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a b s t r a c t 

The normal alignment of circadian rhythms with the 24-h light-dark cycle is disrupted after rapid travel 

between home and destination time zones, leading to sleep problems, indigestion, and other symptoms 

collectively known as jet lag. Using mathematical and computational analysis, we study the process of 

reentrainment to the light-dark cycle of the destination time zone in a model of the human circadian 

pacemaker. We calculate the reentrainment time for travel between any two points on the globe at any 

time of the day and year. We construct one-dimensional entrainment maps to explain several properties 

of jet lag, such as why most people experience worse jet lag after traveling east than west. We show that 

this east-west asymmetry depends on the endogenous period of the traveler’s circadian clock as well as 

daylength. Thus the critical factor is not simply whether the endogenous period is greater than or less 

than 24 h as is commonly assumed. We show that the unstable fixed point of an entrainment map deter- 

mines whether a traveler reentrains through phase advances or phase delays, providing an understand- 

ing of the threshold that separates orthodromic and antidromic modes of reentrainment. Contrary to the 

conventional wisdom that jet lag only occurs after east-west travel across multiple time zones, we pre- 

dict that the change in daylength encountered during north-south travel can cause jet lag even when no 

time zones are crossed. Our techniques could be used to provide advice to travelers on how to minimize 

jet lag on trips involving multiple destinations and a combination of transmeridian and translatitudinal 

travel. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Circadian clocks have evolved to align biological functions with

he 24-h environmental cycles conferred by the rotation of the

arth ( Johnson et al., 2003 ). In humans, a central circadian pace-

aker coordinates various physiological rhythms so that they peak

t the appropriate time of the day, such as the release of the

leep-promoting hormone melatonin in the evening and the wake-

romoting hormone cortisol in the morning ( James et al., 2007 ).

he endogenous period of the human circadian oscillator in the

bsence of external time cues is not exactly 24 h ( Czeisler et al.,

999 ). The period of the oscillator becomes 24 h under normal cir-

umstances when exposed to natural environmental cycles, and a

table phase relationship between the oscillator and its environ-

ent is established: the oscillator is phase-locked or entrained to

he external cycles ( Wright et al., 2013 ). For circadian oscillators,
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he strongest entraining signal is the daily light-dark (LD) cycle

 Duffy and Wright, 2005 ). If entrainment is disrupted by a sud-

en shift in the phase of the LD cycle, for example due to rapid

ravel across time zones, then the phase of the circadian oscillator

ndergoes adjustments until phase-locking is reestablished and the

scillator is reentrained ( Aschoff et al., 1975 ). 

Jet lag is a collection of symptoms experienced after rapid

ransmeridian travel. These symptoms—such as insomnia, exces-

ive daytime sleepiness, gastrointestinal disturbances, and general

alaise—are not simply due to travel fatigue following a long

ight, but rather are caused by misalignment of the traveler’s inter-

al circadian clock with the environmental cycles in the new time

one ( Sack, 2009 ). Each year about 30 million US residents fly to

verseas destinations ( U.S. Citizen Travel to International Regions,

017 ). For international business travelers, athletes, or government

nd military personnel, jet lag can impair judgment, hinder per-

ormance, or threaten public safety ( Eastman and Burgess, 2009 ).

ost travelers experience more severe jet lag after flying east than

fter flying west ( Waterhouse et al., 2007 ), and a recent analysis of
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over 20 years of data from Major League Baseball games found that

jet lag impairs performance moreso after eastward than westward

travel ( Song et al., 2017 ). The conventional explanation for this di-

rectional asymmetry in jet lag severity is that since the human cir-

cadian clock typically has an endogenous period of greater than

24 h, it is easier to phase delay the clock in response to the phase

delay of the LD cycle caused by westward travel than it is to phase

advance the clock in response to the phase advance of the LD cy-

cle caused by eastward ( Eastman and Burgess, 2009 ). Reentraiment

though phase adjustment in the same direction as the shift of the

LD cycle is referred to as orthodromic . After long trips, some trav-

elers reentrain antidromically or through phase adjustments in the

opposite direction of the phase shift of the LD cycle, i.e. phase de-

lays after traveling east and phase advances after traveling west

( Arendt et al., 1987; Klein and Wegmann, 1977; Takahashi et al.,

2001 ). 

In this paper we use a mathematical model of the hu-

man circadian pacemaker, the Forger–Jewett–Kronauer (FJK) model

( Forger et al., 1999 ), to explain the existence of east-west asym-

metry in jet lag severity and the antidromic mode of reentrain-

ment. The FJK model is a widely accepted model in the circa-

dian literature that captures both phase and amplitude dynamics

of daily core body temperature oscillations. It has been fit to ex-

perimental data on how light affects human circadian rhythms and

has been used in several studies to design schedules that min-

imize jet lag ( Dean et al., 2009; Serkh and Forger, 2014; Zhang

et al., 2016 ). Consistent with a recent study employing a phase-

only model ( Lu et al., 2016 ), we find that the endogenous period of

the circadian oscillator does influence east-west asymmetry. Differ-

ently than ( Lu et al., 2016 ), however, we find that the period being

greater than or less than 24 h is not the critical factor. Furthermore

we show that daylength, and therefore the season of the year, af-

fects whether eastward or westward travel is worse. 

The medical definition of jet lag requires travel across time

zones, implying that strictly north-south or translatitudinal travel

within the same time zone cannot cause jet lag. We take a broader

view of jet lag as symptoms resulting from any travel-induced mis-

alignment of the circadian clock and the external LD cycle, and

argue that the change in daylength experienced when traveling

across latitudes (for example between the northern and south-

ern hemispheres) in the summer or winter may disrupt entrain-

ment. The question of whether purely north-south travel can re-

sult in significant misalignment has received very little attention

in the literature. We find that in the FJK model, a difference in the

daylength between departure and destination cities is enough to

cause jet lag on the order of several days (depending on parame-

ters) even with no change in time zone. Combining our findings on

east-west travel with those on north-south travel, we also investi-

gate travel that incorporates both of these directions. By consider-

ing a hypothetical case study involving travel between four cities

located in North America, South America, Asia, and Australia, we

show that the north-south component of travel can significantly

add to or reduce reentrainment times even in cases where strict

north-south travel itself incurs no jet lag. 

The main tool we use to gain insights into the properties of

jet lag is the entrainment map , a technique we recently intro-

duced for calculating the LD-entrained solution of an oscillator

subjected to external periodic forcing consisting of N hours of

light and 24 − N h of darkness ( Diekman and Bose, 2016 ). The

method involved deriving a one-dimensional map, �( x ), whose

fixed points corresponded to stable or unstable entrained periodic

solutions. We showed that the entrainment map yields more ac-

curate predictions about the phase of the stable entrained solution

than methods based on phase response curves. In Diekman and

Bose (2016) , we showed how the entrainment map for the two-

dimensional Novak-Tyson model of the Drosophila molecular clock
 Tyson et al., 1999 ) depends on parameters of the model and how

t can be used to determine regimes over which solutions entrain

hrough phase advance or phase delay. The entrainment map was

hen applied to higher dimensional systems such as the three-

imensional Gonze et al. (2005) and the 180-dimensional Kim and

orger (2012) models of the mammalian molecular clock. 

Here we build entrainment maps for the FJK model to ex-

lore various facets of reentrainment after travel. Travel can in-

olve a change of time zone, such as eastward or westward travel,

 change in photoperiod, such as northward or southward travel, or

 combination of both, such as travel from North America to Aus-

ralia. We show that reentrainment properties depend both quan-

itatively and qualitatively on key parameters including the en-

ogenous period of the oscillator, the daylength, and the inten-

ity of light. Using our methods, we can calculate reentrainment

imes for travel between any two locations on the globe, at any

ime of the year, and for any departure or arrival time. In do-

ng so, we are able to explain that the east-west asymmetry of

et lag is a generic feature of the FJK model that is highly de-

endent on both the endogenous period of the traveler as well as

he daylength. Using a generalization of the concept of neutral pe-

iod introduced by Aschoff et al. (1975) , we show that for differ-

nt combinations of these two parameters, travel to the east can

ncur more jet lag than travel to the west or vice versa. In fact, be-

ause of seasonal changes in the daylength, for the same traveler

 journey in one direction may be harder in the winter, while a

ourney in the opposite direction may be harder in the summer.

ur findings are related, in part, to those of Herzel and collabo-

ators ( Bordyugov et al., 2015; Granada and Herzel, 2009; Schmal

t al., 2015 ) who have characterized the phase of entrainment

s a function of endogenous period, zeitgeber (external stimulus)

trength, and photoperiod for several different circadian models

sing Arnold tongues and Arnold onions. The analysis of the en-

rainment map also provides insight into the different modes of

eentrainment. Prior work using a model of the mammalian molec-

lar clock identified a threshold separating orthodromic and an-

idromic modes of reentrainment, but did not explain what math-

matical object might act as the threshold ( Leloup and Gold-

eter, 2013 ). Here we show that the unstable fixed point of the

ntrainment map can be used to predict the threshold that sepa-

ates the two modes of reentrainment. 

Contrary to what one might naively expect, we find that reen-

rainment time is relatively independent of departure or arrival

ime, and that the longest trips do not necessarily give rise to

he longest reentrainment times. Instead, the worst-case trip is

etermined by the ordering and magnitude of the distance be-

ween the stable and unstable fixed points of the entrainment

ap, which themselves are dependent on the internal body clock

nd daylength. We find that for low light intensities, trips that

lace the traveler in a neighborhood of the unstable fixed point

f the map will give rise to the longest reentrainment times. For

igher light intensities, the longest reentrainment times still oc-

ur in a neighborhood of the unstable fixed point, but there is also

he potential for dramatically short reentrainment times for certain

rips within this neighborhood. These dramatically short reentrain-

ent times are associated with amplitude suppression and a phase

ingularity, and have been observed previously in the FJK model at

igh light intensity ( Serkh and Forger, 2014 ). 

In this study, we consider the light level to be fixed at either

ow or high intensity (lux) across the entire photoperiod. Admit-

edly, this is not a light protocol that a traveler is likely to ex-

erience. However, the main purpose of our study is to provide a

athematical explanation for why certain features of jet lag arise,

uch as east-west asymmetry and different modes of reentrain-

ent. This is most easily explained using single lux levels. As fur-

her discussed throughout the paper, we expect the mechanisms
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hat underlie our findings to continue to exist under more realistic

ight schedules. 

. Model and methods 

.1. The Forger, Jewett, and Kronauer (FJK) model 

The FJK model ( Forger et al., 1999 ) for the human circadian

hythm utilizes a Van der Pol type oscillator and is based on prior

odels of Kronauer and collaborators ( Jewett and Kronauer, 1998;

ronauer, 1990 ). It is a three-dimensional model given by 

dC 

dt 
= 

π

12 

(A + B ) (1) 

dA 

dt 
= 

π

12 

(
μ

(
A − 4 

3 

A 

3 
)

− C 

[(
24 

0 . 99669 τc 

)2 

+ kB 

])
(2) 

dn 

dt 
= γ ( α[ I] f (t) (1 − n ) − βn ) (3) 

 = Gα[ I] f (t)(1 − n )(1 − 0 . 4 C)(1 − 0 . 4 A ) (4) 

[ I] = α0 

[ 
I 

I 0 

] p 
. (5) 

he variable C represents core body temperature, A is a phe-

omenological auxiliary variable, and n models the phototrans-

uction pathway through which light drives the circadian sys-

em. The variable B captures circadian modulation of the oscil-

ator’s sensitivity to light. All parameter values are positive. In

articular, τ c determines the period of the oscillator in constant

arkness, I codes for the intensity of light, and μ is a stiff-

ess parameter that is related to the rate of amplitude growth

r decay after the oscillator is perturbed off of its limit cycle.

e refer to μ = 0 . 23 , k = 0 . 55 , γ = 60 , β = 0 . 0075 , G = 33 . 75 , α0 =
 . 05 , I 0 = 9500 , p = 0 . 5 with I = 10 0 0 lux and τc = 24 . 2 h as the

anonical set of parameters. 

The function f ( t ) is the light stimulus. We are interested in

hree distinct situations: constant darkness (DD), in which we set

 ( t ) ≡ 0; constant light (LL) in which f ( t ) ≡ 1; and a 24-h light/dark

LD) photoperiod in which the lights are on for N hours and off

or 24 − N h. During the dark portion of the LD photoperiod f (t) =
 , while during the light portion f (t) = 1 . In constant darkness,

 n/d t = −βn, therefore n → 0 and the parameter β controls the

ate of decay. In constant light, d n/d t = γ (α(I)(1 − n ) − βn ) such

hat n → α(I) / (α(I) + β) with rate α0 . Note that α0 is an order

f magnitude larger than β which implies that n approaches its

aximum when the lights turn on faster than it approaches its

inimum when the lights turn off. 

The A and C -nullclines are given by 

 A : C = 

μ
(
A − 4 

3 
A 

3 
)

(
24 

0 . 99669 τc 

)2 + kB 

(6) 

 C : A = −B. (7) 

he nullcline N A is a cubic-shaped curve in the projection onto

he A − C space. During DD conditions, B = 0 , and N C is a verti-

al line that intersects N A along its middle branch. This intersec-

ion corresponds to an unstable fixed point. Surrounding it is a sta-

le periodic orbit, referred to as the DD limit cycle. The prefactors

/12 and 0.99669 that appear in (2) , and the value of μ = 0 . 23 ,

ere chosen such that the period of this limit cycle is very close

o τ c hours ( Forger et al., 1999 ). The period of the DD limit cycle
s referred to as the endogenous period. The value of the roots of

 A are A = 0 , ±√ 

3 / 2 independent of τ c . Increasing τ c makes the

 -nullcline have steeper left and right branches. This results in a

ecrease in the amplitude of dA / dt , thereby slowing down oscil-

ations. As a result, the intrinsic period of the DD oscillator is an

ncreasing function of τ c . Under LL conditions, although n is con-

tant, B depends on A and C . Using Eq. (4) , and substituting into

q. (7) , yields a monotone increasing N C nullcline that continues

o intersect N A along its middle branch. As a result, an LL limit

ycle also exists. The period of the LL limit cycle is less than τ c 

ours. The LL period is also an increasing function of τ c , for the

ame reasons as the DD period. When the model is considered un-

er LD conditions, depending on parameters, a periodic solution

ay exist. When the period of the solution matches that of the LD

orcing (24 h), we call it an LD-entrained solution. 

.2. The entrainment map �( x ) 

The entrainment map �( x ) is a return map for initial condi-

ions lying on a Poincaré section that return to it at a later time.

 Poincaré section is a lower-dimensional slice (hyperplane) of the

riginal phase space. Both in theory and in practice, we have free-

om to choose the location of the section, provided that we know

hat a trajectory starting on it will return to it later in time. Be-

ause the FJK model uses a Van der Pol type oscillator, we have

onsiderable knowledge of how trajectories evolve in phase space.

or the sake of illustration, choose the Poincaré section, P, at A =
 , with A 

′ < 0, which yields a rectangle in the C and n space. As-

ume that an oscillator has an initial condition that lies on P with

 = 0 and the C value chosen as the value at the intersection with

he DD limit cycle. Let x denote the number of hours since the

ights last turned on. Evolve the trajectory under the flow until it

gain returns to P . Call this time ρ( x ). The entrainment map �( x )

s defined as the amount of time that has passed since the most

ecent onset of the lights. In Diekman and Bose (2016) , we showed

hat �(x ) = (x + ρ(x )) mod 24, which yields a one-dimensional

ap. Because of the mod 24 operation, the map � may have a

iscontinuity. The entrainment map has certain generic properties

 Diekman and Bose, 2016 ): it maps the interval [0,24] onto itself, it

as at most one point of discontinuity, it is increasing at each point

f continuity, and it is periodic in that �(0 + ) = �(24 −) . Moreover,

t depends continuously on parameters of interest such as τ c , N ,

nd I . 

A fixed point x ∗ of the entrainment map satisfies �(x ∗) = x ∗.

t corresponds to the situation where the trajectory has left P x ∗

ours after the lights turned on, and then returns to P exactly 24 h

ater when the lights have again most recently turned on x ∗ hours

go. The fixed point is stable if | �′ ( x ∗)| < 1 and unstable otherwise.

e will show that over a wide range of parameters, there are typ-

cally two fixed points of the map, x s which is stable, and x u which

s unstable. Whether the fixed points of the map correspond to ac-

ual stable and unstable periodic orbits of the system of Eqs. (1) –

3) is a delicate issue. A trajectory starting on the Poincaré section

at A = 0 would have unknowns C , n , and x . A three-dimensional

eturn map would track the values of the unknowns and return

ew values of C , n , and x when the trajectory returns to P . The en-

rainment map however only tracks whether x has returned to its

riginal value, not whether C and n have. As described below, the

table fixed point x s of the map corresponds to a stable periodic

rbit in all the cases we considered. The existence of the unstable

xed point of the map x u has different implications depending on

he light intensity. At low light intensity, the unstable fixed point

orresponds to an unstable periodic orbit in the full phase space.

 u also demarcates a region in phase space that separates trajec-

ories that reentrain through either phase advance or phase delay.

t larger light intensities, there does not appear to be an unstable
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periodic orbit that corresponds to x u . Nonetheless this fixed point

still separates the direction of reentrainment. x u is also related to

trajectories that can reentrain unusually fast. In the Appendix, we

further elaborate on the mathematical correspondence between x s ,

x u , and dynamics of the full system of equations. 

To explore various forms of jet lag, we will use a set of en-

trainment maps that are constructed with Poincaré sections cor-

responding to every half-hour. These sections are chosen by ob-

taining the LD-entrained solution numerically, and then dividing

up this LD-entrained solution into half-hour time intervals, starting

with X = 0 corresponding to lights on at a nominal choice of 7 AM.

Radial Poincaré sections emanating from the origin (A = 0 , C = 0)

and passing through these half-hour marks are then constructed.

The section is then extended to a rectangle by allowing n to vary

between 0 and 1. We define �X ( x ) to denote the map obtained by

choosing the Poincaré section X hours from lights on. By construc-

tion of the map �X ( x ), the stable fixed point x s of the map occurs

exactly at X , that is x s = X, since 7 AM denotes both the time of

lights on and X = 0 . When we build an entrainment map using

initial conditions that lie on the LD-entrained solution, then at a

stable fixed point of the map all of the dependent variables C , n ,

and x return to their original values. In this case, the stable fixed

point does correspond to a stable periodic solution. 

We shall be interested in the transient time it takes a trajectory

that has an initial condition that lies off of the LD-entrained solu-

tion to enter a neighborhood of it. Specifically, consider a Poincaré

section taken along the LD-entrained solution X hours after the

lights turn on. Take an initial condition that lies at the intersection

of the LD-entrained solution and this Poincaré section, but with

x 0 � = x s , x u . In this case, the trajectory will not initially be entrained

since the LD cycle will be offset by | x s − x 0 | hours. This means that

the first return time ρ( x 0 ) � = 24. We will say that a trajectory is en-

trained if there exists a k ≥ 0 such that | ρ(x j ) − 24 | < 0 . 5 for j ≥ k ,

where x j = �(x j−1 ) . Entrainment is said to occur on (k + 1) th cy-

cle. The total entrainment time is simply 	k 
j=0 

ρ(x j ) . In terms of

the map, �( x ) entrainment is equivalent to | �(x j ) − x s | < 0 . 5 . 

3. Results 

3.1. The LL, DD, and LD-entrained limit cycles of the FJK model 

The DD limit cycle is obtained when f ( t ) ≡ 0. In this case, B = 0

and d n/d t = −βn, thus n → 0. Since the DD limit cycle is restricted

to n = 0 , it can be found by solving the planar system given by

Eqs. (1) and (2) . Those equations are of standard Van der Pol os-

cillator type that possess a stable limit cycle. The A -nullcline is cu-

bic, the C -nullcline is linear, and they intersect at an unstable fixed

point on the middle branch. The DD trajectory encloses that un-

stable point. Similarly, the LL oscillator is obtained when f ( t ) ≡ 1.

Now, n → α[ I] / (α[ I] + β) and B can be written in terms of A and

C . So the model is again planar with a cubic nullcline and one that

is monotone increasing. They intersect along the middle branch of

the cubic, forming an unstable fixed point. For the canonical set of

parameters (defined in Section 2.1 ), the period of the DD oscillator

is τ c , whereas the period of the LL oscillator (23.96 h) is less than

τ c . 

In Fig. 1 , we plot the DD, LL, and LD-entrained oscillations for

N = 12 h, I = 10 0 0 lux. Panel A shows the time traces of each

of these oscillations, Panel B shows them in the 3-dimensional

A − C − n phase space, and Panel C shows them projected onto the

A − C phase plane. Note that the LD-entrained oscillation tracks to-

wards the DD oscillation during darkness and towards the LL oscil-

lation during light. The transition of the trajectory from DD to LL is

fairly rapid, while that from LL to DD is relatively slow since β is

small compared to α . Hourly markings (open red or black circles)
0 
re placed on the LD-entrained cycle where lights on corresponds

o 7 AM and lights off to 7 PM. 

In Fig. 2 A and B, we plot ρ( x ) and �( x ) for the canonical set

f parameters using the A = 0 , A 

′ < 0 Poincaré section. The graph

f ρ( x ) intersects the horizontal line corresponding to 24 h at two

oints, x s and x u . These points represent return times of exactly

4 h. Also note that because of periodicity ρ(0 + ) = ρ(24 −) . The

raph of �( x ) intersects the diagonal at the fixed points x s and x u .

he slope at the points of intersection determines the stability of

hese fixed points. 

In Fig. 2 C and D, we show two examples of reentrainment, both

n the map and in simulations. The green trajectory in Panel C

hows the cobweb diagram for a trajectory that starts with an ini-

ial condition that is less than x u . The cobwebbed trajectory moves

o the left with each iterate indicating a phase advancement. The

orresponding green time trace in Panel D confirms this in its ap-

roach to the LD-entrained solution (solid black trace). The ma-

enta trajectory in Panel C shows a trajectory that starts with an

nitial condition to the right of x u , and entrains though phase de-

ays as the iterates of the cobweb move to the right, over the

iscontinuity, before approaching x s . The magenta trace in Panel

 shows how the oscillator phase delays at each cycle until en-

rainment. Thus the unstable fixed point of the map x u separates

nitial conditions of trajectories that entrain in direct simulations

hrough phase advance or phase delay. What is particularly inter-

sting about this agreement is the fact that we have found no ev-

dence that an unstable periodic orbit actually exists for I = 10 0 0

ux. Instead, the stable periodic orbit seems to be globally attract-

ng. Locally near x s and the stable periodic orbit, trajectories ap-

roach the fixed point by either advancing or delaying. Therefore

here must be a structure elsewhere in phase space that separates

rajectories that become phase advancing or phase delaying. We

peculate that the unstable fixed point x u of the map indicates

here in phase space to look for such a structure. We provide fur-

her evidence for this conjecture in the Appendix; however, fully

haracterizing this structure mathematically is beyond the scope

f this paper. 

.2. The dependence of �( x ) on parameters 

The entrainment map �( x ) depends continuously on param-

ters. In particular, we are interested in how the map changes

ith variations in τ c , N , and I . The dependence on parameters

s qualitatively the same as what we found in our earlier study

 Diekman and Bose, 2016 ) of the Novak-Tyson model of the molec-

lar circadian clock in Drosophila ( Novak and Tyson, 2008 ), and is

onsistent with general theories on the phase of circadian entrain-

ent ( Bordyugov et al., 2015 ). To understand this dependence, we

ary one parameter at a time with the others set at their canonical

alues. 

Consider first changes in the intrinsic period τ c . Fig. 3 A and B

how how the maps ρ( x ) and �( x ) depend on τ c . The return time

ap ρ( x ) is a monotone function of the parameter τ c . This has to

o with how the A nullcline, N A , changes with τ c . As discussed in

ection 2.1 , for both the DD and LL cases, the steepness of the right

nd left branches of the cubic increases with τ c , leading to in-

reases in the period of each of these oscillators ( Fig. 3 C and D). To

llustrate this, consider the two extreme cases τc = 22 . 2 h and 27.2

 with an initial condition of x 0 = 18 . Fig. 3 C shows the ensuing

rajectories leaving the Poincaré section A = 0 projected onto the

 − C plane. Since x 0 = 18 , the trajectories are initially subjected to

ix hours of darkness and thus they follow the corresponding DD

ynamics. After six hours of evolution, the green trajectory ( τc =
2 . 2 h) is about an hour ahead of its magenta counterpart ( τc =
7 . 2 h). The green trajectory moves faster horizontally since its

ullcline is further away. For the next 12 h, the trajectories evolve
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Fig. 1. FJK model DD, LL, and LD limit cycles for τc = 24 . 2 h, N = 12 h, I = 10 0 0 lux. (A) Time course of model variables in constant darkness (top), constant light (middle), 

and a 12:12 light-dark cycle (bottom). The variable C is shown as solid lines (black in DD, red in LL, and red/black in LD), the variable A as dashed lines, and the variable 

n as dotted lines. The light stimulus function f ( t ) is shown as solid blue lines. The DD, LL, and LD limit cycles in the 3-dimensional A − C − n phase space (B) and projected 

onto the 2-dimensional A − C phase plane (C). A 1-dimensional projection of the Poincaré section P at A = 0 ( A ′ < 0) is shown in green. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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e  
nder conditions of light, as shown in Fig. 3 D. The τc = 22 . 2 h

rajectory moves further ahead of the other, now by about three

ours. Again the green trajectory moves faster horizontally. Finally,

or the last portion of their evolutions back to the Poincaré sec-

ion, they evolve under darkness; Fig. 3 C. In general, the dynam-

cs of the LD-forced oscillator are determined by the LL limit cycle

hen the lights are on and by the DD limit cycle when the lights

re off. Thus, independent of whether the LD-forced oscillator is in

 current situation of lights on or off, its dynamics will always be

lower when τ c is greater. Therefore ρ( x ) will be larger for larger

c . 

In Fig. 3 B we show how �( x ) depends on τ c . Increasing τ c 

auses the maps to shift up. This is a consequence of ρ( x ) being

 monotone increasing function of τ c . This causes the stable fixed

oint x s to increase (and the unstable fixed point x u to decrease).

his means that individuals with slower intrinsic body clocks reach

heir maximum or minimum core body temperatures later in the

ay. The opposite is true when τ c is decreased below 24.2 for in-

ividuals with faster than normal intrinsic body clocks. The maps

hift down and the stable fixed point x s decreases (and x u in-

reases). Note that as τ c increases, the distance between x s and x u 
ecreases. When τ c becomes large enough, these two fixed points

erge at a saddle-node bifurcation, implying the loss of entrain-

ent and providing an upper bound on the range of entrainment.

imilarly, when τ c decreases and becomes too small, a different

addle-node bifurcation of these two fixed points occurs signifying

he lower bound on the range of entrainment. 
e  
In Fig. 4 A and B, we show how the entrainment map varies

ith changes in light intensity I (Panel A) and photoperiod (Panel

). Changing light intensity I has a pronounced effect on the shape

f the maps, but less of an effect on the location of the sta-

le and unstable fixed points ( Fig. 4 A). The increased concavity

ith stronger intensity light leads, in general, to faster entrain-

ent (discussed in greater detail in Diekman and Bose, 2016 ). The

ap becomes insensitive to increases in I above a certain point,

ith nearly complete overlap of the maps for I = 10 0 , 0 0 0 lux

nd above. This suggests that entrainment cannot be lost by in-

reasing the light intensity too much. On the other hand, if the

ight intensity becomes too weak ( I → 0), then entrainment is lost

hrough a saddle-node bifurcation as the maps move up and the

table and unstable fixed points collide. Changes to the photope-

iod, N : 24 − N, are shown in Fig. 4 B. An increase in N , mean-

ng longer daylength, shifts the discontinuity of the map to the

ight because the portion of the map to the right of x s gets shifted

own. To the left of x s , the opposite happens where an increase

n N shifts the map up. Note that the distance between x s and

 u decreases with N . This change in distance is a critical factor

n explaining the east-west asymmetry of jet lag, as discussed in

ection 3.4 . 

Information from entrainment maps can be used to construct

lots that display the entrainment region as a function of two pa-

ameters, known as Arnold tongues or Arnold onions . In Fig. 4 C and

, we show the stable phase of entrainment for different param-

ter pairs. The stable phase was determined by constructing an

ntrainment map at each set of parameter values, and then find-
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Fig. 2. Entrainment map and reentrainment simulations. Parameters: τc = 24 . 2 h, N = 12 h, and I = 10 0 0 lux. (A) ρ(x ) = 24 at x = 5 . 96 (solid dot) and x = 16 . 87 (open dot). 

(B) These x values satisfy �(x ) = x and correspond to stable and unstable fixed points, x s and x u , of the entrainment map. (C) Cobwebbing the entrainment map shows that 

x u separates initial conditions that reentrain through phase advance (green) and phase delay (magenta). (D) Direct simulations for initial conditions lying on opposite sides 

of x u showing reentrainment through phase advances (green) and phase delays (magenta) as predicted by the entrainment map. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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ing the location of the stable fixed point x s . The Arnold tongue

in Fig. 4 C displays the entrainment region and stable entrained

phase as a function of endogenous period τ c and light intensity

I for N = 12 h. The colored region of parameter space represents

parameter pairs for which stable entrainment occurs, and curves

of constant phase lie on curves of constant color. For illustrative

purposes, the curve with x s = 6 is shown in white. As I increases,

curves of constant phase become almost vertical indicating that

increasing light intensity does not significantly change the phase

of entrainment (as noted in Fig. 4 A). Horizontal slices of Fig. 4 C

show that the range of endogenous periods that lead to entrain-

ment increases with intensity. These results are consistent with

those of Bordyugov et al. (2015) , who calculated Arnold tongues

for a Kuramoto model as well as a variety of circadian models in-

cluding the Gonze et al. (2005) and Relógio et al. (2011) models.

The Arnold tongues for those models formed a V-shaped region

in parameter space, similar to the parabola-shaped region that we

find here for the FJK model. Our results are also consistent with

the laboratory study of Wright et al. (2001) , which found that hu-

mans could entrain to very low intensity light (1.5 lux) if the forc-

ing period was exactly 24 h, but could not entrain if the forcing

period was different than 24 h (specifically 23.5 or 24.6 h). The

Arnold onion in Fig. 4 D displays the entrainment region and sta-

ble entrained phase as a function of τ c and N for I = 10 0 0 lux.

The curve with x s = 6 is again shown in white. For a fixed endoge-

nous period (vertical slice of figure), changes in the photoperiod

can have large and counterintuitive effects on the stable phase. For

example, with τc = 24 . 5 h and N = 8 h, the stable phase x s < 6. If N

is either increased enough, or decreased enough, the stable phase

becomes x s = 6 . Thus changes in entrained phase are not neces-

sarily monotonic with respect to changes in photoperiod. This fig-

ure is qualitatively similar to Fig. 1 B of Schmal et al. (2015) who

E  
alculate Arnold onions for a host of models. The bottom tip of

ur onion is located at τc = 24 h, corresponding to an endogenous

eriod in constant darkness ( N = 0 ) that is equal to the period of

D forcing that we used for 0 < N < 24. The top tip of our onion

s located at τc = 24 . 4 h, which is close to the endogenous pe-

iod in constant darkness that exhibits a 24-h period when placed

n constant light ( N = 24 ). The tilt of the onion to the right indi-

ates that the FJK model is consistent with Aschoff’s Rule , which

tates that τ LL < τDD for day-active animals. The Arnold onions in

chmal et al. (2015) are found by holding the endogenous period

n constant darkness fixed at 24 h and varying the LD forcing pe-

iod, whereas we vary the endogenous period in constant darkness

nd hold the LD forcing period fixed at 24 h. Thus their onions tilt

o the left, rather than the right, for day-active animals. 

.3. Jet lag due to east-west travel 

We now determine how long a traveler takes to reentrain after

 change in time zone by computing, via direct simulation, reen-

rainment times for trips with a prescribed arrival time over a pre-

cribed number of time zones (either east or west). We then use

he entrainment map to explain the simulation results, as well as

o explain the east-west asymmetry in jet lag. 

Fig. 5 shows a schematic diagram of the 12:12 LD cycle across

ll time zones. The horizontal direction demarcates hourly inter-

als starting with 7 AM (defined as X = 0 ); the vertical direction

emarcates hourly intervals corresponding to different time zones.

he middle row of the diagram corresponds to the “home” time

one ( Z = 0 ) while those lying above this row ( Z > 0) correspond to

ravel to the east, and those below ( Z < 0) correspond to travel to

he west. In each row, the corresponding 12:12 LD cycle is shown

uch that lights turn on at 7 AM in the “destination” time zone.

ach column shows the current position of the LD cycle in that



C.O. Diekman, A. Bose / Journal of Theoretical Biology 437 (2018) 261–285 267 

Fig. 3. Dependence of entrainment map on endogenous period τ c . (A) ρ( x ) shifts up as τ c increases and down as τ c decreases. (B) �( x ) shifts up and to the left as τ c 

increases, causing the stable fixed point x s (solid dots) to move to the right, implying that as intrinsic period increases the phase of entrainment becomes more delayed. The 

unstable fixed point x u (open dots) move to the left. As τ c decreases, �( x ) and the fixed points move in the opposite manner. (C) and (D) Evolution of trajectories used in 

computation of ρ(18). In (C), during the initial six hours of darkness the DD nullclines (dashed lines) are such that the τc = 27 . 2 h oscillator moves slower than the τc = 22 . 2 

h oscillator; the green trajectory is ahead of the magenta. In Panel D, for the next 12 h of light, the LL nullclines (dashed lines) are such that the τc = 27 . 2 h oscillator still 

moves slower than the τc = 22 . 2 h oscillator when the lights are on. The final portions of their respective evolutions under darkness are shown in Panel C. Gray curves in 

each panel are copies of the colored curves in the opposite panels. In sum, the magenta trajectory moves slower than the green contributing to a larger ρ(18) value and 

upward shift of the ρ map. For this figure N = 12 h and I = 10 0 0 lux. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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one. There are two natural ways to use this travel grid. One pos-

ibility is to assume that from departure, the traveler immediately

ries to reentrain to the destination time zone (DTZ). The other

s to assume that the traveler remains phase-locked to the home

ime zone (HTZ) throughout the duration of the trip and only be-

ins to reentrain upon arrival at their destination. The former case

s equivalent to studying the dynamics of a leaving time map, and

he latter, the dynamics of an arrival time map. Both cases can be

hought of as instantaneous travel time in that the traveler instan-

aneously switches from the HTZ to the DTZ. In what follows, let

s take the latter interpretation of an arrival time map. Namely,

e define the arrival time as the HTZ time when the destination is

eached. For example, if one travels from New York to Los Angeles

nd arrives at 1 PM, this means they have arrived at 1 PM New

ork time (which corresponds to 10 AM Los Angeles time.) 

In both the home and destination time zones, the 24-h LD forc-

ng is identical, but phase shifted by Z hours. We construct a set

f Poincaré maps associated with each arrival time X , denoted by

X ( x ). An oscillator that is entrained in the home time zone to

 value x s = �X (x s ) will also entrain to the same value x s in the

estination time zone if the Poincaré section is chosen at the same

ime location X along the LD-entrained cycle. In other words, the

hase of entrainment to the LD cycle is the same, independent of

he zone. Suppose the oscillator starts in its home time zone Z = 0

ntrained to the 24-h LD forcing, i.e. with x 0 = x s . Now consider

n arrival HTZ time of X after travel of Z time zones. Upon arrival

n the destination time zone, the oscillator will not be entrained

o the 24-h LD forcing in the DTZ due to the shift in the LD cycle.

or example, consider the blue dots and arrow in Fig. 5 . The HTZ
rrival time in this case is 11 PM which corresponds to X = 16 .

herefore x s = 16 . The trip consists of travel 11 time zones to the

ast, Z = 11 . This corresponds to the vertical blue line and arrow

ointing up. In the destination time zone, the DTZ time is 10 AM.

hus the traveler will be subjected to 9 h of light instead of the

 h of darkness that was expected. Therefore in the DTZ, the oscil-

ator will be phase shifted with regard to the LD cycle and will no

onger be entrained. In effect, with regard to the Poincaré section

t X = 16 , the oscillator will have had its initial condition shifted

o a new value x 0 = 3 and will need to reentrain toward x s = 16 .

s another example, consider the case of Z = −8 and X = 6 shown

y the red dot and arrow. This depicts travel 8 zones to the west

rriving at 1 PM HTZ. The time in the destination zone is 5 AM

TZ. Thus the traveler will be subjected to 2 h of darkness in the

estination time zone compared to the 6 h of light that it would

ave received in the home zone. Now, the oscillator must reentrain

o x s = 6 from an initial condition x 0 = 22 . 

We first calculate the reentrainment time by direct simulations

ssuming a 12:12 LD photoperiod. Define R = 12 − X − Z. The quan-

ity R determines how much light or darkness to provide to the

scillator once in the destination time zone until the beginning of

he next full 12 h of L or D. In the example of the travel shown in

lue, R = −15 and we impose 9 h of light followed by 12 h of D.

he various cases are summarized below: 

• if R ≤ −12 : impose L for 24 + R, then start 12:12 D:L (eastward

travel) 
• if −12 < R ≤ 0 : impose D for 12 + R, then start 12:12 L:D (could

be eastward or westward travel) 
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Fig. 4. Dependence of entrainment map on light intensity I and daylength N . (A) Concavity of the entrainment map increases as I is increased, implying that higher light 

intensity reduces the amount of time it takes an oscillator to reentrain following a phase shift of the LD cycle. The location of the stable fixed points x s (solid dots) and 

unstable fixed points x u (open dots) do not change much as I is varied. For this panel, τc = 24 . 2 h and N = 12 h. (B) Stable fixed points of the entrainment map move to 

the right as N is increased, implying that as daylength increases the phase of entrainment becomes more delayed. The unstable fixed points also move as N is varied. For 

this panel, τc = 24 . 2 h and I = 10 0 0 lux. (C) Arnold tongue computed from entrainment map analysis displaying the entrainment region as a function of τ c and I . Heatmap 

colors indicate the location of x s , i.e. the stable phase of entrainment. The white contour line corresponds to x s = 6 . At the borders of the tongue, entrainment is lost through 

saddle-node bifurcation of x s and x u . For this panel, N = 12 h. (D) Arnold onion computed from entrainment map analysis displaying stable phases x s within the entrainment 

region as a function of τ c and N . For this panel, I = 10 0 0 lux. 

Fig. 5. Schematic diagram of 12:12 LD cycle across all arrival times X and number of time zones traveled Z . This travel grid can be used to easily visualize the offset of the 

LD cycle due to instantaneous travel and to identify the relationship between the home and destination time zones. The horizontal row in the middle of the grid at Z = 0 

represents the home time zone (HTZ). The other rows represent destination time zones (DTZs) that lie east (west) for Z > 0 ( Z < 0). The rows are broken up into one hour 

intervals. The shaded region in each row represents the times of darkness in that time zone relative to HTZ. The Poincaré section X = 0 is nominally chosen to correspond to 

7 AM HTZ. The blue dots and arrow represent travel 11 time zones east with arrival at 11 PM HTZ and 10 AM DTZ. The red dots and arrow represent travel of 8 time zones 

west with arrival at 1 PM HTZ and 5 AM DTZ. The entrainment map’s arrival time section X is defined with respect to HTZ. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Reentrainment times and worst-case jet lag from direct simulations across all arrival times X and number of time zones traveled Z . Light colors indicate longer 

reentrainment times. Z > 0 corresponds to eastward travel and Z < 0 to westward travel. In these simulations N = 12 h and I = 100 lux. (A) For the typical human intrinsic 

period of τc = 24 . 2 h, the longest reentrainment times are for eastward trips of 10.5 time zones ( Z = 10 . 5 ). (B) For a slower than typical intrinsic clock of τc = 24 . 6 h (black), 

the worst jet lag is for eastward trips of 7 time zones ( Z = 7 ). (C) For a faster than typical intrinsic clock of τc = 23 . 8 h, the worst jet lag is westward trips of 10.5 time 

zones ( Z = −10 . 5 ). (D) For an even faster intrinsic clock of τc = 23 . 4 h, the worst jet lag is for westward trips of 6.5 time zones ( Z = −6 . 5 ). 
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• if 0 < R ≤ 12: impose L for R , then start 12:12 D:L (could be east-

ward or westward travel) 
• if 12 < R ≤ 24: impose D for R − 12 , then start 12:12 L:D (west-

ward travel) 

With direct simulations, the reentrainment time is calculated

rom the start of the above procedure until a stopping criterion is

chieved; namely, we define reentrainment to have occurred when

he magnitude of the time difference between the section cross-

ngs of the oscillator and a reference oscillator is less than 0.5 h.

he reference oscillator is subjected to the same light-dark pro-

ocol as the traveler, but is by definition already entrained to the

estination time zone. Thus the reference oscillator starts on the

D-entrained solution at the location given by ( X + Z) mod 24. 

To calculate the reentrainment time using entrainment maps,

t each value X denoting the HTZ arrival time relative to 7 AM,

e construct a Poincaré section along the LD limit cycle and de-

ne the return map �X as before. The fixed point of each map

X ( x ) is by definition X . To calculate the appropriate initial con-

ition with which to start iterations in the destination time zone,

e determine the new phase relationship between the oscillator

nd the LD cycle of that time zone. To do so, compute z 0 = X + Z.

f 0 ≤ z 0 < 24, then choose the initial condition x 0 = z 0 . If z 0 > 24,

hen x 0 = z 0 − 24 . If z 0 < 0, then x 0 = z 0 + 24 . 

.3.1. Worst-case travel depends on endogenous period 

In Fig. 6 , we show entrainment time results over all possible

TZ arrival times ( X ) and trips ( Z ) for four different intrinsic pe-

iods τ c . The light intensity was taken at the relatively low level

f I = 100 lux, which is characteristic of indoor light. Fig. 6 A cor-

esponds to the typical endogenous human DD period of 24.2 h.

he heatmap shows the reentrainment times with darker colors
ndicating relatively short reentrainment times, and lighter colors

ndicating progressively longer times. In each case, the heatmap

s asymmetric about Z = 0 indicating that reentrainment due to

astward travel can differ compared to westward travel. Indeed,

or a τc = 24 . 2 h oscillator, the longest reentrainment times oc-

ur for travel roughly 10 and 11 zones to the east. The reentrain-

ent times are relatively insensitive to the arrival time. The re-

aining panels show the heat maps for different τ c . For τc = 24 . 6

 ( Fig. 6 B), the worst trip shifts to smaller values of Z , mean-

ng that shorter eastward trips are more difficult for individuals

ith slower body clocks. The right column shows the heatmap for

ndividuals whose intrinsic clock is faster than normal, τc = 23 . 8

 Fig. 6 C) and 23.4 h ( Fig. 6 D). Now observe that the worst reen-

rainment for these individuals occurs for trips to the west, in-

tead of to the east. As the intrinsic clock speeds up, progressively

horter westward trips lead to longer reentrainment. For example

t τc = 23 . 4 h, a trip 6 h to the west is the worst. 

The entrainment map can be used to explain these findings.

n each case, the longest reentrainment time occurs when the

ravel places the oscillator’s initial condition in a neighborhood of

he unstable fixed point x u . The location of x u relative to x s de-

ends on τ c . For example, when τc = 24 . 2 h, we have found that

 u ≈ (x s + 10 . 5) mod 24, independent of arrival time. Thus travel

f 10 or 11 h east would place the initial condition x 0 near the

nstable fixed point. Specifically, if the Poincaré section is cho-

en at X , then x s = X and x u = (X + 10 . 5) mod 24. Travel of Z > 0

ime zones to the east would imply x 0 = (X + Z) mod 24, there-

ore x 0 − x u = Z − 10 . 5 . Thus if Z is either 10 or 11, then the initial

ondition x 0 lies within 0.5 of the unstable fixed point and will

ead to very long reentrainment times. This is consistent with the

eatmap shown in Fig. 6 A. 
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Fig. 7. Worst-case jet lag is explained by the unstable fixed point of the entrainment map. (A) Reentrainment times for the X = 6 column of the heatmaps in Fig. 6 (corre- 

sponding to an arrival time of 1 PM) computed by cobwebbing the analogous entrainment maps. The longest reentrainment times occur for trips of Z = −4 . 5 for τc = 23 . 4 h 

(magenta), −10 for τc = 23 . 8 h (green), 10.5 for τc = 24 . 2 h (orange), and 6.5 for τc = 24 . 6 h (black). The reentrainment times and Z value of these local peaks qualitatively 

agree with the longest reentrainment times found through direct simulation (the yellow hotspots in Fig. 6 A–D). (B) Same data as (A), replotted with the horizontal axis in 

terms of x instead of Z . The local peaks in reentrainment time are at initial conditions near the location of the unstable fixed point x u (dashed vertical lines) for each value 

of τ c , indicating that the worst jet lag occurs after trips that put the traveler in the vicinity of x u . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Similarly, for different choices of τ c , we find that the distance

between x u and x s determines the travel distance and direction

that leads to the longest reentrainment time. We illustrate this

in Fig. 7 by plotting the reentrainment times derived from cob-

webbing the map for a single arrival time X = 6 , corresponding

to one column of the heatmaps. Fig. 7 A shows the reentrainment

times centered around Z = 0 on the horizontal axis. This clearly

shows how the worst travel changes as a function of τ c , and that

east-west asymmetry in jet lag exists over all τ c values chosen. In

Fig. 7 B, we replot these reentrainment times converting the hor-

izontal axis from Z to x . The dashed vertical lines show the lo-

cation of x u for the four different choices of τ c . Recall that in-

creasing τ c moves the entrainment map up ( Fig. 3 B), and causes

the unstable fixed point x u to move to the left. For τc = 23 . 4 h,

x u ≈ 1.5 (dashed magenta line), and as τ c increases x u moves to the

left through the x = 0 boundary and emerges through the x = 24

boundary at progressively leftward values (green, orange and black

dashed lines). The longest reentrainment times predicted by the

map are for travel of Z time zones that places the initial condition

x 0 near x u in each of these four cases. To find the worst-case trip,

we find the value of Z D ∈ (−12 , 12) that solves x u = (x s + Z D ) mod

24. In all cases the arrival time was held fixed at X = 6 , imply-

ing x s = 6 . From the map, we found the values x u to approximately

equal 12.5, 16.5, 20, and 1.5 for τc = 24 . 6 , 24.2, 23.8, and 23.4 h, re-

spectively. Solving for the corresponding Z D values yields 6.5, 10.5,

−10, and −4.5 respectively. These correspond to the worst possible

trips being 6 h east, 10.5 h east, 10 h west, and 4.5 h west respec-

tively, which are qualitatively consistent, and except for τc = 23 . 4

h, quantitatively consistent with the reentrainment time heatmaps

from direct simulation ( Fig. 6 ). We call Z D a demarcation point ,

since it separates trips that reentrain through phase advance or

phase delay. Its properties will be further discussed in Section 3.5 .

Fig. 6 indicates that the average amount of time it takes to

reentrain after travel also depends on τ c . For example, consider the

49 possible trips represented by Z ∈ (−12 , 12) in increments of 0.5,

with the arrival time held fixed at X = 6 . The median reentrain-

ment times for these trips with τc = 24 . 6 , 24.2, 23.8, and 23.4 h

are 16.3, 13.3, 13.2, and 17.6 days, respectively. The longer median

reentrainment times correspond to τ c values closer to the bifur-

cation points at which entrainment is lost. Maps that are closer

to bifurcation have less concavity, and therefore longer reentrain-

ment times ( Fig. 4 A and Diekman and Bose, 2016 ). This finding is

consistent with previous work showing that for a variation of the

Poincaré oscillator, reentrainment times are longer near the bor-

ders of the Arnold tongue entrainment region than at the center

( Granada and Herzel, 2009 ). 
.3.2. Quantifying the east-west asymmetry of jet lag 

Fig. 8 shows a comparison of reentrainment times calculated

sing the map (empty circles) versus direct simulation (filled cir-

les). In each case, the Poincaré section was chosen at X = 6 . Reen-

rainment times for trips to the east (west) are shown in blue

red). The qualitative predictions of the entrainment map match

hose from the direct simulations. First, both methods show that

rips to the east require longer reentrainment times than trips to

he west for humans with average to slow body clocks. This is ev-

denced by the blue curves lying above the red curves in the two

anels in the left column. The opposite is true for humans with

ast body clocks as shown in the right column. These plots show

hat the extent of the east-west asymmetry found in reentrainment

imes depends critically on the endogenous period of the underly-

ng DD oscillator. Second, the two methods yield results that are

n very close agreement for westward travel of travelers with av-

rage to slow body clocks ( Fig. 8 A and B, red) and eastward travel

or fast body clocks ( Fig. 8 C and D, blue). For travel in the opposite

irections than these, the two methods quantitatively agree over

any time zones, but there are intervals where they disagree. The

lace where the two methods quantitatively differ is when travel-

ng to a time zone that lies in a neighborhood of the unstable fixed

oint. The predictions from the map for reentrainment for initial

onditions that lie arbitrarily close to the unstable fixed point can

ecome arbitrarily large. This is a consequence of the structure of

iecewise monotone maps and the particular details of the entrain-

ent map for FJK model. An arbitrarily large number of iterates are

eeded to leave a neighborhood of x u if x 0 is chosen sufficiently

lose to it. In general, this leads to a map-based prediction that

s larger than what is found in direct simulations, as seen by the

arger peaks in the dashed curves than the solid curves in Fig. 8 .

n addition, for τc = 24 . 6 and 23.4 h, the map-based predictions

f the Z value corresponding to the worst-case reentrainment time

re quantitatively different than the results from direct simulation

6.5 versus 7 h East for τc = 24 . 6 h, and 4.5 versus 6 h West for

c = 23 . 4 h), as further discussed in the Appendix. 

Despite these differences, the map is useful to draw several

onclusions. First, the sign and magnitude of the difference x u − x s 
etermines which direction of travel and over how many time

ones leads to the worst jet lag. For those with a normal to slow

ntrinsic period, travel to the east will lead to the worst jet lag be-

ause the unstable fixed point x u lies to the right of the stable one

 s . For those with a faster than normal intrinsic period, it is travel

o the west that will lead to the worst jet lag. Second, the proxim-

ty of the initial condition x 0 in the destination time zone to x u de-

ermines, in part, the length as well as the direction of reentrain-
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Fig. 8. East-West asymmetry of reentrainment times depends on intrinsic period τ c . The reentrainment times for an arrival time of 1 PM obtained through direct simulation 

(solid lines and filled dots) qualitatively agree with the reentrainment times obtained by cobwebbing the analogous entrainment maps (dashed lines and open circles). (A) 

For τc = 24 . 2 h, eastward trips (blue) take longer to reentrain from than westward trips (red). (B) For τc = 24 . 6 h, eastward trips are worse than westward trips as in (A) 

but here the degree of asymmetry is increased. (C) For τc = 23 . 8 h, westward trips take longer to reentrain from than eastward trips. (D) For τc = 23 . 4 h, westward trips are 

worse than eastward trips as in (C) but here the degree of asymmetry is increased. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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ent (either through phase advance or delay). Since reentrainment

imes are quite sensitive to initial conditions in a neighborhood of

 u , we are hesitant to attribute too much importance to very long

eentrainment times. We will further study the role of x u in deter-

ining the direction of reentrainment in Section 3.3.3 . 

.3.3. Orthodromic versus antidromic reentrainment 

We now address the direction of reentrainment, and in partic-

lar the circumstances that lead to orthodromic versus antidromic

eentrainment. Fig. 9 shows the regions of orthodromic and an-

idromic reentrainment for the four different choices of τ c . For

c = 24 . 2 h, antidromic reentrainment occurs when travel to the

ast causes the initial condition to lie in the interval ( x u , 18). The

ower bound of x u is necessary to place the initial condition on

he “opposite” side of x u . The upper bound of 18 reflects that 12 is

he maximum number of zones of eastward travel ( x s + 12 = 18 ).

n this case, x u = 16 . 5 and eastward trips of 10.5 zones or greater

ead to antidromic reentrainment. All other trips in either direc-

ion are followed by orthodromic reentrainment ( Fig. 9 A). As τ c 

ncreases to 24.6, the unstable fixed point x u moves to the left,

hus creating a larger interval ( x u , 18) of antidromic reentrainment

 Fig. 9 B). The case for τc = 23 . 8 h ( Fig. 9 C) is largely the same as

c = 24 . 2 h, except that antidromy occurs for westward trips of 10

o 12 zones when x 0 lies in the interval (18, x u ). For τc = 23 . 4 h

 Fig. 9 D), x u has moved to right, through the boundary at x = 24 to

bout 1.5. Thus the region of antidromy is the union of the inter-

als (0, x u ) and (18, 24). To summarize, antidromic reentrainment

an occur when the number of time zones traveled is larger than

he distance between x s and x u . 

Antidromic reentrainment is typically regarded as leading

o longer reentrainment times than orthodromic reentrainment

 Arendt et al., 1987; Klein and Wegmann, 1977; Sack, 2010 ). Our
esults suggest that while this is often true, it is not always the

ase. For example, consider eastward trips of 10 and 11 time zones

or the τc = 24 . 2 h oscillator with an arrival time of X = 6 . The

 = 10 trip corresponds to x 0 = 16 and entrains orthodromically,

hereas the Z = 11 trip corresponds to x 0 = 17 and entrains an-

idromically ( Fig. 9 A). In this case the orthodromic reentrainment

akes longer (27.5 days) than the antidromic reentrainment (22.5

ays); to see this compare the Z = 10 and Z = 11 data points in

ig. 7 A. Furthermore, this orthodromic Z = 10 trip also has a longer

eentrainment time than the corresponding 10-zone eastward trip

or τc = 24 . 6 h, which reentrains antidromically (21.5 days); to see

his compare the orange and black Z = 10 data points in Fig. 7 A.

he possibility of antidromic reentrainment being faster than or-

hodromic reentrainment was also noted in a molecular model of

he mammalian circadian clock ( Leloup and Goldbeter, 2013 ). This

eature is due to x u creating a boundary that separates the x 0 val-

es that reentrain through phase advances from those that reen-

rain through phase delays, and the fact that reentrainment times

re sensitive to the distance between x 0 and this boundary. 

To better understand the effect of photoperiod and intrinsic pe-

iod on orthodromy/antidromy, we computed the differences in

eentrainment times for the specific cases of trips made 10 time

ones to the east and west ( | Z| = 10 ) over a range of N and τ c 

alues. To simplify the argument, we choose the Poincaré section

o lie at X = 12 for the different LD-entrained solutions that we

ill consider. This implies that x s = 12 . Antidromic reentrainment

an only occur when the distance between x s and x u is less than

2. In Fig. 10 we show a heat map derived from cobweb simula-

ions for trips 10 h to the east and west. We plot the difference

f reentrainment times (east minus west). There are three princi-

al features of this heat map. First is the solid black curve, which

e call the neutral period curve for | Z| = 10 , or NPC 10 . The neu-
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Fig. 9. Unstable fixed point of entrainment map controls whether reentrainment is orthodromic or antidromic. (A) After traveling 8 time zones east (a phase advance of 

the LD cycle), reentrainment occurs through phase advances and is therefore orthodromic if τc = 24 . 2 h. The reentrainment time is 17.69 days. (B) The same trip as in (A) 

reentrains through phase delays and is therefore antidromic if τc = 24 . 6 h. The reentrainment time is 24.64 days. (C) After traveling 8 time zones west (a phase delay of 

the LD cycle), reentrainment occurs through phase delays and is therefore orthodromic if τc = 23 . 8 h. The reentrainment time is 19.31 days. (D) The same trip as in (C) 

reentrains through phase advances and is therefore antidromic if τc = 23 . 4 h. The reentrainment time is 23.35 days. 

Fig. 10. East-West asymmetry and antidromic reentrainment depend on daylength 

N . Reentrainment times were determined by cobwebbing entrainment maps for 

eastward and westward trips of 10 time zones ( Z = ±10 ) over a range of N and 

τ c values with I = 100 lux and the stable fixed point held at x s = 12 . The colormap 

represents the degree of asymmetry in reentrainment times in units of days, and 

was calculated by subtracting the reentrainment time for Z = 10 from the reentrain- 

ment time for Z = −10 . Therefore negative values correspond to ( N , τ c ) pairs for 

which eastward travel is worse, and positive values to westward travel being worse. 

Along the black neutral period curve (NPC 10 ), reentrainment times are the same for 

eastward and westward travel. Along the upper dashed white curve (ADC 10 + ), the 

unstable fixed point is 10 h to the right of x s , i.e. x u = 22 . Along the lower dashed 

white curve (ADC 10 − ), the unstable fixed point is 10 h to the left of x s , i.e. x u = 2 . 

In between these antidromy curves all reentrainment is orthodromic; outside these 

curves all reentrainment is antidromic. Note that eastward travel is much worse 

than westward travel (dark blue colors) near ADC 10 + , whereas westward travel is 

much worse than eastward travel (dark red colors) near ADC 10 − . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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tral period curve is a generalization of the concept of neutral pe-

riod introduced by Aschoff et al. (1975) . Points on NPC 10 represent

( N , τ c ) parameter pairs for which the reentrainment time after a

trip 10 time zones east is identical to the reentrainment times for

10 zones to the west. For any parameter values that lie above the

NPC 10 , trips of 10 zones to the east are worse than 10 zones to

the west. The other two important features of Fig. 10 are the dark
lue and red regions of the heat map. These lie in a neighborhood

f what we call the ADC 10 + and ADC 10 − antidromy curves. These

urves correspond to parameter values at which x u − x s = 10 or -10

espectively. For parameter values that lie near ADC 10 + (ADC 10 − ),

rips 10 zones to the east (west) place the initial condition for

eentrainment very close to the unstable fixed point x u . Reentrain-

ent times calculated from the map for such initial conditions are

rbitrarily long. For parameter values between the two antidromy

urves, reentrainment after a trip of 10 time zones is always ortho-

romic. But for eastward trips made with parameter values above

he ADC 10 + , reentrainment is antidromic. While for westward trips

ade with parameters below the ADC 10 − curve, reentrainment is

ntidromic. 

By studying a fixed horizontal slice of Fig. 10 , we can compare

ow a traveler’s reentrainment times can differ as a function of

he time of the year. For example, during the summer months the

alue N in the photoperiod is larger than 12, while during the win-

er it is less than 12. Thus the left N = 8 h edge of the graph cor-

esponds to reentrainment during the winter and the right edge at

 = 16 h corresponds to reentrainment during the summer. Con-

ider the τc = 24 . 2 h slice which shows that traveling east will be

orse than west at all times of the year. The asymmetry is greater

n the summer than in the winter. Furthermore in winter the reen-

rainment will be orthodromic; the parameter pair (8, 24.2) lies be-

ow ADC 10 + . In summer it will be antidromic; the parameter pair

16, 24.2) lies above ADC 10 + . For a person with a slower body clock,

.g. τc = 24 . 3 h, eastward travel is still worse than westward all

ear-round and reentrainment is still orthodromic in winter and

ntidromic in summer, but now the east/west asymmetry is more

evere in winter than summer. For someone with a fast body clock,

.g. τc = 23 . 9 h, west is always worse than east, but more so in

ummer than winter. Here, reentrainment is antidromic in winter

since (8, 23.9) lies below ADC 10 − ), and orthodromic in summer

since (16, 23.9) lies above ADC 10 − ), which is the opposite relation-

hip between season and the type of reentrainment as the other

wo τ values considered. 
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Fig. 11. East-West asymmetry persists in the absence of antidromic reentrainment. 

For entrainment maps over a range of N and τ c values with I = 100 lux and the 

stable fixed point held at x s = 12 (same maps as in Fig. 10 ), the first iterate of 

the maps was used as a surrogate for the reentrainment time following eastward 

and westward trips of 6 time zones ( Z = ±6 ). The colormap represents the degree 

of asymmetry in the first iterate, and was calculated by subtracting 
N,τc 
(6) from 


N,τc 
(18) ; see text for definition of 
N,τc 

(x 0 ) . Negative values correspond to ( N , τ c ) 

pairs for which eastward travel is worse, and positive values to westward travel be- 

ing worse. Along the black neutral period curve (NPC 6 ), 
N,τc 
(6) = 
N,τc 

(18) imply- 

ing reentrainment times are the same for eastward and westward travel. Along the 

white orthodromy curve (ODC), the unstable fixed point is 12 h away from x s (i.e. 

x u = 0 = 24 ), and all reentrainment is orthodromic. At the intersection of the ODC 

and NPC 6 (the gray dot), reentrainment is both orthodromic and east-west symmet- 

ric. From this intersection point, increasing (decreasing) τ c or decreasing (increas- 

ing) N introduces an asymmetry leading to worse jet lag for eastward (westward) 

travel; see text for a detailed explanation of this phenomenon based on properties 

of the entrainment map. 
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Note that the axes of the heatmap shown in Fig. 10 are τ c and

 , which are the same two parameters as the axes of the Arnold

nion in Fig. 4 D (albeit with the axes reversed). These two figures

onvey different information however. The Arnold onion shows

ow the stable entrained phase x s changes with parameter vari-

tions. It does not contain information about the transient time

t takes for trajectories to converge to the stable phase. The heat

ap in Fig. 10 , on the other hand, is constructed so that the stable

hase is always at x s = 12 for all parameter pairs. Thus it does not

ontain meaningful phase of entrainment information, but instead

rovides valuable information about reentrainment times. 

.4. Explaining the east-west asymmetry 

As above, choose the Poincaré section to lie at X = 12 for the

ifferent LD-entrained solutions. Since x s is fixed at 12, we can

ary the location of x u by changing τ c and/or N . In general, increas-

ng τ c makes x u decrease, while decreasing N makes x u increase.

y balancing N and τ c appropriately, we define the orthodromy

urve (ODC) as a monotone decreasing curve in N − τc space along

hich the distance | x u − x s | = 12 ; see the white curve in Fig. 11 . To

nd this curve, we chose the values N = 8 , 12, and 16 h and com-

uted the corresponding τ c values that led to | x u − x s | = 12 . We

hen fit a quadratic curve through the ensuing three ordered pairs

the white and gray dots in Fig. 11 ); the resulting curve is quite

inear, suggesting that three points is sufficient for approximating

he shape of the ODC. The importance of the ODC is that an oscil-

ator with parameters ( N , τ c ) of a point chosen along the ODC can

nly experience orthodromic reentrainment, since it is not possible

or a 12-h trip leaving from x s to go beyond x u in either direction. 

Next we focus on six hour trips in either direction. We will use

he first iterate of the entrainment map to help determine whether

eentrainment after travel to the east is faster or slower than af-

er travel to the west. Define 
N,τc 
(x 0 ) = | �(x 0 ) − x 0 | . This is the

istance of the entrainment map from the diagonal for trips with

nitial condition x 0 for the choice ( N , τ c ). It measures the amount

f phase advance or delay on the first iterate. A larger value in-
icates a greater amount of phase change. We have found that a

arger initial phase change ultimately leads to shorter reentrain-

ent times. We shall use 
N,τc 
(x 0 ) as a surrogate for compari-

on of actual reentrainment times. An eastward trip of 6 h corre-

ponds to x 0 = 18 and a 6 h westward trip corresponds to x 0 = 6 .

hus our convention is that for a particular ordered pair ( N , τ c ), if

N,τc 
(6) < 
N,τc 

(18) , then reentrainment after a trip to the west is

onger. If the inequality is switched, trips to the east lead to longer

eentrainment. 

Using this convention and computing at the left endpoint

f the ODC, we find 
8, 24.1683 (6) > 
8, 24.1863 (18). This implies

hat an eastward trip of 6 h is followed by longer reentrain-

ent compared to a westward trip of 6 h. At the right end-

oint of the ODC, we find that 
16, 23.9893 (6) < 
16, 23.9893 (18)

mplying that westward trips take longer to reentrain from. By

ontinuously varying N and τ c along the ODC, there exists a

nique value, found to be N = 11 . 8116 , τc = 24 . 1035 , at which

11 . 8116 , 24 . 1035 (6) = 
11 . 8116 , 24 . 1035 (18) , i.e. the distance from the

ap to the diagonal is the same for x 0 = 6 and 18. We call this

 neutral period point since it is a combination of photoperiod

nd intrinsic period for which reentrainment times are the same

or the pair of initial conditions that lie a symmetric distance of

 h away from the stable fixed point x s = 12 ; see the gray dot in

ig. 11 . We next computed the neutral period points along the ver-

ical edges of the parameter space, finding them to be at N = 8 ,

c = 23 . 8133 and N = 16 , τc = 24 . 2147 (black dots in Fig. 11 ). Since

he maps depend continuously on N and τ c , there exists a neutral

eriod curve, NPC 6 , in the N − τc space, that passes through these

hree neutral period points, along which 6 h trips in either direc-

ion lead to the same reentrainment time as determined from the

ondition 
N,τc 
(6) = 
N,τc 

(18) ; see the black curve in Fig. 11 . 

The neutral period curve NPC 6 divides the parameter space into

wo distinct regions. Above NPC 6 (such as at the left endpoint of

he ODC), reentrainment after eastward trips takes longer. Below

PC 6 (such as at the right endpoint of the ODC), reentrainment

fter westward trips takes longer. Note that NPC 6 must lie be-

ow the ODC for N < 11.8116 and above the ODC for N > 11.8116.

o understand why, consider the neutral period point on the ODC

here N = 11 . 8116 , τc = 24 . 1035 . At this point 
11 . 8116 , 24 . 1035 (6) =
11 . 8116 , 24 . 1035 (18) . Now consider a value of the parameters with

he same N value but larger τ c value. Since the entrainment

ap moves up as τ c increases, the value �(6) will shift further

way from the diagonal while the value �(18) will shift closer

o the diagonal. This immediately implies for all τ c > 24.1035 that

11 . 8116 ,τc 
(6) > 
11 . 8116 ,τc (18) , which implies that eastward travel is

orse. Thus all such parameter pairs must lie on the same side of

eutral period curve as the left endpoint of the ODC. Alternatively,

or τ c < 24.1035, the map �( x ) shifts down and 
11 . 8116 ,τc 
(6) <

11 . 8116 ,τc 
(18) ; westward travel is worse and all these parameter

airs must lie on the same side of NPC 6 as the right endpoint of

he ODC. Together, this implies the following relationship between

PC 6 and the ODC: to the left of the intersection point of NPC 6 

nd the ODC, NPC 6 must lie below the ODC; whereas to the right

f their intersection point, NPC 6 must lie above the ODC. 

Several observations are in order. First, since NPC 6 intersects

he ODC, our results show that east-west asymmetry does not re-

uire antidromic reentrainment. Indeed, along the ODC, all trips

ave orthodromic reentrainment. Roughly half of this curve lies to

he left of the NPC where east is worse and the other to the right

here west is worse. The results suggest that east-west asymmetry

s a natural feature of the FJK model. Second, by considering vari-

us horizontal slices of the N − τc plane shown in Fig. 11 for fixed

alues of τ c , we see that the duration of light N in the photoperiod

s crucial for determining the direction and extent of asymmetry.

n particular, as N is increased, westward travel takes increasingly

onger to recover from. This suggests that, for example, individuals
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with fast clocks will experience more jet lag after eastward trips

than westward trips in the winter, whereas during the summer

westward trips are worse. On the other hand, for individuals with

slow clocks, eastward trips cause more jet lag than westward trips

at all times of the year, since horizontal lines above τc = 24 . 2 h lie

to the left and above NPC 6 for all N . 

3.5. Fast reentrainment and the phaseless set 

Numerous experiments and models have found that a stimu-

lus of a critical strength applied at a critical phase can suppress

the amplitude of a circadian oscillator to nearly zero ( Jewett et al.,

1991; Sun et al., 2016; Ukai et al., 2007; Winfree, 1970 ). It has been

suggested that driving the oscillator to this phaseless position, re-

ferred to as the “singularity”, could shorten reentrainment time by

allowing the trajectory to take a “shortcut” in phase space ( Serkh

and Forger, 2014; Winfree, 1991 ). We show that in the FJK model,

this shortcut can arise at both low and high light intensities. We

will use the entrainment map to locate a set of initial conditions

(critical phases) that allow trajectories to take this shortcut. For

higher light intensities, this shortcut can be accessed from points

on the LD-entrained solution by changing the light offset x by an

appropriate amount, which can give rise to unusually fast reen-

trainment. 

Consider higher intensity light with I = 10 0 0 lux. In Fig. 12 A,

we reconstruct the heat map for τc = 24 . 2 h using direct simula-

tion. In comparison to Fig. 6 A, note that now there is a band near

Z = 10 and Z = 11 for which reentrainment times are much shorter

than for nearby Z values. These are examples of trips for which

reentrainment is much faster than would be expected. In addition,

note that within this band, reentrainment depends on the arrival

time much more sensitively than for the I = 100 lux case. For ex-

ample, for Z = 10 arrival times near 7 AM incur shorter reentrain-

ment than others. For Z = 10 . 5 , arrival times from 12:30 PM to

5:30 PM have shorter reentrainment, while for Z = 11 , arrival from

11:00 PM to 1:30 AM have quite short reentrainment times. 

Recall the definition of the demarcation point Z D ∈ (−12 , 12)

which solves x u = (x s + Z D ) mod 24. For τc = 24 . 2 , Z D = 10 . 67 as

the unstable fixed point lies roughly 10.67 time zones to the east

of the stable one. The demarcation point Z D lies in the band of fast

entrainment. Consider the Poincaré map fixed at X = 6 (1:00 PM),

which has x s = 6 and x u = 16 . 67 . Fig. 12 B shows entrainment times

for the X = 6 vertical column of the heat map, centered around

Z = 0 . Note that as | Z | increases, entrainment times increase as

would be predicted from the map. However as Z increases through

10, entrainment times suddenly begin to dip, reaching a local min-

imum at Z = 10 . 46 (which is near Z D ), then increasing until Z = 11

before beginning to fall again (gray shaded region of figure). The

entrainment map predicts instead that the reentrainment times

would show a local maximum, not a local minimum, in this neigh-

borhood. In contrast, with I = 100 lux both the map and simula-

tions show a local maximum in this neighborhood ( Fig. 8 A), which

is why we chose to work with that light level in Sections 3.3 and

3.4 . 

To explain why there is fast entrainment, we identify a region

of phase space that Guckenheimer (1975) calls a phaseless set . The

easiest way to describe this set is to consider an unforced oscilla-

tor, say with n ≡ 0 which gives rise to the stable DD limit cycle.

Every point on the DD limit cycle can be assigned a phase be-

tween 0 and τ c . Now consider the A − C phase plane. Following

( Guckenheimer, 1975 ), we define a point to be phaseless if every

neighborhood of that point intersects each isochron of the stable

DD limit cycle. An isochron consists of the set of initial conditions

that have the same asymptotic phase as a particular point on the

DD limit cycle. In particular, two nearby initial conditions that lie

in the phaseless set can have very different asymptotic phases. The
haseless set lies in a region of phase space where the isochrons

eet to form a pinwheel or a singularity. For any fixed value of

 in the FJK model, including n = 0 (DD) or n = 1 (LL), this singu-

arity lies in a neighborhood of the origin in A − C space. A tubu-

ar neighborhood of the origin extending in the n direction can be

onsidered as the generalization of the phaseless set for the pe-

iodically LD-forced FJK model. Trajectories that pass through this

et deviate from the usual dynamics in that they do not stay close

o the LL and DD limit cycles during the reentrainment process.

nstead they take the aforementioned shortcut across phase space

uring reentrainment. Characteristics of these trajectories include

mplitude suppression, an inability to predict whether the entrain-

ent is strictly through advance or delay, and situations in which

he phase of the trajectory cannot be clearly discerned on a cycle-

y-cycle basis. What we have found in simulation is that travel to

ime zones in a neighborhood of the demarcation point Z D , equiva-

ently choosing an initial condition on the Poincaré section near x u ,

eads to trajectories that enter the phaseless set and take a short-

ut across phase space. 

Fig. 12 C–F shows the reentrainment process for the trajecto-

ies whose initial conditions lie in a neighborhood of x u , x 0 = 16 . 46

Panels C and D) and x 0 = 16 . 68 (Panels E and F). Both trajectories

how amplitude suppression and take a shortcut across the pro-

ection onto the A − C phase space; Panels C and E. The green dots

n each of those panels indicate where the lights turned on in the

urrent LD cycle. By the 4th cycle, both trajectories have reached a

egion of maximal suppression, but at the 5th cycle, the trajectory

n Panel C emerges from that region in such a way that it quickly

ntrains to the correct phase (as shown by the red dot(s) on each

f the panels). The trajectory in Panel E does not. From Panel D,

ne could argue that the trajectory entrains through phase advanc-

ng, but the entrainment in Panel F defies such characterization.

n particular, the phase of this trajectory does not appear to be

redictable on a cycle-by-cycle basis. What is common to the two

rajectories in Panels D and F is that prior to entering the region

f amplitude suppression (phaseless set), neither one seems to be

ystematically phase advancing or delaying. We comment further

n this in the Appendix, where we show that a shortcut also ex-

sts in phase space at lower light intensities, but that this shortcut

s not directly accessible through travel. 

.6. Jet lag due to north-south travel 

The question of whether jet lag occurs due to north-south travel

as received very little attention. Here we show that in fact there

an be jet lag effects following long-distance north-south travel

ue to significantly different photoperiods between the departure

nd arrival locations. We show that these effects depend on the

ntrinsic period τ c of the traveler, and that the direction of reen-

rainment (phase advance or phase delay) can be considered anal-

gously to orthodromic and antidromic reentrainment due to east-

est travel. 

In modeling north-south travel and subsequent reentrainment,

et N dep be the number of hours of light in the departure city and

 dest be the number of hours of light in the destination city. We

ill make the following assumptions: 

• Prior to and during the flight, the traveler remains entrained to

the departure LD cycle ( N = N dep ). 
• Upon arrival at the destination, the traveler lies on a Poincaré

section that intersects the LD-entrained solution ( N = N dep ) of

the departure city X dep hours after the lights turned on in the

departure city. 
• This Poincaré section intersects the LD-entrained solution ( N =

N dest ) of the destination city at a location X dest hours after the

lights last turned on in the destination city. 
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Fig. 12. Dramatically short reentrainment times are possible for travelers entering the phaseless set. (A) Heatmap of direct simulation reentrainment times (in days) for 

arrival times X and trips Z with τc = 24 . 2 h, N = 12 h, and I = 10 0 0 lux. There is a local minimum for eastward trips of 10.5 h ( Z = 10 . 5 ). (B) Reentrainment times for X = 6 

from direct simulation (black) and from cobwebbing the corresponding maps (magenta). The local minimum of reentrainment time observed in direct simulation corresponds 

to a local maximum predicted by the map, and occurs for trips that place the traveler in a region near the unstable fixed point of the map called the phaseless set (gray 

shading). (C–D) Phase plane trajectory (C) and time course (D) during reentrainment for Z = 10 . 46 , which exhibits amplitude suppression and very fast reentrainment (4.5 

days) for the traveler (orange). The green dots correspond to the location of the traveler when the lights turn on ( x = 0 ), with labels indicating the first 7 cycles. The red 

dot is x = 0 for the reference oscillator (blue trajectory). (E-F) Phase plane trajectory (E) and time course (F) during reentrainment for Z = 10 . 68 , which exhibits amplitude 

suppression but does not lead to very fast reentrainment (9.5 days). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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• Upon arrival, in direct simulation, the traveler is subjected to

the appropriate amount of light and/or dark to complete the

current 24 h cycle and is then subjected to the destination LD

cycle ( N = N dest ). 
• Upon arrival, the entrainment map is based on the Poincaré

section X dest and reentrainment time is calculated with an ap-

propriate initial condition as described below. 

To illustrate our findings we will work with a specific example:

ravel between New York City and Santiago, Chile on the North-

rn hemisphere’s summer solstice. The reason for this choice is

hat at this time of the year, both cities lie in the same time

one and we do not have to adjust for east-west shifts. Below

e will refer to the NYC LD-entrained solution and the Santiago

D-entrained solution. These solutions occur in our model for LD

hotoperiods of 15:9 ( N = 15 h) and 10:14 ( N = 10 h) respectively,

ith I = 10 0 0 lux. This light intensity is characteristic of outdoor
ight and provides a wider range of entrainment in τ c than does

00 lux ( Fig. 4 C), which makes it easier to illustrate some of our

ndings in Sections 3.6 and 3.7 . 

On the northern solstice (June 20, 2016), the sun rose at 5:25

M and set at 8:31 PM in New York City (day length of 15:05 h),

hereas in Santiago, Chile the sun rose at 7:46 AM and set at 5:42

M (day length of 9:56 h). For illustrative purposes we will take

YC to have an N = 15 h photoperiod with sunrise at 5:30 AM ( x =
 ) and sunset at 8:30 PM ( x = 15 ), and Santiago to have an N = 10

 photoperiod with sunrise at 8 AM ( x = 0 ) and sunset at 6 PM

 x = 10 ). 

The flight time from New York City to Santiago is roughly 13 h.

onsider a leaving time of 10 AM from New York City with an ar-

ival time of 11 PM in Santiago. Let us assume that the traveler is

nitially entrained to the NYC LD-entrained solution and remains

o through the duration of the flight. Thus on arrival in Santiago,

he traveler would be expecting 6.5 h of darkness, but instead re-
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Fig. 13. Change in daylength due to north-south travel can cause jet lag. For all panels, τc = 24 . 2 h and I = 10 0 0 lux. (A) LD-entrained solution in Santiago on June solstice 

(photoperiod N = 10 h). The sun rises at 8 AM (red dot) and sets at 6 PM (black dot). The green dot represents a traveler from NYC that arrives in Santiago at 11 PM and is 

still entrained to the NYC LD cycle, where 11 PM corresponds to the X NY = 17 . 5 section denoted by the solid gray line. The blue dot represents a reference oscillator already 

entrained to the Santiago LD cycle, where 11 PM corresponds to the X SC = 15 section denoted by the dashed gray line. Therefore the traveler must reentrain and does so 

through phase advancing. (B) LD-entrained solution in NYC on June solstice (photoperiod N = 15 h). The sun rises at 5:30 AM (red dot) and sets at 8:30 PM (black dot). 

The magenta dot represents a traveler from Santiago that arrives in NYC at 11 PM and is still entrained to the Santiago LD cycle, where 11 PM corresponds to the X SC = 15 

section denoted by the dashed gray line. The blue dot represents a reference oscillator already entrained to the NYC LD cycle, where 11 PM corresponds to the X NY = 17 . 5 

section denoted by the solid gray line. Therefore the traveler must reentrain and does so through phase delaying. (C) Entrainment map for NYC to Santiago travel arriving 

at 11 PM. The stable fixed point is located at x s = 14 . 003 , which is where the X NY = 17 . 5 section (solid gray line) intersects the N = 10 LD-entrained solution in (A). The 

initial condition is located at x 0 = 15 , because upon arrival the traveler will experience 9 h of darkness before the sun rises. Cobwebbing the map yields reentrainment 

through phase advance (see inset), in agreement with direct simulation. (D) Entrainment map for Santiago to NYC travel arriving at 11 PM. The stable fixed point is located 

at x s = 18 . 496 , which is where the X SC = 15 section (dashed gray line) intersects the N = 15 LD-entrained solution in (B). The initial condition is located at x 0 = 17 . 5 , because 

upon arrival the traveler will experience 6.5 h of darkness before the sun rises. Cobwebbing the map yields reentrainment through phase delay (see inset), in agreement 

with direct simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ceives 9 h of darkness since the sun does not rise until 8 AM. Thus

at arrival, the traveler is not entrained to the Santiago N = 10 LD

cycle. For now, consider a traveler with a normal internal clock of

τc = 24 . 2 h. At arrival, the traveler lies on the X NY = 17 . 5 Poincaré

section of the NYC LD-entrained solution. The intersection of this

Poincaré section with the Santiago LD-entrained solution occurs for

X SC = 14 . 005 . For travel from South to North, if a traveler leaves

Santiago at 10 AM ( X SC = 2 ) and takes a 13-h flight, then arrival in

NYC is at 11 PM which is X SC = 15 and X NY = 18 . 946 . Panel A of

Fig. 13 shows the N = 10 Santiago LD-entrained solution and Panel

B shows the N = 15 NYC LD-entrained solution. In Panel B, the

solid gray line is the projection of the Poincaré section onto the

NYC LD-entrained solution at arrival corresponding to X NY = 17 . 5 .

The projection of this same Poincaré section onto the Santiago LD-

entrained solution at X SC = 14 . 005 is shown in solid gray in Panel

A. Similarly for travel from Santiago to NYC, the dashed gray lines

correspond to the projection of the Poincaré section at arrival cor-

responding to X SC = 15 of the Santiago LD-entrained solution and

X NY = 18 . 946 of the NYC LD-entrained solution. 

The change in the stable entrained phase after north-south

travel is already predicted by our earlier results concerning the

Arnold onion and those of Schmal et al. (2015) . North-south travel

is equivalent to moving along a vertical slice of Fig. 4 D. Knowing

that there is a change in stable phase indicates that there may be
n associated time to reentrainment, which we can calculate by

obwebbing the appropriate entrainment map. 

We first calculate reentrainment via direct simulation. Since the

un will come up in Santiago at 8 AM, we simulate 9 more hours

f darkness starting with an initial condition corresponding to 11

M on the NYC LD-entrained solution ( X NY = 17 . 5 ) and then begin

0:14 LD cycles. At the same time we also start a reference oscil-

ator with initial conditions corresponding to 11 PM on the San-

iago LD-entrained solution ( X SC = 15 ) and subject it to the same

rotocol. We keep track of the times that the trajectories cross the

oincaré section X SC = 14 . 005 , and when they cross within 0.5 h of

ach other we declare the traveler trajectory to be entrained. This

rocedure gives an entrainment time of 71.458 h (see ∗ in Table 1 ).

ote that travel from NYC to Santiago can be considered as a phase

elay in the sense that at arrival at 11 PM, the traveler would ex-

ect the lights to turn on at the start of the next NYC-based LD

ycle after 6.5 h. Instead the lights turn on at the beginning of the

ext SC-based LD cycle which occurs after 9 h. Thus the traveler is

hase delayed with respect to lights on in the arrival time zone. 

To compute entrainment time using the map, we build a N = 10

ap with the Poincaré section at X SC = 14 . 005 on the Santiago LD-

ntrained solution. Since arriving at 11 PM means there will be

 more hours of dark before the 10:14 LD cycle begins, we cob-

eb the map using an initial condition of x 0 = 15 . This proce-
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Table 1 

Reentrainment times for southward and northward travel with τc = 24 . 2 h and I = 10 0 0 lux. 

Direct simulation Entrainment map 

t t ref t re f − t x n x n +1 x s − x n +1 ρ( x n ) 	ρ( x n ) 

NYC to Santiago 23.776 23.005 −0.772 15 14.780 −0.775 23.780 23.779 

47.598 47.005 −0.593 14.780 14.622 −0.617 23.842 47.621 

71.459 ∗ 71.005 −0.454 14.622 14.465 −0.460 23.843 71.465 ∗∗

Santiago to NYC 24.34 4 4 24.9960 0.6516 17.5 17.841 0.655 24.341 24.341 

48.5594 ∗ 48.9960 0.4366 17.841 18.040 0.456 24.199 48.540 ∗∗

d  

w  

s  

j  

c  

a  

N  

t  

e  

i  

v

m  

s

 

1  

a  

l  

i  

i  

c  

m  

t  

e  

B  

T  

r  

N  

a

 

r  

f  

t  

b  

t  

2

 

e  

t  

a  

1  

c  

W  

1  

v  

c  

p  

a  

t  

2  

j  

v  

c  

s  

t  

a

Fig. 14. Reentrainment following north-south travel depends on intrinsic period 

and is typically antidromic. (A) Jet lag due to north-south travel is most severe 

for extreme intrinsic periods (greater than 5 days for τ c ≤ 23 and τ c ≥ 25.4), with 

southbound travel (blue) being worse for slow intrinsic clocks and northbound 

travel (red) being worse for fast intrinsic clocks. (B) Location of stable fixed point x s 
and initial condition x 0 for southbound travel as a function of τ c . Severity of south- 

bound jet lag in (A) reflects the distance between x s and x 0 , with zero days of reen- 

trainment required when x 0 is within 0.5 h of x s , as is the case for τc = 23 , 24.6, 

and 24.8 h. For 23 ≤ τ c ≤ 24.6, x s < x 0 , therefore reentrainment is through phase ad- 

vances and is considered antidromic since southbound travel in the month of June 

is a phase delay of the LD cycle; see text for detailed explanation. (C) Location of 

stable fixed point x s and initial condition x 0 for northbound travel as a function of 

τ c . Severity of northbound jet lag in (A) reflects the distance between x s and x 0 . 

For 23 ≤ τ c ≤ 24.6, x s > x 0 , therefore reentrainment is through phase delays and is 

considered antidromic since northbound travel in June is a phase advance of the LD 

cycle. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ure gives an entrainment time of 71.464 h (see ∗∗ in Table 1 ),

hich is in close agreement to the direct simulation result. Fig. 13 C

hows a cobweb diagram of the reentrainment process. The tra-

ectory starts with x 0 = 15 and phase advances (moves to the left

loser to the start of the LD cycle) towards the stable fixed point

t X SC = 14 . 005 . Thus in this situation, although the travel from

orth to South is a phase delay, the reentrainment is antidromic

hrough phase advancement. This is in contrast to the norm for

ast-west travel for which reentrainment is typically orthodromic,

.e. through phase delays when the travel yields a phase delay, and

ice versa for advances. Thus, it is surprising that the “natural”

ode of reentrainment for travel from north to south at the June

olstice for a traveler with a normal body clock is antidromic. 

For travel from south to north, if a traveler leaves Santiago at

0 AM ( X SC = 2 ) and takes a 13-h flight, then arrival in NYC is

t 11 PM which is X SC = 15 and X NY = 18 . 946 . Following a simi-

ar procedure as above, we simulate 6.5 h of darkness before start-

ng 15:9 LD cycles. Through direct simulation the entrainment time

s 48.56 h. Similarly, we build the X NY = 18 . 946 , N = 15 map and

heck reentrainment with an initial condition x 0 = 17 . 5 . Reentrain-

ent time using the map is found to be 48.54 h. Travel from south

o north can be considered a phase advance since the traveler will

xperience the onset of the next LD cycle sooner in NYC than in SC.

ut, as noted from Fig. 13 D, reentrainment is through phase delay.

hus this reentrainment is also antidromic. As seen from the above

esults, for τc = 24 . 2 h traveling from photoperiods of N = 10 to

 = 15 h incurs roughly the same reentrainment time (2 to 3 days)

s traveling from N = 15 to N = 10 h. 

In Fig. 14 A we show reentrainment times calculated from di-

ect simulation for travel between NYC and Santiago for τ c ranging

rom 22.6 to 26 h. Note, as τ c decreases, it takes longer to reen-

rain after the northbound Santiago to NYC trip than the south-

ound trip. The opposite is true as τ c increases. Also observe that

here are values of τ c for which there is no jet lag, e.g. τ c ≈ 23,

4.7. 

As we change τ c , both the NYC LD-entrained and SC LD-

ntrained solutions change in shape in phase space. This means

hat the locations of various Poincaré sections change. For arrival

t 11 PM, while this still corresponds to lying on the section X NY =
7 . 5 , it means that the X SC section changes. Fig. 14 B shows the lo-

ation of the X SC section as a function of τ c . It is parabolic shaped.

hat does not change is the location of the initial condition x 0 =
5 from which we check reentrainment time. For any fixed τ c , the

ertical distance between the dashed line at x 0 = 15 and the blue

urve of section locations, which corresponds to the stable fixed

oints x s for the respective maps, indicates the distance over which

 trajectory would have to evolve in order to reentrain. Note that

he curve of sections intersects x 0 = 15 at the values τ c ≈ 23 and

4.7. Thus the distance | x 0 − x s | < 0 . 5 which means that the tra-

ectory is already entrained. This explains why travel for nearby

alues of τ c experience no jet lag. Similarly Fig. 14 C shows the lo-

ation of the X NY section as determined from using the X SC = 15

ection. This curve is also parabolic shaped, but opens down. It in-

ersects the line of initial conditions at x 0 = 18 at τ c ≈ 23 and 24.7

s well. 
t  
For travel from NYC to Santiago, Fig. 14 B shows that the curve

f sections lies below x 0 = 15 for values lying between 23 and 24.7.

his means that the stable fixed point lies to the left of the ini-

ial condition x 0 = 15 . Thus reentrainment would occur through

dvance. However, for τ c less than 23 or greater than 24.7, the

table fixed point x s is to the right of x 0 = 15 so reentrainment

s through phase delay. Since southward travel at the northern sol-

tice is considered to be a delay, this reentrainment can be thought

f as being orthodromic. Note that at the extreme values of τ c , or-

hodromic reentrainment takes longer than the antidromic reen-

rainment that occurs for intermediate values 23 < τ c < 24.7. In ad-
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Fig. 15. Jet lag due to trips involving both north-south and east-west travel can be more or less severe than purely eastward or westward travel depending on intrinsic 

period and daylength. (A) Illustration of trips considered: pure eastward or westward travel between NYC and Beijing (E 15 /W 15 ) and Santiago and Perth (E 10 /W 10 ), travel 

between NYC and Perth (SE/NW), and travel between Santiago and Beijing (NE/SW). NYC and Santiago are 11 time zones away from Beijing and Perth. The trips are made on 

the June solstice when NYC/Beijing have 15 h of light and Santiago/Perth have 10 h of light. For these simulations we set I = 10 0 0 lux. (B) Reentrainment times for τc = 24 . 6 

h. For τc = 24 . 6 h, all reentrainment occurs through phase delays. Blue (red) bars correspond to eastward (westward) travel. See text for an explanation of the ordering of 

reentrainment times. (C) Reentrainment times for τc = 23 . 0 h. In this case all reentrainment occurs through phase advances, and the ordering of reentrainment times is the 

opposite of the ordering for τc = 24 . 6 h. (D) Reentrainment times for τc = 24 . 2 h. In this case reentrainment can occur either through phase advance (E 10 ), phase delay (W 15 , 

NW, W 10 , SW, and SE), or fast reentrainment through the phaseless set (NE). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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dition, for travel from Santiago to NYC, orthodromic reentrainment

for τ c < 23 takes surprisingly long, on the order of 10 to 15 days.

For small τ c , the N = 15 entrainment map is closer to its bifur-

cation point than the N = 10 map. What this means is that the

derivative of the map at the stable fixed point x s is closer to one

for the N = 15 map compared to the N = 10 map. The magnitude

of this derivative controls the rate of attraction towards the fixed

point. The closer it is to one, the slower the reentrainment. At the

other extreme of τc = 26 h, the N = 10 map is closer to bifurca-

tion. The situation is reversed and southward trips taker longer to

reentrain from than northward trips. 

3.7. Travel that is both east-west and north-south 

Having separately considered jet lag due to east-west and

north-south travel, we now consider travel that combines both

east-west as well as north-south changes. The main point we

would like to address is the extent to which changes in photope-

riod synergistically add on to (or subtract from) jet lag due to pure

eastward or westward travel. We will consider four different cities,

New York City (NY), Santiago, Chile (SC), Beijing, China (BC) and

Perth, Australia (PA); see Fig. 15 A. The main reason to choose Bei-

jing and Perth is that they lie in the same time zone and have the

same photoperiods as New York City and Santiago respectively. We

shall assume that on the June solstice, both NYC and Beijing have

15:9 photoperiods with sunrise at 5:30 AM and sunset at 8:30 PM.

Santiago and Perth are both under 10:14 photoperiods with sun-

rise at 8:00 AM and sunset at 6:00 PM. Both Beijing and Perth are

11 time zones east of NYC and Santiago. We assume that the trav-

eler stays entrained to the HTZ during travel. Initially, we will work
ith two different periods of the intrinsic clock, τc = 23 and 24.6

. We choose these representative values because results from the

rior section indicate that strict north-south travel for individuals

ith these clocks produces no jet lag. Thus an interesting ques-

ion to explore is whether northeast and southeast (northwest and

outhwest) travel have different jet lag than pure eastward (pure

estward) travel. 

Fig. 15 A shows the different directions of travel that we shall

onsider. The directions SE, SW, NE and NW are self-explanatory.

he directions E 10 , W 10 , E 15 and W 15 refer to east-west travel un-

er conditions of N = 10 h for travel between Santiago and Perth

nd N = 15 h for travel between NYC and Beijing. Fig. 15 B shows

eentrainment times for various modes of travel for τc = 24 . 6 h

ith I = 10 0 0 lux. There are effectively four pairs of reentrainment

imes: 

 15 = NW < E 15 = NE < W 10 = SW < E 10 = SE . (8)

elow we shall explain why these pairs exist and why the order-

ng of reentrainment times follows this pattern. For now, note that

E travel has more jet lag than E 15 , and SW travel has more jet

ag than W 15 . These results show how the change in photoperiod

ffects travel over different time zones. Consider the NYC, Beijing,

erth triangle. Travel from NYC to Beijing requires 11 days for reen-

rainment. Travel from Beijing to Perth requires zero days of reen-

rainment. Yet travel from NYC to Perth requires 13 days of reen-

rainment despite the fact that strict north-south travel incurs no

et lag. Fig. 15 C shows reentrainment times for τc = 23 . 0 h with

 = 10 0 0 lux. Here, as would be expected, the ordering of the reen-

rainment times is exactly the opposite than the larger τ c case: 

 15 = NW > E 15 = NE > W 10 = SW > E 10 = SE . (9)
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hat is different is the degree to which north-south travel af-

ects jet lag, as illustrated by looking at the same travel triangle

s above. Beijing to Perth still requires zero days of entrainment.

ow E 15 travel from NYC to Beijing requires 17 days for reentrain-

ent, while the NYC to Perth travel only requires about 10 days to

eentrain. 

The reentrainment calculations for SE, SW, NE and NW travel

ombine the protocols that we had employed earlier to calculate

eentrainment due to east-west or north-south travel. In particu-

ar, we choose Poincaré sections as for north-south travel, but now

djust the initial condition to take the change in time zone into

onsideration. For example, consider travel from NYC to Perth with

rrival occurring at 10 AM Perth local time (DTZ). This corresponds

o 11 PM NYC local time (HTZ). The traveler, by assumption, re-

ains entrained to the NYC LD cycle. Thus at arrival in Perth, the

raveler is at X NY = 17 . 5 . We compute where this Poincaré section

ntersects the N = 10 Perth LD-entrained solution, which occurs

t X PA = 14 . 697 for τc = 24 . 6 h, and X PA = 14 . 803 for τc = 23 . 0 h.

e build an entrainment map for the N = 10 LD-entrained solu-

ion and compute the reentrainment time with initial condition of

 0 = 2 . We choose this initial condition because arrival at 10 AM

n Perth where sunrise occurs at 8AM means that 2 h of light have

lready occurred. Travel that is SW, NE, or NW is handled analo-

ously. 

To understand why certain pairs of travel have the same reen-

rainment time, consider the result that E 10 = SE. Above, we have

lready described the reentrainment protocol for SE travel. Now

onsider Santiago to Perth with arrival at 10 AM local Perth time

DTZ), which is 11 PM local Santiago time (HTZ). Now this corre-

ponds to X SC = 15 . Our protocol for east-west travel dictates that

e use X PA = 15 and again choose x 0 = 2 . Thus travel to Santiago

rom Perth (E 10 ) differs from NYC to Perth (SE) only to the extent

hat the entrainment maps being used are X PA = 15 compared to

 PA = 14 . 697 (E 10 ) or 14.803 (SE). Both use the same initial con-

ition x 0 = 2 . Thus the reentrainment time to these two different,

ut relatively close fixed points is nearly identical. Similar argu-

ents show why the other three pairs of travel have nearly iden-

ical reentrainment times. 

To explain the ordering of reentrainment times, take the case

c = 24 . 6 h, where we know that eastward travel is worse than

estward travel. Thus W 10 < E 10 and W 15 < E 15 . The reason that

 15 < W 10 has to do with how far the N = 15 and N = 10 maps are

rom bifurcating. As τ c increases, the fixed points of the N = 15

ap bifurcate before those of the N = 10 map. Thus for τc = 24 . 6

 the N = 15 map has a slope that is closer to one at its stable

xed point x s = 17 . 5 then the N = 10 map at its stable fixed point

 s = 10 . As stated in the previous section, entrainment times in-

rease dramatically when the map is close to bifurcation. When

c = 23 h, the N = 10 map is closer to bifurcating than the N = 15

ap and this causes W 10 < E 15 for this case. In fact for this case,

he closeness of the map to bifurcation explains why the W 15 reen-

rainment times are so much longer than the E 10 times. 

The choices of τc = 23 . 0 and 24.6 h were taken because those

ere the ones at which strict north-south travel incurs no jet lag.

he entrainment times for those two cases are anti-symmetric in

heir ordering. For a normal human traveler with τc = 24 . 2 h, one

ight expect entrainment times to fall somewhere between those

f the two specific cases. However, we would not expect the pair-

ng of certain reentrainment times to continue to exist. Panel D of

ig. 15 confirms, in part, these observations. First, reentrainment

imes do generally lie between those of the two specific cases for

ach of the respective trips. Further, there is no pairing of entrain-

ent times for certain trips since the Poincaré sections used to

uild the pairs, now, need not lie close to one another. We can

xplain the difference in reentrainment times within these pairs
sing the maps for north-south travel with τc = 24 . 2 h shown in

ig. 13 . 

Consider the pair W 15 and NW, which reentrain according to

imilarly-shaped maps with N = 15 and x 0 = 6 . 5 , where x s = 17 . 5

18.4 98) and x u = 3 . 04 8 (4.144) for W 15 (NW). Therefore both trav-

lers reentrain through phase delays, however the NW traveler

tarts closer to x u and has to cobweb further to get to x s than does

he W 15 traveler. Thus the maps predict that NW will take longer

o reentrain, which is consistent with the direct simulation results

hown in Fig. 15 D (12.5 versus 11.9 days). 

Next consider the pair W 10 and SW, which reentrain according

o similarly-shaped maps with N = 10 and x 0 = 4 , where x s = 15

14.003) and x u = 2 . 781 (1.565) for W 10 (SW). Again both travel-

rs reentrain through phase delays, however the SW traveler starts

urther from x u and does not have to cobweb as far to get to x s 
s does the W 10 traveler. Thus the maps predict that SW will take

ess time to reentrain, which is consistent with the direct simula-

ion results (10.4 versus 11.9 days). 

To summarize, we have found that NW travel incurs worse jet

ag than W 15 , whereas SW travel incurs less jet lag than W 10 . In

oth cases the westward component of the travel leads to reen-

rainment through phase delay. What is different is that in the for-

er case, the northbound component of the travel also requires

he traveler to phase delay to reentrain to the shorter photope-

iod, while in the latter case the southbound component requires

he traveler to phase advance to reentrain to the lengthened pho-

operiod. For NW the change in time zone and change in photope-

iod exacerbate each other leading to longer total reentrainment

han pure westward travel in the northern hemisphere. For SW the

hange in time zone and change in photoperiod counteract each

ther leading to shorter total reentrainment time than pure west-

ard travel in the southern hemisphere. 

Now consider eastward travel, starting with the E 10 and SE pair.

hese reentrain according to the N = 10 maps with x 0 = 2 , where

 s and x u are the same as for W 10 and SW. Here the maps predict

hat the Santiago to Perth traveler reentrains through phase ad-

ances, but the NYC to Perth traveler reentrains through phase de-

ays. Thus the change in photoperiod encountered by the SE trav-

ler has moved the unstable fixed point enough that the south-

ound component of the travel reverses the direction of reentrain-

ent with respect to pure eastward travel. Since the two travel-

rs reentrain in different directions and thereby traverse different

 values of the map, it is difficult to say which one will reen-

rain faster based solely on knowledge of the locations of x s and

 u . However cobwebbing the map predicts that E 10 reentrainment

ime will be longer than SE. These predictions regarding reentrain-

ent times and directions are confirmed by the direct simulation

esults (13.0 days for E 10 versus 10.5 days for SE). 

Finally, consider the E 15 and NE pair. These reentrain according

o the N = 15 maps with x 0 = 4 . 5 , where x s and x u are the same

s for W 15 and NW. Both travelers reentrain through phase delays,

ith the NE traveler starting closer to x u and having to cobweb

urther to get to x s than the E 15 traveler. Thus the map predicts

hat NE will take longer to reentrain, however this is not what

e find in direct simulation. Instead, the Santiago to Beijing trav-

ler reentrains much more quickly (5.6 days) than the NYC to Bei-

ing traveler (11.5 days), as shown in Fig. 15 D. The reentrainment

ime for NE is shorter than predicted by the map due to the ini-

ial condition x 0 = 4 . 5 being very close to x u = 4 . 144 and hence in

he phaseless set of the NE map. As discussed in Section 3.5 , with

he higher intensity light level used for these simulations ( I = 10 0 0

ux), reentrainment times for initial conditions lying in the phase-

ess set can be dramatically short. 
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4. Discussion 

For this study of jet lag, we chose the FJK model because

it has been fit to human data on how light affects the circa-

dian system ( Forger et al., 1999; Jewett and Kronauer, 1998; Kro-

nauer, 1990; Kronauer et al., 1999 ), has been extensively validated

through experiments ( Van Dongen, 2004 ), and has been used in

“real-world” applications such as fatigue and performance model-

ing ( Dean et al., 2007 ). Previous work employing the FJK model in

the context of jet lag includes ( Dean et al., 2009; Qiao et al., 2017;

Serkh and Forger, 2014; Zhang et al., 2016 ), all of which used tech-

niques from optimization or control theory to design light expo-

sure schedules for the traveler to follow after reaching their desti-

nation in order to minimize reentrainment time. In our study, we

assumed that the traveler will experience light according to the

natural LD cycle in the destination and do not attempt to design al-

ternative light exposure schedules. Instead, we systematically char-

acterized how reentrainment depends on parameters such as the

period of the endogenous circadian oscillator, the photoperiod and

light intensity of the external LD forcing, the number of time zones

crossed, the direction of travel, and the time of day at which the

trip occurs. 

The main mathematical tool that we used in this paper is the

construction and analysis of a set of entrainment maps. These

maps determine how the phase of light onset changes each time

a trajectory passes through a prescribed Poincaré section of the

phase space. Entrainment map analysis offers several advantages.

First, the maps depend on parameters in predictable ways that

yield important findings on how the dynamics of the full set of

equations actually evolve. For example, we showed here how the

maps depend on endogenous period τ c , photoperiod N , and light

intensity I . The parameter dependence was qualitatively similar to

what we had found in an earlier study ( Diekman and Bose, 2016 )

of circadian models ( Gonze et al., 2005; Kim and Forger, 2012;

Tyson et al., 1999 ), indicating that the map is capturing generic

properties of circadian oscillators. Next, the fixed points of the en-

trainment map provide valuable information about the reasons for

the underlying dynamics of circadian models. For example, when

the map is constructed from a numerically obtained LD-entrained

solution, then the stable fixed point of the map x s corresponds to

this stable limit cycle. The stability of x s is easily determined by

visual inspection of the slope of the map at x s . The unstable fixed

point of the map, x u , can correspond to an actual unstable orbit of

the system, but, as demonstrated here, this is dependent on other

factors such as the light intensity. However, the unstable fixed

point definitely provides evidence for a location in phase space

where trajectories either reentrain through phase advance or de-

lay. For instance, we located Z D , a demarcation point, along the LD-

entrained solution using information from x u . Perhaps the biggest

advantage of the map is that it simultaneously provides informa-

tion about both the stable and unstable phases, as well as the time

it takes initial conditions to converge to the stable phase through

the cobweb procedure. This is in contrast to methods based on

phase response curves or Arnold tongues/onions, which primarily

give information about the stable phase but not the dynamics of

the reentrainment process. 

We used a combination of direct simulations and entrainment

map analysis to obtain our results. In many cases, the map was

used to organize and explain mathematically the results and ob-

servations obtained through direct simulations. Whereas in other

cases, analysis of the map provided information that simulations

alone would not likely have found. While discussed in more detail

below, we would like to emphasize that the map was particularly

helpful in identifying certain mathematical objects that play a key

role in the FJK model. First, the map was used to find the existence

of neutral period curves for different length trips. Using the first it-
rate of the map as a proxy for reentrainment times, we defined a

eutral period point as an east or west trip for which the distance

f the map from the diagonal is the same. This allowed us to ex-

lain the existence of the east-west asymmetry of jet lag. Next, the

ap explained which circumstances led to antidromic versus or-

hodromic reentrainment. Finally, the map revealed the existence

f unstable periodic solutions for low light intensity. This led us to

etter understand the phase space structure of the full FJK model

or all lux levels and to speculate about what geometric structure

rovides a separatrix-like effect for phase advancing versus phase

elaying trajectories. Both of these latter two findings are related

o the unstable fixed point of the map, which we discuss in more

etail in the Appendix. 

.1. Neutral period and east-west asymmetry 

Many travelers experience more severe symptoms of jet lag af-

er traveling east than they do after traveling west ( Sack, 2009;

aterhouse et al., 2007 ). The typical explanation for this asym-

etry is that since the endogenous period of the human circadian

lock is greater than 24 h, it is easier to phase delay the clock and

ntrain to the phase delay of sunrise/sunset that occurs following

estward travel than it is to phase advance the clock and entrain

o the phase advance of sunrise/sunset that occurs following east-

ard travel ( Eastman and Burgess, 2009; Monk et al., 20 0 0 ). Our

nalysis agrees with this explanation in general but adds an impor-

ant distinction: while the directional asymmetry does depend on

ndogenous period, we find however that whether the endogenous

eriod is greater than or less than 24 h is not the critical factor.

nstead, we suggest it is a generic property of circadian limit cy-

le oscillators that there exists a “neutral” endogenous period for

hich equivalent advances or delays of the LD cycle (i.e. eastward

r westward travel across the same number of time zones) will

nduce the same amount of jet lag. Clocks with an endogenous pe-

iod greater than the neutral period suffer worse jet lag after east-

ard travel and those with an endogenous period less than the

eutral period suffer worse jet lag after westward travel. The neu-

ral period terminology was introduced by Aschoff et al. (1975) ,

ho studied the asymmetry effect in a variety of species and a

athematical model ( Wever, 1966 ). We find that the neutral pe-

iod depends on daylength and, as a result, we generalize this no-

ion to a neutral period curve (see Figs. 10 and 11 ). For example,

onsidering east/west trips of 6 time zones and I = 100 lux, we

ound the neutral period to be 24.2 under long days (15:9 pho-

operiod), 24 h for intermediate length days (11:13 photoperiod)

nd 23.9 under short days (10:14 photoperiod). Thus for a trav-

ler with an endogenous period of 24.1 h, we predict that travel-

ng east will be harder than west in the winter, but that traveling

est will be harder than east in the summer, since for I = 100 lux

hese two cases correspond to parameter pairs that lie on opposite

ides of the neutral period curve. While the existence of neutral

eriod curves does not depend on light intensity, the shape of the

PC may be dependent on light intensity since a higher lux level

ncreases the concavity of entrainment maps and leads to faster

eentrainment. In turn, this may lead to different light intensity-

ependent predictions regarding seasonal effects on the difficulty

f travel. 

In work related to the east-west asymmetry of jet lag,

u et al. (2016) studied a macroscopic reduction of a globally cou-

led network of phase models. Their approach is to derive an or-

inary differential equation for a complex-valued order parameter

hat governs whether or not the system is in an entrained or unen-

rained state. In their model, depending on parameters, this differ-

ntial equation can have stable and unstable fixed points as well

s limit cycle solutions. Lu et al. find that when the endogenous

eriod is larger than 24 h, eastward trips take longer to reentrain
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rom then westward ones across the same number of timezones.

hey find the opposite to hold when the endogenous period is less

han 24 h. In some sense, their model utilizes 24 h as a neutral

eriod, independent of daylength. 

.2. Threshold separating orthodromic and antidromic reentrainment 

After a small phase shift of the LD cycle a circadian oscilla-

or will reentrain orthodromically, i.e. in the same direction as the

hift. This corresponds to reentrainment through phase advances

fter short eastward trips and through phase delays after short

estward trips. Longer transmeridian trips that constitute larger

hase shifts of the LD cycle and can lead to antidromic reentrain-

ent where travelers reentrain through phase delays after east-

ard travel or phase advances after westward travel ( Arendt et al.,

987; Burgess et al., 2003; Klein and Wegmann, 1977; Takahashi

t al., 2001 ). In a simulation study of a mammalian molecular clock

odel, Leloup and Goldbeter (2013) found a sharp threshold in

he magnitude of the LD phase shift that separates orthodromic

nd antidromic reentrainment. They showed that phase shifts that

ut the traveler in the vicinity of this threshold result in very long

eentrainment times, similiar to what we find in the FJK model for

ux levels corresponding to indoor light. Leloup and Goldbeter used

hase response curve (PRC) analysis to roughly predict the loca-

ion of this threshold, but stressed that using the PRC for this pur-

ose is not straightforward and not very accurate. We have shown

hat the entrainment map, in particular the unstable fixed point

f the map, provides an easy and accurate method of predicting

he critical phase shift (or trip) that separates these two modes of

eentrainment. Lu et al. (2016) find circumstances where the sta-

le manifold of an unstable saddle fixed point determines whether

olutions reentrain through phase advance or phase delay. The au-

hors show this saddle fixed point merges with another fixed point

s a parameter is varied. Interestingly, even after the bifurcation,

he effect of the saddle is still present in separating phase advance

ersus phase delay. This is similar to what we find with the in-

rease in the lux level ( I = 100 increasing to I = 10 0 0 ) causing the

nstable fixed point of our map to no longer correspond to an ac-

ual unstable periodic orbit. Still, as demonstrated, we find that x u 
eparates out phase advancing versus phase delaying initial condi-

ions even at high lux. 

.3. Aiming to enter the phaseless set as a strategy for minimizing jet

ag 

Our results show that as the light intensity is increased, reen-

rainment times decrease. This is consistent with previous simu-

ation studies of the FJK model ( Serkh and Forger, 2014 ). More-

ver, we have shown that the FJK model exhibits the curious phe-

omenon of very fast entrainment for certain trajectories that pass

hrough the phaseless set when the light intensity is large. For ex-

mple, for travelers with an endogenous period of 24.2, trips that

re roughly 10.5 h to the east place the traveler in a neighbor-

ood of the unstable fixed point of the map. For low lux I = 100 ,

his is the worst trip as this leads to the longest reentrainment

ime (roughly 25 days) compared to all other trips independent

f arrival time; see Fig. 8 . But once the lux is increased to 10 0 0,

he reentrainment time for this same trip is much shorter (on the

rder of 5 days) due to the “shortcut” that the trajectory takes

hrough phase space; see Fig. 12 . However, this seems to depend to

ome extent on arrival time, e.g. arriving at X = 2 instead of X = 6

ill result in about 10 days of reentrainment. Thus our results sug-

est that a traveler may actually wish to intentionally make this

worst” trip, provided that the traveler can guarantee exposure to

igh lux levels during the reentrainment process and the correct

rrival time. 
Fast reentrainment through the phaseless set is characterized

y a suppression of oscillation amplitude where the trajectory en-

ers what is effectively a region of phases that converge at a

hase singularity or pinwheel, a manifestation of the phaseless set.

hen the trajectory enters this pinwheel region, it has a chance of

merging with a phase that is much closer to the entrained phase

han when it enters, thereby shortening the reentrainment time.

hen computing optimal light exposure schedules to reentrain

he FJK model in minimum time, Serkh and Forger (2014) found

everal examples of optimal reentrainment that involved taking a

hortcut across the limit cycle and reduction of oscillator ampli-

ude in the middle of the schedule. Consistent with our results,

erkh and Forger only observed this phenomenon at high lux val-

es. In Lu et al. (2016) , there is a local minimum of reentrainment

imes exactly in a neighborhood of the “worst” trip. Though not

iscussed in their paper, this faster than expected reentrainment

ay also be related to trajectories taking shortcuts in phase space.

.4. Jet lag due to north-south travel 

The medical definition of jet lag—insomnia, excessive daytime

leepiness, or general malaise associated with transmeridian travel

f at least two time zones—precludes the possibility of jet lag due

o purely north-south travel ( Sack, 2009 ). Indeed it has been ex-

licitly stated that travel along the same meridian, for example Eu-

ope to southern Africa, causes no jet lag ( Herxheimer and Water-

ouse, 2003 ). However if one considers a broader definition, such

s jet lag symptoms resulting from any travel that shifts the align-

ent of 24-h environmental cycles relative to the endogenous cir-

adian clock ( Song et al., 2017 ), then it seems plausible that the

hange in daylength encountered after long-distance translatitudi-

al travel in the summer or winter could induce jet lag-like ef-

ects. In our simulations of the FJK model, we find that it takes

bout 3 days for an oscillator with the average human endoge-

ous period (24.2 h) to reentrain following travel from summer

ays with 15 h of light to winter days with 10 h of light, or vice

ersa. For circadian oscillators with long or short endogenous peri-

ds, the reentrainment time following such travel can be a week or

ore. We used the entrainment map to provide an explanation for

hese results by showing how the phase of entrainment (the sta-

le fixed point of the map) is affected by daylength. The map and

imulations also predict that the natural mode of reentrainment

s antidromic, in that traveling from summer to winter constitutes

 phase delay of the LD cycle but reentrainment occurs through

hase advances. We are not aware of any field, laboratory, or com-

utational studies that have thoroughly explored the question of

eentrainment after translatitudinal travel. A review of jet lag by

aterhouse et al. (2007) notes that travel between hemispheres

roduces disorientation because of changes in natural lighting but

oes not elaborate further. In a field study with four human sub-

ects, Hauty and Adams (1965a ; 1965b ; 1965c ) included a north to

outh flight (from Washington, D.C. to Santiago, Chile) as a control

o compare against east to west (Oklahoma City to Manila) and

est to east (Oklahoma City to Rome) flights, in order to assess

he effects solely attributable to a long flight versus effects due to

hanges in time zone. They found that all three flights produced a

ignificant amount of subjective fatigue, but that the north-south

ight did not cause a phase shift of circadian rhythms in physi-

logical measurements such as rectal temperature and heart rate,

hereas the other two flights did. However, the time of year that

hese flights took place is not reported in this study, and so it is

ossible that the flights were in spring or fall when the daylengths

n D.C. and Santiago are similar. Moreover, the endogenous circa-

ian period of the subjects was not reported, so it is difficult to

ompare their results to our predictions based on the FJK model. 
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Horses are the only species other than humans that are flown

around the world for athletic competitions. The effect on equine

physiology and performance of shifts in the LD cycle equivalent

to travel across time zones has been assessed using thoroughbred

racehorses kept in light-controlled stables ( Tortonese et al., 2011 ).

These studies found that horses are highly sensitive to light cues

and rapidly adapt to phase shifts in the LD cycle. Surprisingly, ath-

letic performance as measured by treadmill tests was actually en-

hanced following phase advances of the LD cycle simulating east-

ward travel. This enhancement was not attributed to an endoge-

nous rhythm in athletic ability, but rather to masking effects of

light and a timely rise in the hormone prolactin. In a commen-

tary, the authors of this study note that horses have weak endoge-

nous circadian rhythms but strong circannual biological rhythms

( Tortonese and Short, 2012 ). The robust circannual clock may lead

to slow adaptation in response to sudden changes in latitude,

in contrast to the fast adaptation seen in response to simulated

changes in longitude. Consistent with this prediction, racehorses

subjected to simulated transequatorial flights exhibit negative ef-

fects on athletic performance (Domingo Tortonese, personal com-

munication). 

In our simulations of north-south travel, we have taken the

photoperiod to be greater in the northern location ( N = 15 h) than

the southern location ( N = 10 h) based on the duration of sunlight

in the natural light-dark cycles at these latitudes at the selected

time of year (June). However, the prevalence of electric lighting

in modern society renders the duration of light that the circa-

dian system is exposed to less dependent on the photoperiod of

the natural light-dark cycle than it would be in the absence of ar-

tificial lighting ( Skeldon et al., 2017 ). Despite the ability to con-

trol certain aspects of our light environment, there is still sea-

sonal variation in the amount of light humans are exposed to in

industrialized societies, with greater light exposure in the sum-

mer months than the winter months ( Park et al., 2007 ). Further-

more, Thorne et al. (2009) found a seasonal effect on the time

course of light exposure throughout the day. During the evening

hours (5 PM–9 PM in their study), subjects were exposed to sig-

nificantly more blue light in summer than in winter. Blue light is

known to have a more potent phase shifting effect on the circadian

clock than light at other wavelengths ( Warman et al., 2003 ), and

most artificial light sources contain less blue than natural light.

Taken together, these observations suggest that modern humans

are exposed to a longer duration of natural light in the summer,

and therefore suddenly shifting from summer to winter (for exam-

ple by traveling from NYC to Santiago in June) may reasonably be

modeled as a reduction in N . Nevertheless, extensions of the en-

trainment map methodology to handle more realistic self-selected

light exposure patterns would be useful for making quantitative

predictions about the extent of north-south jet lag. 

4.5. Traveling diplomat problem 

The idea of minimizing reentrainment times has relevance for

what we shall call the traveling diplomat problem. For example,

the three most recent U.S. Secretaries of State traveled extensively

during their tenures. John Kerry covered more than 1.3 million

miles, Hillary Clinton visited 112 countries, and Condoleeza Rice

made a total of 241 visits to foreign countries, all records within

those categories ( Chow and Kessler, 2013; Kelemen, 2016 ). The

problem one can consider is analogous to a traveling salesman

problem in which the salesman has to arrange travel to several lo-

cations so as to minimize total travel distance. In our scenario, a

diplomat would seek to arrange his/her schedule to minimize jet

lag. If a diplomat wished to visit a certain number of countries in

the span of a certain number of days before returning home, could

she arrange her travel to minimize her jet lag in each of the des-
ination cities and also upon return home? Or if she were to re-

ain in each destination city until reentrained, before continuing

o the next city, does an optimal path exist that minimizes total jet

ag? Our results suggest that the diplomat could arrange her travel

ath to minimize jet lag. For example assuming a normal endoge-

ous period of 24.2 h, if the diplomat were to travel between the

our cities we studied, she would want to incorporate a NE compo-

ent of travel; see Fig. 15 . The loop NYC → Santiago → Beijing →
erth → NYC would cause her to have the least overall amount of

et lag. Santiago to Perth has 12 days of reentrainment, and Perth

o Beijing 2 days, for a total of 14 days of reentrainmnent. But San-

iago to Beijing has 5 days and Beijing to Perth 3 days, for a total of

nly 8 days of reentrainment. Thus by specifically including the NE

omponent in her itinerary, she would minimize jet lag. The total

umber of reentrainment days for the NYC → Santiago → Beijing

 Perth → NYC is 23 days. Another loop that has a relatively

hort reentrainment time is NYC → Perth → Beijing → Santi-

go → NYC which has 24 days of reentrainment. This loop has

he advantage of two direct northward trips compared to the pre-

ious loop of two direct southward trips. This saves 2 days. Also,

E travel compared to NW travel saves 2 days. It is only because

W travel requires 5 more days of entrainment than NE that this

oop is slightly worse than the previous. In comparison the loops

YC → Santiago → Perth → Beijing → NYC or NYC → Beijing

 Perth → Santiago → NYC each lead to 28 days of jet lag. The

xample presented here is for a single daytime lux level, which is

urely a simplification of what a diplomat or other traveler would

ikely experience. In reality, travelers would experience a variety

f lux levels across their waking hours dependent on being ex-

osed to indoor or outdoor light. As noted in our earlier results,

igher lux levels lead to faster reentrainment but do not signifi-

antly affect the phase of the entrained solution. Thus we expect

hat even when a traveler experiences a more realistic light proto-

ol than the single lux scenario presented here, there would still

xist travel paths that minimize jetlag. 

.6. Future directions 

There are several directions of further research that can be pur-

ued. We plan to explore the effects of “social jet lag” where in-

ividuals stay up late on weekend nights, sleep in later the next

ay, and then return to their normal schedules for the work week

 Crowley and Carskadon, 2010 ). This can be likened to taking a trip

wo or three hours west on a Friday night and returning home

n Sunday night. Presumably, individuals who do this for several

eeks in a row are not entrained to the daily light-dark cycle, but

nstead entrain to a more complicated weekly pattern ( Smith and

astman, 2012 ). Using the methods developed in this paper, we

ould study this problem by looking for a periodic solution, rather

han a fixed point, of a set of composed entrainment maps. The

dded complication of using multiple maps arises as one must take

nto consideration the change of photoperiod that would occur due

o staying up late and waking up late. We also plan to apply our

ethods to analyze night-shift work, which also involves periodic

olutions of composed entrainment maps due to different light ex-

osure and sleep schedules on weekdays versus weekends. An-

ther situation where a periodic solution of the entrainment map

ould be relevant is for individuals who, because their endoge-

ous period is too far from 24 h, are unable to entrain to LD forc-

ng ( Duffy and Wright, 2005 ). In all of these cases, the goal of our

esearch would be to first find a stable periodic orbit of the en-

rainment map, and then find strategies (perturbations, perhaps of

he light exposure) to move the individual closer to an entrained

tate. 

The light-dark cycle is not the only external forcing that a cir-

adian oscillator receives. For example, the effects of meals, exer-
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ise, or taking melatonin can also be considered as external stim-

li. We would like to generalize the entrainment map to incorpo-

ate multiple zeitgebers of this type. The main question to address

s how a weaker, and perhaps conflicting, forcing signal would in-

eract with the stronger light-dark forcing to determine entrain-

ent properties. Another factor to consider is the entrainment

f peripheral oscillators in tissues throughout the body by the

uprachiasmatic nucleus (SCN), the master circadian pacemaker lo-

ated in the hypothalamus. During jet lag, there can be internal

esynchrony due to the SCN and peripheral oscillators reentrain-

ng at different rates or even in opposite directions, a phenomenon

nown as reentrainment by partition ( Aschoff, 1978 ). Leise and

iegelmann (2006) studied reentrainment of a multistage compu-

ational model of the circadian system. Our approach would be

o construct entrainment maps for each system component with

ome form of coupling among the maps. There is also significant

oupling between the SCN and sleep-wake control centers in the

rain ( Vosko et al., 2010 ). Jet lag can desynchronize the circadian

hythm of the SCN and sleep-wake behavior. Models combining

he circadian pacemaker and sleep-wake dynamics have been pro-

osed ( Gleit et al., 2013; Phillips et al., 2010; Skeldon et al., 2015 ),

nd one-dimensional maps for the circadian modulation of sleep

ave been developed ( Booth et al., 2017; Nakao et al., 1997; Skel-

on et al., 2014 ). An important future direction is to investigate

he relationship between these maps and entrainment maps in the

ontext of jet lag and other circadian rhythm sleep disorders. 
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ppendix 

In this Appendix, we further discuss the relationship between

he fixed points x s and x u of an entrainment map and the dynam-

cs of the forced FJK model. Given that we have considered many

ifferent entrainment maps, let us focus on the map constructed

y taking a Poincaré section at X = 6 along the LD-entrained solu-

ion obtained for τc = 24 . 2 h and N = 12 h. To construct the map,

e choose initial conditions for A , C , and n that lie at the inter-

ection of the Poincaré section and the LD-entrained solution and

ary the value of the offset of the lights x between 0 and 24. The

alue x s = 6 of the map therefore will correspond exactly to a peri-

dic orbit of the FJK model because the trajectory returns to X = 6

fter exactly 24 h and for this case the A , C , and n values return

o their original values after 24 h. In general, when the entrain-

ent map is constructed using a Poincaré section that intersects

n LD-entrained solution and A , C , and n initial conditions at that

ntersection point, there is a direct correspondence between x s and

he stable LD-entrained solution. 

The relationship of x u to dynamic structures of the forced FJK

odel is more complicated. On one hand, we have found that the

xistence of a corresponding unstable periodic orbit depends on

ight intensity I . On the other hand, we have found that indepen-

ent of light intensity, x u corresponds to a structure in phase space

hat separates trajectories that phase advance or phase delay as

hey converge to the entrained solution. We explain both of these

bservations below. 

First, consider low light intensity of I = 100 lux. For this case,

 u = 16 . 24 . This means that the demarcation point predicted by

ur map is a journey given by Z = 10 . 24 time zones to the east.
D 
n Fig. 16 A, the projection of the stable LD-entrained solution onto

he A − C plane is plotted in solid red and black. The location Z = 0

nd X = 6 (solid blue circle) coincide. The projection of the unsta-

le periodic orbit is plotted in dashed red and black. Travel east

orresponds to moving clockwise along the projection of the sta-

le orbit to a location marked by an open blue circle on the LD-

ntrained solution. In terms of x , this value is called ˆ x u = x s − Z D 
od 24 and equals x = 19 . 8 . The map predicts that this location

long the LD-entrained solution separates trajectories that con-

erge via phase delay or advance. Note that this interpretation is

quivalent to the one given in Section 3.5 where the trajectory be-

an on the Poincaré section with different light offset initial condi-

ions taken in a neighborhood of x u . Here we instead fix the light

ffset to be x = 6 and vary the initial conditions in a neighborhood

f ˆ x u chosen by making a trip Z D time zones on the LD-entrained

olution. Panel A shows a stroboscopic map (solid dots) of different

nitial conditions projected onto the A − C plane every 24 h. From

ach initial condition, we ran a simulation under 6 h of light, fol-

owed by 12 h of dark, and then 6 h of light before plotting the

nsuing location of the trajectories, and then repeated. From just

o the left of ˆ x u emanates a set of points, also in dark blue, that

onverge towards a point corresponding to X = 6 on the unstable

eriodic orbit. Thus these points lie on the stable manifold of the

nstable periodic orbit! Finding this manifold without the insights

rovided by the entrainment map would have been extremely un-

ikely. The unstable periodic orbit appears to be a saddle with a

table manifold that is at least 2-dimensional. The saddle-like na-

ure makes backward integration largely useless in locating the un-

table periodic orbit. Instead it is the entrainment map that pro-

ided the clue on where to locate it in the full phase space. The

nitial conditions at Z = 10 and Z = 11 start on “opposite sides” of

he stable manifold of the unstable orbit and are seen to produce

 sequence of iterates that converge to X = 6 on the stable peri-

dic orbit by phase advancing (green) or delaying (magenta); see

ig. 16 B. In another set of simulations, we chose initial conditions

ery close to the solid blue separatrix on the LD-entrained solu-

ion and these also entrained by advance or delay depending on

rom which side of the stable manifold they originated (data not

hown). Finally, observe the cyan set of dots that emanate from

 = 6 on the unstable orbit and then converge to the stable LD-

ntrained solution at X = 6 . The initial cyan dot that we chose as

n initial condition was found in the following way. We located the

alue of ( A 

∗, C ∗, n ∗) at which the unstable periodic orbit intersected

he Poincaré section at X = 6 on the unstable orbit. We then per-

urbed the A and C values to A 

∗ − 0 . 00271035 and C ∗ + 0 . 01 , but

ept n = n ∗. Therefore after 24 h the n value returns to n ∗. Thus

ll the cyan dots lie in the plane n = n ∗. These points are seen in

oth Fig. 16 A and B to take a shortcut across (through) phase space

owards the stable LD-entrained solution. The trajectory is charac-

erized by the fact that it neither phase advances or delays for the

rst few iterates until it undergoes amplitude suppression. After

t reemerges to full amplitude it effectively has the correct phase

f the LD-entrained solution. We suspect that these points lie on

he strong stable manifold of the stable LD-entrained solution. We

peculate that this strong stable manifold separates phase advanc-

ng or phase delaying trajectories, in general, independent of the

ight intensity I . The figure also shows points that initially lie close

o the cyan points but then follow the more predictable advance

green) or delay (magenta). 

Now consider Fig. 16 C and D which show the corresponding

lots for a higher light intensity of I = 10 0 0 lux. For this case,

 s = 6 remains, but now x u = 16 . 68 . Thus the demarcation point

s Z D = 10 . 68 or ˆ x u = 19 . 32 . Panel C shows the projection onto the

 − C plane and Panel D shows a few representative sequences of

terates in the three-dimensional phase space. The main difference

o note is there is no unstable periodic orbit. Instead the sequence

https://doi.org/10.13039/100000001
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Fig. 16. Relationship between the unstable fixed point of entrainment map and dynamics of the FJK model. (A) Projection of stable LD-entrained solution (solid red/black 

lines) onto A − C phase plane for τc = 24 . 2 h, N = 12 h, and I = 100 lux. Simulations were performed starting from initial conditions on the LD-entrained solution at the 

hourly markings denoted by the open red and black circles with a light-dark protocol based on x = 6 . Positions labeled with Z > 0 ( Z < 0) correspond to travel Z time zones 

to the east (west). The reentrainment process is depicted by strobing the system every 24 h and plotting the location of the trajectory (solid green and magenta dots). 

These trajectories converge to X = 6 (solid blue circle) by either phase advance (green) or phase delay (magenta). The blue set of dots emanating from near the open blue 

circle ( Z D = 10 . 24 ) does not phase advance or delay, and and converges to x = 6 on the unstable LD-entrained solution (dashed red and black lines, open circles red and 

black circles are hourly markings). These points lie on the stable manifold of the unstable periodic orbit, which serves to separate trajectories that entrain through phase 

advance and delay. The cyan dots are on a trajectory that starts near the unstable periodic orbit and takes a shortcut to converge to X = 6 on the stable LD-entrained 

solution, whereas nearby initial conditions converge to X = 6 by phase advancing or delaying. (B) Same objects as Panel A, plotted in the three-dimensional phase space A , 

C , n . (C) Projection of stable LD-entrained solution (solid red/black lines) onto A − C phase plane for τc = 24 . 2 h, N = 12 h, and I = 10 0 0 lux. Unlike Panel A, here there is 

no unstable LD-entrained solution. The blue dots emanating from near Z D = 10 . 68 are on a shortcut trajectory that exhibits amplitude suppression and converges to X = 6 

unusually fast. Trajectories on either side of the blue trajectory converge to X = 6 through phase advance (green) or delay (magenta). (D) Same objects as Panel C, plotted in 

the three-dimensional phase space A , C , n . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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of dark blue dots that emanate from near Z D converge directly to

the stable LD-entrained solution at X = 6 . The corresponding se-

quence behaves in the same way as the cyan sequence of Panel A.

Nearby initial conditions also lead to a sequence of iterates that

behave quite similarly to the blue one, which is in contrast to

the I = 100 lux case. What we believe to be common between the

two cases is that there exists a structure in phase space, perhaps

the strong stable manifold associated with the point on the LD-

entrained solution at X = 6 , that separates phase advancing and

phase delaying trajectories. What differs between the two cases

appears to be that the shortcut is only accessible from the LD-

entrained solution when an unstable periodic orbit does not exist.

When it does, the stable manifold of the unstable periodic orbit

appears to preclude the possibility of taking the shortcut and ac-

cessing the phaseless set. In summary, the entrainment map, and

in particular, the unstable fixed point x u and its corresponding

demarcation point Z D , provide a way to locate specific subspaces

within the larger phase space that help organize the dynamics. 

Finally, let us address the quantitative difference in the worst

case travel between the map and direct simulation shown in

Fig. 8 D for τc = 23 . 4 h, I = 100 lux. For this set of parameters, an

unstable periodic orbit exists similar to the one shown in Fig. 16 A

and B. We believe that in direct simulation, the worst case travel

Z = −6 is placing the trajectory very close to the stable manifold

of the unstable orbit. In turn, this causes the entrainment time
o increase. We don’t fully understand why the demarcation point

 D predicted from the map is further from the actual demarcation

alue from the simulation for τc = 23 . 4 h than it is for the other

c values shown in Fig. 8 A–C. We believe, however, that is related

o the fact that the system (and entrainment map) are closer to

ifurcation for this τ c value (see Fig. 9 D) than it is for the others,

nd thus the unstable and stable limit cycles are quite close to one

nother in phase space. 
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