that corrects the internal
presentation, so its representation matches the external world.30

The map considered in this paper assumed that the event times
were known and could be calculated exactly. However, in the con-
text of humans estimating time, exact time information may not be
available. An alternate strategy that we proposed in previous work12

relies on subdividing time intervals into smaller reference intervals
and counting the number of reference intervals between events, a
form of discrete, integer-based estimation of timing. From a neu-
ronal network point of view, this could be implemented by counting
the number of oscillatory cycles of a fast spiking neuron or neural
population between beat generator spikes and stimulus tones. This
method of discrete-time estimation could be included in the map
with the introduction of an additional variable for each time inter-
val to be estimated. These kinds of systems remain to be studied in
future mathematical work.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

APPENDIX: PARAMETER VALUES FOR FIGURES

Tstim δT δφ

Figure 1 (a) . . . 0.005 . . .
(b) 500 . . . . . .
(c) . . . 0.005 . . .

Figure 2 . . . . . . . . .
Figure 3 500 0.005 0.5
Figure 4 500 0.005 0.5
Figure 5 (a) Solid 500 . . . . . .

Dashed 400 . . . . . .
(b) 1 400/500 0.002 1

2 400/500 0.0055 1
3 400/500 0.0055 3

Figure 6 (a) 500 0.002 2.5
(b) 500 0.002 2.5
(c) 500 0.005 3.5
(d) 500 0.005 3.5

Figure 7 500 . . . . . .
Figure 8 (a) 500 0.0045 1.5

(b) 500 0.002 3
(c) 500 0.002 4.5
(d) 500 0.0055 4.5
(e) 500 0.0045 6.5
(f) 500 0.008 3.8
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