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A B S T R A C T

Circadian rhythms are endogenous oscillations, widely found across biological species, that have the capability
of entraining to the 24-h light-dark cycle. Circadian systems often consist of both central oscillators that receive
direct light-dark input and peripheral oscillators that receive input from the central oscillators. In this paper,
we address questions related to what governs the time to and pattern of entrainment of these hierarchical
circadian systems after an abrupt switch in the light-dark phasing. For a network consisting of a single central
oscillator coupled to a chain of 𝑁 feed-forward peripheral oscillators, we introduce a systematic way to derive
an 𝑁-dimensional entrainment map whose fixed points correspond to entrained solutions. Using the map,
we explain that the direction of reentrainment can involve fairly complicated phase advancing and delaying
behavior as well as reentrainment times that depend sensitively on the nature of the perturbation. We also
study the dynamics of a hierarchical system in which the peripheral oscillators are mutually coupled. We study
how reentrainment times vary as a function of the degree to which the oscillators are desynchronized at the
time of the change in light-dark phasing. We show that desynchronizing the peripheral oscillators can, in some
circumstances, speed up their ultimate reentrainment following perturbations.
1. Introduction

Circadian oscillations provide a natural, nearly 24 h clock to many
living systems. For humans this is characterized by our response to
the 24 h light-dark cycles of the sun and helps regulate many of
our functions such as our sleep-wake cycles. Hormone levels, such as
melatonin, are also governed by circadian rhythms. Plants, bacterias
and animals also possess circadian rhythms. In all of these cases, the
oscillators in control of these rhythms are meant to entrain to the 24 h
light-dark (LD) cycle to ensure proper functioning of the organism.
Often these oscillators are peripheral and do not directly receive light-
dark input from the sun. Instead, they receive forcing from a central set
of oscillators that do directly receive the light-dark input. The ensuing
network architecture of central oscillators receiving light-dark forcing,
with peripheral oscillators receiving input from the central oscillators
constitutes a hierarchical coupled set of oscillators.

Hierarchical circadian systems are known to exist in non-mammalian
systems such as Neurospora crass as well as in several mammalian
ystems [1]. Within humans, for example, the suprachiasmatic nucleus
SCN) has been identified as the master pacemaker and its neurons have
een classified into two groups: ventral SCN neurons which receive
irect light input and dorsal SCN neurons that do not [2]. Ventral SCN
eurons provide timing information to dorsal neurons. As a hierarchical
nit, these two groups synchronize to provide timing information to

∗ Corresponding author.
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the rest of the body. A second way in which mammalian systems
constitute a hierarchical system involves the observation that various
organ systems possess cells that have their own endogenous circadian
clocks. Cells in peripheral organs such as the heart, lungs and kidney
do not need light input to oscillate [1], but do receive entraining timing
information from the central SCN pacemaker unit. Some peripheral
units, such as the liver, may also receive other timing inputs through
rhythmic feeding cues [3], which has been argued as a source for
possible desynchronization of central and peripheral clocks [4]. Of
interest in hierarchical networks is not just the phase-locking of os-
cillators at different hierarchical levels, but also the synchronization
and phase-locking properties of oscillators within the same level of
hierarchy.

Given any circadian oscillator, there are a few basic questions to
be addressed. First, what kinds of external (zeitgeber) input entrain the
oscillator? When an oscillator is perturbed from the entrained state,
how long does it take to reentrain? Is the direction of reentrainment
through phase advance, delay or some combination with respect to the
external input? These questions become more challenging to address in
hierarchical systems where distinct circadian components can display
very different dynamics after perturbations. For example, Leise and
Siegelmann [5] conducted a numerical study of a multi-stage network
in which they found that after changes in the LD phasing to the
https://doi.org/10.1016/j.mbs.2022.108883
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network, peripheral and central oscillators can have different times
and directions of entrainment. They call this phenomenon where some
oscillators reentrain through phase advance and others through phase
delay, reentraiment by partition, which they suggest can lead to longer
reentrainment times. Abraham et al. [6] found similar results with
regard to entrainment time in a modeling and experimental study
involving circadian clocks in the central suprachasmatic nucleus and
in peripheral clocks of the lung. Often the difference in the reen-
trainment process is attributed to central oscillators displaying strong,
large amplitude oscillations, which had been thought to slow the
reentrainment, compared to peripheral oscillators. Recently however,
Jeong et al. [7] found that some strong central oscillators can under
some circumstances also display fast reentrainment after a shift in light-
dark phasing. Modeling studies of jetlag and shift work [8–11] have
also found that different amplitudes of oscillation lead to different
entrainment times, though in those studies smaller amplitude led to
faster entrainment.

Among the many existing tools to study the entrainment of oscilla-
tors [12–14], we will primarily utilize the entrainment map developed
by Diekman and Bose [15]. Originally developed to study entrainment
of a single circadian oscillator, in Liao et al. [16], we generalized the
map to apply to the case of one central and one peripheral oscillator,
both modeled by the two-dimensional Novak–Tyson oscillators [17].
Here we are interested in understanding the dynamics of reentrain-
ment in networks of one-dimensional phase models. Simplified lower-
dimensional phase models such as the Poincaré oscillator [18] or
Kuramoto model [18] have been used to study circadian oscillations
in a variety of contexts [8,19,20]. In particular, Bordyugov et al. [20]
showed that the findings from these reduced models often matches
that of higher dimensional biochemical models. Further, use of low-
dimensional models allows for application of a host of analytic and
computational tools to better understand the nature of entrainment.

In this paper, we consider two different types of hierarchical systems
and derive entrainment maps to study their dynamics. For a system of
1 +𝑁 oscillators (the first oscillator represents the 24 h external light-
dark forcing) coupled together in a feed-forward manner, we derive
an 𝑁-dimensional entrainment map and study it in detail for the case
𝑁 = 2. We show how to use geometric structures of the phase space,
such as invariant manifolds of fixed points, to determine the time to
and direction of reentrainment of oscillators within the coupled system
after an abrupt change (slam shift) in the LD phase, a desynchronization
of the central and peripheral oscillator, or both. We then generalize to
the larger 1+𝑁 dimensional system where we show that the existence
and stability of fixed points of the entrainment map can be predicted
from the previous level of the hierarchy.

A second kind of hierarchical system we shall consider consists
of a pair of coupled peripheral oscillators receiving input from a
single central oscillator. We will use an order parameter description
for the peripheral oscillators to derive a two-dimensional entrainment
map involving their average phase. We study how the reentrainment
time after an abrupt switch in the light-dark phase is affected by the
degree to which the peripheral oscillators are desynchronized, or phase
tumbled [21–24], at the time of the switch of light phasing. We find
that when the peripheral oscillators have entrained solutions in which
their phase difference is small, they do not exhibit much difference in
reentrainment time for different initial levels of desynchrony. However,
when the peripheral oscillators in the entrained solution exhibit a larger
phase difference, then further initial desynchrony can speed up the
reentrainment process for certain, but not all, abrupt changes in the
light-dark phasing.

2. Model

In the first part of our study, we shall consider a system of 1 + 𝑁
scillators. The first, defined by the variable 𝜃0, is a simple time keeper

or the 24 h light-dark (LD) cycle. The other 𝑁 oscillators are taken
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from the Kuramoto model [18] and described by their phase. Each
of these oscillators has its own intrinsic frequency. They are coupled
together through sine function interactions based on the differences in
their phases arranged in a hierarchical structure. Namely, oscillator 1
receives input from the LD oscillator 𝜃0. Oscillator 𝑛 receives input from
oscillator 𝑛 − 1. The equations that define the model are:
𝑑𝜃0
𝑑𝑡

= 𝜔0

𝑑𝜃1
𝑑𝑡

= 𝜔1 + 𝑘𝑓 (𝜃0) sin(𝜃0 − 𝜃1)

𝑑𝜃𝑖
𝑑𝑡

= 𝜔𝑖 + 𝛼𝑖−1 sin(𝜃𝑖−1 − 𝜃𝑖) 𝑖 = 2,… , 𝑁

(1)

The frequency of the light-dark forcing is 𝜔0 = 2𝜋∕24 since the period
of one day is 𝑇 = 24. The intrinsic frequencies 𝜔𝑖 are taken to lie
in a neighborhood of 𝜔0 and need not be the same. Each of these
phase variables can be viewed as taking on values either on the real
line or restricted to any 2𝜋 interval. We will interchangeably use both
interpretations depending on the context. We will study how solutions
depend on the parameters 𝑘, the strength of the light-dark forcing to 𝜃1,
and 𝛼𝑖−1, the strength of the forcing from 𝜃𝑖−1 to 𝜃𝑖. The function 𝑓 (𝜃) =
𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(sin(𝜃)), is 0 when sin 𝜃 < 0 and 1 otherwise. The abrupt on-off
nature of light input due to the Heaviside function is a simplification
for the continuous change under more natural circumstances. However,
this abrupt switch is used in many experimental protocols e.g. [25] and
modeling studies e.g. [26] and is referred to as a ‘‘slam shift’’.

To define the entrainment map, we fix an 𝑁-dimensional global
section  = {(𝜃0, 𝜃1,… , 𝜃𝑁 ) ∶ 𝜃𝑁 = 𝜋} of the flow of (1); see Fig. 1
for a schematic of the simplest case of 𝑁 = 2). On this section, 𝜃𝑁 = 𝜋,
hus leaving the 𝜃0 and 𝜃𝑖, 𝑖 = 1,… , 𝑁 − 1 values to be determined.

On the Poincaré section  , we define 𝑥 = 𝜃0, 𝑦 = 𝜃1 and 𝑧𝑖 = 𝜃𝑖,
= 2…𝑁 − 1. Starting with a point on the section, flow forward in

ime until the trajectory returns to  and denote this time as 𝜌 = 𝜌(𝑣),
here 𝑣 = (𝑥, 𝑦, 𝑧, 𝑘, 𝛼), 𝑧 = (𝑧2,… , 𝑧𝑁−1) and 𝛼 = (𝛼1,… , 𝛼𝑁−1). Note

hat this time measures how long it takes oscillator 𝑁 to complete one
𝜋 cycle and is obtained by integrating the third equation of (1) with
= 𝑁 . The new phases of 𝑥 of the LD cycle, of 𝑦 and 𝑧 of oscillators
to 𝑁 − 1 are obtained by integrating (1) from 0 to the return time
and performing a mod 2𝜋 operation. Therefore the 𝑁-dimensional

ntrainment map is defined by:

𝑥 ↦ 𝐹1(𝑥, 𝑦, 𝑥, 𝑘, 𝛼) ∶= 𝑥 + 𝜔0𝜌 mod 2𝜋

𝑦 ↦ 𝐹2(𝑥, 𝑦, 𝑧, 𝑘, 𝛼) ∶= 𝑦 + 𝜔1𝜌 + 𝑘𝐼1 mod 2𝜋

𝑖 ↦ 𝐹𝑖+1(𝑥, 𝑦, 𝑧, 𝑘, 𝛼) ∶= 𝑧𝑖 + 𝜔𝑖𝜌 + 𝛼𝑖−1𝐼𝑖 mod 2𝜋

(2)

here 𝐼1 = ∫ 𝜌
0 𝑓 (𝜃0) sin

(

𝜃0 − 𝜃1
)

𝑑𝑡 and 𝐼𝑖 = ∫ 𝜌
0 sin

(

𝜃𝑖−1 − 𝜃𝑖
)

𝑑𝑡, 𝑖 =
,… , 𝑁 − 1. Because of the mod operation in both variables and
eriodicity, the phase space is actually a torus 𝑆1 ×⋯ × 𝑆1. When we
ocus on the case of 𝑁 = 2, we will visualize this phase space on the
quare where the edges 𝑥 = 0 and 𝑥 = 2𝜋 are identical as are the edges
= 0 and 𝑦 = 2𝜋.

A fixed point (𝑥∗, 𝑦∗, 𝑧∗) of the entrainment map corresponds to a pe-
iodic phase locked solution of the system (1). The value 𝑥∗ determines
he phase of lights when oscillator 𝑁 is at  . We are assuming that the
D cycle is broken up into 12 h of light, 𝜃0 ∈ (0, 𝜋) and 12 h of darkness,
0 ∈ (𝜋, 2𝜋). Thus the value 𝑥∗ means that the most recent light onset
ccurred 12𝑥∗∕𝜋 hours ago. There is no difficulty in considering other
hotoperiods with less or more hours of light per day. The value 𝑦∗

ields the phase of oscillator 1 at the fixed point, where 𝑦∗ − 𝜋 ∈
−𝜋, 𝜋) can be interpreted as the phase difference from oscillator 𝑁
nd similarly for the oscillators corresponding to 𝑧∗. Note that since
he evolution of each 𝜃𝑖 is not constant, the phase difference may vary
ver the length of one cycle before returning to the original difference
nce oscillator 𝑁 returns to  . We will show that the entrainment
ap can possess from 0 to 2𝑁 fixed points depending on the choice

f parameters 𝑘 and 𝛼𝑖. Using standard linearization techniques we
ssess the stability of these fixed points to show how their manifolds
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Fig. 1. Schematic defining terms for the 𝑁 = 2 entrainment map. The direction of flow is counterclockwise for all cases. The Poincaré section at 𝜃2 = 𝜋, shown with a dark
solid line, is where oscillator 2 initially lies (black solid dot). The blue solid dots on 𝜃0 and 𝜃1 denote the initial locations of the LD oscillator and oscillator 1, respectively. The
orresponding initial values for the map are given by 𝑥0 and 𝑦0. Oscillator 2 takes 𝜌(𝑣) time to complete one cycle and return to the Poincaré section. For illustration we assume
hat this time is larger than 24 h. The red dots depict the locations of the LD oscillator and oscillator 1 after 𝜌(𝑣) hours. Note that the time for 𝜃0 to complete one cycle is 24 h.
hus the value 𝑥1 > 𝑥0. The cycle time of oscillator 1, however, is a priori not known, meaning that the location of 𝑦1 is also not known. We have chosen to schematically depict

t as 𝑦1 < 𝑦0. The map takes the initial values 𝑥0 and 𝑦0 and returns the new values 𝑥1 and 𝑦1.
Fig. 2. The return time and entrainment maps with different 𝑘 values. (a) The 1-dimensional return time map plots with five different 𝑘 values. When 𝑘 is large, the return time
unction 𝜌(𝑥) becomes discontinuous. (b) The 1-dimensional entrainment map plots for the same 𝑘 values. As 𝑘 increases from small values, fixed points are gained through a
addle node bifurcation. As 𝑘 increases further, the map loses one fixed point through the discontinuity associated with 𝜌(𝑥).
o
e
t
s
r
P
r
a
c
o
m
t
m

rganize the iterate structure of the map. Corresponding to the stable
nd unstable fixed points of the map, there exists both stable and
nstable periodic solutions of Eq. (1). Each of these types of periodic
olutions are actually phase-locked solutions of the light-dark forcing.
e shall refer to the stable ones as entrained solutions and the unstable

nes as solutions in an unstable state.
In the second part of our study, we will consider a 1 +𝑁 network

ith 𝑁 = 3, in which the two peripheral oscillators are mutually
oupled to one another. The equations for this system are given by:
𝑑𝜃0
𝑑𝑡

= 𝜔0

𝑑𝜃1
𝑑𝑡

= 𝜔1 + 𝑘𝑓 (𝜃0) sin(𝜃0 − 𝜃1)

𝑑𝜃2
𝑑𝑡

= 𝜔2 + 𝛼1 sin(𝜃1 − 𝜃2) + 𝛼3 sin(𝜃3 − 𝜃2)

𝑑𝜃3
𝑑𝑡

= 𝜔3 + 𝛼1 sin(𝜃1 − 𝜃3) + 𝛼2 sin(𝜃2 − 𝜃3)

(3)

The values of parameters are 𝜔0 = 2𝜋
24 , 𝜔1 = 2𝜋

27 , 𝜔2 = 2𝜋+1
29 , 𝜔3 =

2𝜋−1
29 , 𝑘 = 0.08, 𝛼 = 0.1, 𝛼2 = 𝛼3 = 0.3. Note here that we choose the

ntrinsic frequencies of the peripheral oscillators to differ. In the results,
e will show how this heterogeneity can contribute to speeding up the
 t

3

reentrainment process. To build the entrainment map, we now choose
the Poincaré section using the central oscillator at 𝜃1 = 𝜋.

3. Results

3.1. 1-Dimensional entrainment maps

Consider the case of the LD forcing with strength 𝑘 acting on
scillator 1. Here we are taking 𝛼1 = 0 (consider only the first two
quations of (1)). We place the Poincaré section at 𝜃1 = 𝜋 and compute
he return time 𝜌 = 𝜌(𝑥). The 1-dimensional entrainment map is then
imply given by the first equation of (2). In Fig. 2(a), we show the
eturn time 𝜌(𝑥) for several values of the strength 𝑘 of the LD forcing.
anel (b) shows the entrainment map for these same values. Both the
eturn time and the entrainment map are periodic in that their values
t the boundaries 𝑥 = 0 and 𝑥 = 2𝜋 are the same. For 𝑘 = 0.08, the
oupling from the LD forcing is not strong enough to entrain oscillator
ne. The return time is always larger than 24 h and the entrainment
ap does not intersect the diagonal (blue curves in Fig. 2a, b). Note

hat while the return time is continuous at this value, the entrainment
ap has a discontinuity due to the mod 24 operation. As 𝑘 increases,

he entrainment map shifts down and two fixed points (red curves) are
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created through a saddle-node bifurcation at roughly 𝑘 = 0.09. The
exact value will be labeled in the section below as 𝑘𝑐 . With a further
increase in 𝑘, the return time map becomes discontinuous (green curve)
at two values for 𝑥 < 𝜋. The entrainment map shares discontinuities
at those points, but the discontinuity due to the mod is replaced by
a different type of discontinuity which will be discussed below. As 𝑘
increases further the map begins to flatten out near the value 𝜋 for
larger parts of the domain, while the discontinuity shifts to the right.
At 𝑘 = 1, the entrainment map is nearly horizontal with a single fixed
point at 𝑥 = 𝜋. The flattening out of the map makes sense since as
the LD forcing becomes stronger, almost all initial conditions quickly
get entrained to the LD forcing and the values of 𝜃0 and 𝜃1 become
identical. Since the 𝑥 value of the map is the value of 𝜃0 and the map
updates whenever 𝜃1 = 𝜋, this implies that 𝑥 = 𝜋.

To further explain the results for larger values of 𝑘 consider a
singular perturbation argument. Consider the single oscillator model
𝑑𝜃0
𝑑𝑡

= 𝜔0

𝑑𝜃1
𝑑𝑡

= 𝜔1 + 𝑘𝑓 (𝜃0) sin(𝜃0 − 𝜃1).
(4)

Let 𝜖 = 1∕𝑘, 𝜏 = 𝑡∕𝜖 to obtain
𝑑𝜃0
𝑑𝜏

= 𝜖𝜔0

𝑑𝜃1
𝑑𝜏

= 𝜖𝜔1 + 𝑓 (𝜃0) sin(𝜃0 − 𝜃1).
(5)

Thus as 𝜖 → 0, on fast time scale, the system reduces to a 1-dimensional
system
𝑑𝜃0
𝑑𝜏

= 0

𝑑𝜃1
𝑑𝜏

= 𝑓 (𝑥0) sin(𝑥0 − 𝜃1),
(6)

where 𝑥0 = 𝜃0(0). When 𝑥0 > 𝜋, 𝑓 (𝑥0) = 0, 𝜃1 is a constant and equals
its initial condition. When 𝑥0 < 𝜋, 𝑓 (𝑥0) = 1,
𝑑𝜃1
𝑑𝜏

= sin(𝑥0 − 𝜃1). (7)

The fixed points are 𝜃1 = 𝑥0 (stable) or 𝜃1 = 𝑥0 + 𝜋 (unstable). Given
the choice of Poincaré section, the fast equation implies that solutions
converge to the stable fixed point 𝑥0.

By returning to the original time scale, we obtain
𝑑𝜃0
𝑑𝑡

= 𝜔0

𝑑𝜃1
𝑑𝑡

= 𝜖𝜔1 + 𝑓 (𝜃0) sin(𝜃0 − 𝜃1)
(8)

which when 𝜖 = 0 yields
𝑑𝜃0
𝑑𝑡

= 𝜔0

0 = 𝑓 (𝜃0) sin(𝜃0 − 𝜃1).
(9)

On the original time scale, when 𝑓 (𝜃0) ≠ 0, it must follow that sin(𝜃0 −
𝜃1) = 0 implying that 𝜃0 = 𝜃1 remains. Thus when 𝜃1 returns to the
Poincaré section again, 𝜃1 = 𝜋 and therefore 𝑥 = 𝜋 is the only fixed
point. While this argument explains why there is only one fixed point
in the limit 𝑘 → ∞, the map results shown in Fig. 2 indicate that this
result holds at much smaller values of 𝑘.

We next add a second oscillator and consider a 1-dimensional map
under the assumption that 𝜃1 is already entrained where 𝑘 = 0.1. In
Fig. 3, we obtain similar results as the previous 1-dimensional map. If
𝛼1 is too small then 𝜃2 cannot be entrained. As 𝛼1 increases from 0.04
to 0.08, a saddle node bifurcation occurs at an intermediate value that
we will identify in the next section as 𝛼𝑐 . As the value of 𝛼1 continues to
increase, a discontinuity arises and the unstable fixed point disappears.
A similar singular perturbation argument as above with 𝜖 = 1∕𝛼1 can
be used to show this.
4

Fig. 3. The 1-dimensional map for the entrainment of 𝜃2 in which 𝜃1 is already
entrained with different 𝛼1 values. No fixed points exist for small values of 𝛼1, two
for intermediate values of 𝛼1 and only the stable one when 𝛼1 is large.

3.2. Necessary conditions for entrainment of two oscillators

Now let us turn our attention to the three oscillator case in which
we allow both 𝑘, 𝛼1 > 0. Whether an entrained solution exists or not
epends on parameters. Fig. 4 shows phase differences of 𝜃1 and 𝜃2

from 𝜃0 for a case of non-entrainment (a) and entrainment (b). In both
panels, oscillator 1 is entrained to the LD oscillator as the coupling
constant 𝑘 is sufficiently large. In Fig. 4(a), the coupling from oscillator
1 to 2, 𝛼1 is too small (the phase difference is not periodic), while in
the other panel it is strong enough to yield entrainment. This simulation
suggests, not surprisingly, that there exist a range of parameters over
which entrained solutions exist.

Finding an entrained solution of (1) is equivalent to finding a stable
fixed point of the entrainment map. From the first equation of (2), we
need 𝐹1(𝑥, 𝑦, 𝑘, 𝛼) = 𝑥, which implies 𝜌(𝜃0, 𝜃1) = 24. From the second
equation of (2) similarly, we need

24𝜔1 + 𝑘∫

24

0
𝑓 (𝜃0) sin

(

𝜃0 − 𝜃1
)

𝑑𝑡 = 2𝜋. (10)

Since 𝑓 (𝜃0) ≤ 1 and | sin(𝜃0 − 𝜃1)| ≤ 1, the following bound for 𝑘 is
btained

≥ 2|𝜔0 − 𝜔1|. (11)

n other words 𝑘 must be sufficiently larger than the difference between
he intrinsic frequencies of the LD and first oscillator.

To obtain a bound for 𝛼1, note that based on the definition of
oincare section, 𝜌 also satisfies 𝜃2(𝜌) = 3𝜋. Integrating the equation
or 𝜃2 from 0 to 𝜌, we obtain:

𝜋 =𝜔2𝜌 + 𝛼1 ∫

𝜌

0
sin

(

𝜃1 − 𝜃2
)

𝑑𝑠. (12)

ubstitute 𝜌(𝜃0, 𝜃1) = 24 into (12) as a necessary conditions for the
ystem to have an entrained solution to obtain:

1 ≥
|2𝜋 − 24𝜔2|

24
= |𝜔0 − 𝜔2| (13)

Note that this bound does not specifically include the term 𝜔1. This
ccurs because the necessary condition for entrainment is that 𝜃1 is
lready entrained and thus oscillates with a 24 h period. Thus it is
nough to compare the intrinsic frequency 𝜔2 to 𝜔0 and ensure that
oupling strength 𝛼1 from 𝜃1 is sufficiently large.

3.3. Existence and stability of fixed points of the 2-dimensional map

Knowing the necessary conditions for entrainment allows us to now
turn to finding fixed points of the entrainment map. For the map to
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Fig. 4. The phase difference of the original system showing (a) non-entrainment and (b) entrainment. The blue curve denotes 𝜃1 − 𝜃0, and the red curve denotes 𝜃2 − 𝜃0. (a) The
value of 𝑘 is large enough to entrain 𝜃1 to 𝜃0, but 𝛼1 is too small to entrain 𝜃2 to 𝜃1 as exemplified by the phase slipping of 𝜃2. (b) Both 𝑘 and 𝛼1 are sufficiently large for
entrainment. The oscillators quickly come into alignment and remain entrained.
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have fixed points, Eq. (2) implies that

𝐹1(𝑥, 𝑦, 𝑘, 𝛼1) − 𝑥 = 0

2(𝑥, 𝑦, 𝑘, 𝛼1) − 𝑦 = 0.
(14)

n the Appendix, we show that there exist 𝑠1, 𝑠2 ∈ (0, 24) such that
q. (14) is equivalent to

in
(

𝜃1(𝑠1) − 𝜃2(𝑠1)
)

=
𝜔0 − 𝜔2

𝛼1

in
(

𝜃0(𝑠2) − 𝜃1(𝑠2)
)

=
2(𝜔0 − 𝜔1)

𝑘
.

(15)

otice that the absolute value of the left hand side of both equations is
ounded by one which immediately allows us to recover the necessary
onditions on parameters for entrainment, Eqs. (11) and (13). The left-
and sides of (15) are both 2𝜋-periodic sine functions. The right-hand
ides are just horizontal lines. Thus these lines each intersect the sin
unctions at most at two points in [0, 2𝜋). By choosing one intersection
oint from each of these graphs, we obtain four possible fixed points.
e can also see why fixed points arise at small values of 𝑘 or 𝛼1. For

xample, when 𝑘 increases, the horizontal line defining the right-hand
ide of the first equation in (15) decreases towards the value 1. Thus
his equation can have at most one solution at the moment when the
quation is first satisfied, followed by at most two solutions as 𝑘 further
ncreases. Define

𝑐 = 2(𝜔0 − 𝜔1)

𝛼𝑐 = 𝜔0 − 𝜔2.
(16)

hese are the critical values of 𝑘 and 𝛼1 that arise due the saddle-node
ifurcations in the 1-dimensional maps discussed in Section 3.1. When
< 𝑘𝑐 , 𝜃1 cannot be entrained by the light forcing; when 𝛼1 < 𝛼𝑐 , 𝜃2

annot be entrained by 𝜃1. The nature of entrainment depends on the
hoice of the parameter pair (𝑘, 𝛼1). Specifically, there exist four curves

in the parameter space that separate regions where there are four, two
or one fixed point (Fig. 5a). Two of these curves are the lines 𝑘 = 𝑘𝑐
and 𝛼 = 𝛼𝑐 . The other two curves are described below in Case I.

Case I: There exist curves 𝑘𝑢𝑏(𝛼1) (Fig. 5(a) green) and 𝛼𝑢𝑏(𝑘)
(Fig. 5(a) red) that together with the lines 𝑘 = 𝑘𝑐 and 𝛼1 = 𝛼𝑐 bound a
egion 𝑅 in parameter space such that for any parameter pair chosen in
he interior of 𝑅, the two-dimensional map has four fixed points. The
ubscript 𝑢𝑏 denotes the upper bound.
Case II: If 𝛼1 < 𝛼𝑢𝑏(𝑘) and 𝑘 > 𝑘𝑢𝑏(𝛼), or if 𝛼1 > 𝛼𝑢𝑏(𝑘) and 𝑘 < 𝑘𝑢𝑏(𝛼)

then for any parameter pair chosen in either of those regions, the map
possesses two fixed points.

Case III: Define 𝛼𝑑 = 𝛼𝑢𝑏(𝑘𝑐 ) and 𝑘𝑑 = 𝑘𝑢𝑏(𝛼𝑐 ). If 𝑘 = 𝑘𝑐 , for
𝛼𝑐 < 𝛼1 < 𝛼𝑑 there are two fixed points and for 𝛼1 > 𝛼𝑑 there is one
fixed point. Similarly, if 𝛼1 = 𝛼𝑐 , for 𝑘𝑐 < 𝑘 < 𝑘𝑑 , there are two fixed
points and for 𝑘 > 𝑘 , there is one fixed point.
𝑑 H

5

Case IV: If 𝑘 > 𝑘𝑢𝑏(𝛼) and 𝛼1 > 𝛼𝑢𝑏(𝑘), then the map possesses exactly
one fixed point.

Fig. 5(b)–(e) shows bifurcation curves obtained by varying either
𝑘 or 𝛼1 along the lines labeled (b)–(e) in panel (a). Solid (dashed)
curves denote curves of stable (unstable) fixed points. Focusing first
on panel (b) where 𝑘 = 0.12, one sees that at a small value of 𝛼1 = 𝛼𝑐 ,
two separate bifurcations occur leading to the creation of four fixed
points. To understand this, return to the 1-dimensional maps considered
in Section 3.1. With 𝑘 = 0.12, Fig. 2 shows that the 1-dimensional
entrainment map has two fixed points, a stable and an unstable one.
Using the stable fixed point value of this map, we then see from Fig. 3
that when 𝛼1 is too small, this 1-dimensional map has no fixed points.
However, an increase of 𝛼1 leads to the creation of two fixed points via
a saddle-node bifurcation. This explains the creation of the green and
purple curves of Fig. 5(b). The green curve corresponds to the situation
where 𝜃1 is entrained to the LD oscillator 𝜃0 and 𝜃2 is entrained to 𝜃1.
The purple curve corresponds to the case where 𝜃1 is entrained to the
LD oscillator 𝜃0, but 𝜃2 is in an unstable state with respect to 𝜃1.

To understand why the set of blue and red bifurcation curves arise,
use the unstable fixed point of the 𝜃0 − 𝜃1 map, repeating the same
argument as above. Now we obtain the case where 𝜃1 is in an unstable
state relative to 𝜃0, while 𝜃2 is either entrained (blue curve) or in an
unstable state relative (red curve) to 𝜃1. Notice that the blue and purple
curves switch their location in Fig. 5(b). This switch is caused by the
mod operation. So for instance when the value of phase along the blue
curve reaches the lower bound zero, after taking the mod operation, the
curve emerges in the upper region. To explain why the red and purple
bifurcation curves disappear as 𝛼1 increases beyond 𝛼𝑢𝑏(𝑘), again note
from the 1-dimensional map shown in Fig. 3, that at large enough 𝛼1,
the unstable fixed point of that map disappears. This loss of existence
corresponds to two fixed points disappearing in the 2-dimensional case.
Similar arguments explain the bifurcation diagrams shown in panel
(c)–(e).

Fixed points of the map can also be found by geometrically solving
Eq. (14). Namely, in Fig. 6(a–b) we take a specific parameter set 𝑘 =
0.1, 𝛼1 = 0.08 and show contour plots of the functions 𝐹1(𝑥, 𝑦, 𝑘, 𝛼1) − 𝑥
nd 𝐹2(𝑥, 𝑦, 𝑘, 𝛼1) − 𝑦. The zero level curves are those that separate the
lue and red regions and each constitute the 𝑥- and 𝑦-nullclines of (14).
lotting these nullclines on a common 𝑥–𝑦 plane, Fig. 6(c), the blue
red) curve corresponds to the 𝑥-(𝑦)-nullcline. The four intersection
oints, A, B C and D are fixed points of the map. Based on numerical
alculations of the eigenvalues at the linearization of the fixed points
f the map (not shown), we conclude that point A is a stable node,
oints B and C are saddle points, and point D is an unstable node.
eft unobserved are the manifolds associated with these fixed points.

owever, the contour plots and nullclines do reveal some information
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Fig. 5. Bifurcation diagrams regarding number of fixed points of the map: (a) The (𝛼1 , 𝑘) parameter space showing how the number of fixed points depends on these parameters.
There are no fixed points if either parameter lies below the critical value 𝛼𝑐 or 𝑘𝑐 . The region 𝑅 is bounded by these lines and the curves 𝑘𝑢𝑏(𝛼1) (green curve) and 𝛼𝑢𝑏(𝑘) (red
curve). The number of fixed points in each regions is labeled. Squares along green and red curves represent parameter pairs that were tested during simulation. The rest of these
curves were extrapolated. The dashed lines denote the parameter values we take for the 1-dimensional bifurcation curves shown in the other panels. (b) 𝑘 = 0.12, increasing 𝛼1,
note that the dotted blue and purple curves switch location through 2𝜋 due to the mod operation, which is also seen in panel d. (c) 𝑘 = 0.65, increasing 𝛼1 and the transition
from two to one fixed points. (d) 𝛼1 = 0.1, increasing 𝑘. (e) 𝛼1 = 0.4, increasing 𝑘 and the transition from two to one fixed points.

Fig. 6. (a) and (b): Contour plots of the map 𝐹1 − 𝑥 and 𝐹2 − 𝑦 at 𝑘=0.1, 𝛼1=0.08. The curves separating the colors represent the contour curve of level 0. (c) Nullclines of the
2-dimensional map which correspond to the zero level curves of the contour plots (blue for (a) and red for (b)). The intersections of the nullclines are fixed points of the map
and are labeled A–D. (d) Return time map 𝜌(𝑥, 𝑦) computed from direct simulations. The black curves represent where the return time is exactly 24 h. Note the similarities with
panel (a).
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Fig. 7. Four parameter sets from different regions of the bifurcation space are shown. The relative phase difference between oscillators are plotted. For small 𝑘 and 𝛼1 (upper
left), the oscillators take a few cycles to entrain. For large 𝑘, small 𝛼1 (upper right), 𝜃1 entrains first (see blue curve). For large 𝛼1, small 𝑘 (lower left), 𝜃2 synchronizes to 𝜃1 first
(see yellow curve). For both parameters large (lower right), both oscillators entrain quickly within the first 24 h cycle.
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that will be useful for understanding the dynamics of the map. The
region between the two blue curves where the level curves have a
positive value corresponds to values for which the return time of 𝜃2
to the Poincare section  is less than 24 h. The complementary region
therefore corresponds to values for which the return is greater than
24 h. In panel (d), we show the return time map 𝜌(𝑥, 𝑦) which allows us
to also easily visualize its gradient, which will be useful in the section
below where we locate the stable and unstable manifolds of the fixed
points. Here notice that the return time map 𝜌 is numerically computed
by direct simulation of the three oscillator system. It agrees with the
level curves in panel (a), which show, in a different way, the difference
in the return time from 24 h calculated using the map.

3.4. Entrainment time

In Fig. 7, we have selected four different parameter sets to show how
the entrainment time varies as a function of parameters, while starting
from the same initial conditions. In the upper left panel, we plot the
phase difference between oscillators for the parameter set from Case
I used in Fig. 6. In the upper right panel, for Case II with a larger 𝑘
value and small 𝛼1 value, oscillator 1 entrains first to 𝜃0, as expected.
In the lower left panel, the 𝑘 value is the same as the first panel,
but 𝛼1 is now larger, also Case II. Now the two oscillators 𝜃1 and 𝜃2
synchronize first. In the lower right panel, where both 𝑘 and 𝛼1 are
large, Case IV, all oscillators quickly entrain together. One other point
to note in these panels is the phase difference at the entrained state.
As would be expected, when the parameters 𝑘 and/or 𝛼1 are larger,
the phase difference is smaller and the entrained state is more tightly
synchronized.

We now use the map to compute the entrainment time. We shall
investigate Cases I and II in some detail. Using the same parameter set
as Fig. 6 𝑘 = 0.1, 𝛼1 = 0.08, we computed a heat map of entrainment
times from different initial values; Fig. 8(a). The heat map is computed
from a discretized initial condition space, by computing from the map
how many iterates are needed from each initial condition to reach a
neighborhood of the stable node A. Each iterate corresponds to a time,
via the return map 𝜌(𝑣), which is then summed up to obtain the en-
rainment time. The longest entrainment times occur along the orange
urves, while the shortest times occur along the dark blue ones. Noting
hat point A corresponds to a stable node, the results suggest that the
ark blue curve corresponds to the strong stable manifold of this point.
 h

7

Note that this manifold also coincides with the 1-dimensional unstable
manifold of the saddle point C. Since point B is a saddle, it will have
a 1-dimensional stable manifold and that is what is depicted by the
orange curve. This curve coincides with the weak unstable manifold
of the unstable node D. If an initial condition were to begin on the
stable manifold of either of these saddle points, then it would iterate in
forward time to B and C and never entrain to the stable solution, i.e. it
would have an infinitely long entrainment time. It follows, that points
that lie close to these stable manifolds would accordingly have very
long entrainment times before they eventually converge to the stable
node at A. In the next section, we will further explore the manifold
structure of the fixed points.

The heat map in Fig. 8(a) reveals important insights into how
different initial configurations of the central and hierarchical oscillators
lead to different entrainment times. The stable fixed point of that map
occurs at roughly 𝑥∗ = 4.9, 𝑦∗ = 3.65. Note that changes in the
nitial 𝑥 value correspond to changes in the LD phase with respect
o the peripheral oscillator. Changes in the initial 𝑦 value represent

desynchronization of oscillators 1 and 2 from their phase-locked
elationship. Consider three different initial conditions: 𝑥 = 3.7, 𝑦 = 3.65
n which the LD phase is offset but the phase relationship between 𝜃1
nd 𝜃2 is held constant; 𝑥 = 4.9, 𝑦 = 2.7 in which the LD phase is held
onstant but the phase relationship between 𝜃1 and 𝜃2 is perturbed;
r 𝑥 = 3.7, 𝑦 = 2.7 in which the both the LD phase and the phase
elationship between 𝜃1 and 𝜃2 are changed. The shortest reentrainment
ime is for the last case where oscillators 1 and 2 are desynchronized
rom one another while undergoing a shift in the LD phase. Here the
nitial condition 𝑥 = 3.7, 𝑦 = 2.7 lies near the (dark blue) strong
table manifold of stable node A for which iterates converge quickly
nd explains the fast reentraiment. Indeed any initial condition lying
ear the strong stable manifold of A will lead to fast reentrainment.
onversely, the longest reentrainment time is for the second case,
here the oscillators are perturbed from their stable state but the LD
hase does not change. Here the initial condition 𝑥 = 4.9, 𝑦 = 2.7 lies
lose the stable manifold of the saddle point B, which as mentioned
bove, leads to long reentrainment times. Note that if the change in
𝐷 phase is accompanied by a desynchronization of the peripheral and
entral oscillators that place the initial condition anywhere along the
table manifold of B, e.g. 𝑥 = 3, 𝑦 = 1, the reentrainment time will be
ery long. These results show that the manner in which a hierarchical
ystem is perturbed from the phase-locked state is critical to determine
ow long reentrainment will occur.
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Fig. 8. (a) The heat map of the entrainment time. Point A is a stable node where the dark blue curve corresponds to the strong stable manifold of this point with the fastest
ntrainment time. This curve coincides with the unstable manifold of the saddle point C. Point B is a saddle, and its stable manifold is depicted by the orange curve indicating
hat points that lie close to it have the longest reentrainment times. This curve emanates from the unstable node D. (b–c) Fixed points occur at the intersection of the light yellow
nd blue (A), blue and light blue (B), light yellow and yellow (C) and light blue and yellow (D) curves. (b) Iterates from the initial condition 𝑥 = 0.2, 𝑦 = 5.7 near 𝑊 𝑠(𝐶) are
hown. The order of iterates and direction of entrainment is along the strong stable manifold of A which coincides with 𝑊 𝑢(𝐶). The color map shows results from the Lagrangian
escriptor method. (c) Iterates from the initial point 𝑥 = 0.2, 𝑦 = 4.2 near 𝑊 𝑠(𝐵) are shown. The second through fourth iterates lie near B (labels overlap), but then wrap around
he diagram and follow the weak stable manifold of 𝐴. The color map shows results from the Lagrangian descriptor method.
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.5. Entrainment direction

We applied the method of Lagrangian Descriptors [27], which is
numerical technique to find the stable and unstable manifolds of

ixed points of flows and maps. Here we compute the sum of the arc
ength of five forward and five backwards iterates. We then take the
ifference of these values between nearby initial values to compute the
radient; see the Appendix for details of the method. At most points in
hase space, the gradient will be close to zero (turquoise background in
ig. 8(b) and (c)) because there is not much difference in the arclength
etween nearby points. But between certain initial points, there are
harp changes in the arclength. These steep gradients reveal the stable
nd unstable manifolds of the fixed points. In Fig. 8(b) and (c), the light
ellow curve represents 𝑊 𝑢(𝐶), the unstable manifold of saddle point
, which coincides with the strong stable manifold of 𝐴; the light blue
urve represents 𝑊 𝑠(𝐵), the stable manifold of saddle point B, as well
s the weak unstable manifold of 𝐷. The dark blue curve represents
𝑢(𝐵), the unstable manifold of B, which coincides with the weak

table manifold of 𝐴. The yellow curve represents 𝑊 𝑠(𝐶), the stable
anifold of C, which coincides with the strong unstable manifold of 𝐷.
8

To understand the direction of entrainment, we took two specific
nitial conditions to show how the iterates of the map become separated
s a result of the manifold structure. In Fig. 8(b), we took an initial
ondition slightly above 𝑊 𝑠(𝐶), the iterates move near 𝑊 𝑢(𝐶) and
onverge quickly after just 5 iterates to the fixed point 𝐴. In this case,
he 𝑥 value of the map increases on the path to convergence, akin to a
hase delay of the peripheral oscillator with respect to the LD phase.
he phase of the central oscillator also phase delays (𝑦 increasing) to
onverge to its own stable phase. In Fig. 8(c), we took a point near
𝑠(𝐵), the iterates move near 𝑊 𝑠(𝐵) for a few iterates, with 𝑥 and
decreasing, until they are in a neighborhood of 𝐵. They then are

ttracted to the weak stable manifold of point 𝐴 and phase delay in the
variable, but are not monotone in 𝑦. These kind of dynamics resemble

eentrainment by partition as in [5]. From the second iterate onwards,
he phase 𝑦 for the central oscillator does remain close to its stable
hase indicating that the central and peripheral oscillators are largely
hase-locked while they entrain to the LD phase.

For minimizing reentrainment, what matters most is how close the
nitial value or one of its iterates lies to the strong stable manifold of
he stable node A. When, as occurs in Fig. 8(b) for the second iterate,
uture iterates are constrained to lie near this manifold, iterates 3,
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Fig. 9. Case II dynamics for 𝑘 = 0.1, 𝛼1 = 4. (a) 𝑥-nullcline (blue) and 𝑦-nullclines (red) of the 2-dim map show two intersection points, A and B. (c) The Lagrangian Descriptors
ethod reveals the stable and unstable manifolds of the fixed points. Fixed points A and B lie at the intersection of the blue curve with the light yellow and light blue curves,

espectively. Iterates from two different initial conditions are shown; black dots: 𝑥0 = 3, 𝑦0 = 1.5; red dots: 𝑥0 = 1, 𝑦0 = 4.5. (b) and (d) The corresponding phase difference plot of
he two initial condition in Fig. 9(c); note that the lower panels of (b) and (d) show the first two hours of the two initial conditions, to illustrate the rapid convergence of 𝜃2 to
1 as found near 𝑡 = 0.
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and 5, and thus converge quickly. Alternatively, in Fig. 8(c), the
nitial value lies close to the stable manifold of the saddle point B,
eaning that future iterates transit near B before being attracted by

he weak stable manifold A. What initially appears to be reentrainment
hrough phase advance is blocked by the saddle structure of B, forcing
he iterates to move in the opposite direction. From a mathematical
iew, this is somewhat surprising since stable and unstable manifolds
f saddle points in maps do not necessarily provide a (local) separatrix
tructure for the phase space. This is unlike what can occur for stable
nd unstable manifolds for fixed points or periodic orbits of flows;
ee [10] for how this can occur in the context of circadian models.

Turning now to Case II of Fig. 5(a), we show analogous results
hen 𝛼1 is large. In Fig. 9, we let 𝑘 = 0.1, 𝛼1 = 4, so that oscillator 2

ynchronizes to oscillator 1 quickly. For this case, there will be only two
ixed points. In Fig. 9(a), we show the nullclines associated with Case
I which intersect at two points; a stable node (A) and a saddle point
B). Note that the 𝑦-nullcline is horizontal at 𝑦 = 𝜋. This is because
scillator 2 is slaved to oscillator 1. Thus when oscillator 2 is at the
oincaré section 𝜃2 = 𝜋, oscillator 1 also lies there. Fig. 9(c) uses the
agrangian Descriptor method to display the manifolds of the two fixed
oints. The light blue curve is the putative stable manifold of the saddle
oint. The blue curve is both the unstable manifold of the saddle point
s well as the weak stable manifold of the stable node. The light yellow
urve is the putative strong stable manifold of the stable node; see the

ppendix for some additional comments about the caveat of ‘‘putative’’. t

9

e have plotted six iterates starting from two distinct initial conditions
0 = 1, 𝑦0 = 1.5 (black dots) and 𝑥0 = 1, 𝑦0 = 4.5 (red dots). These
terates show very fast convergence towards the weak stable manifold
f point A and then monotonic convergence in the 𝑥 value towards A.
his shows that after the first iterate, the direction of entrainment is
rimarily through phase delay (red dots) or advance (blue dots) for
scillator 1. In Fig. 9(b) and (d), we show the two representative phase
ifferences, which show the quick convergence of oscillators 1 and 2,
ear 𝑡 = 0 (lower panels of each) and the eventual entrainment of the
air through phase delay (b) or phase advance (d), as predicted by the
ap. Note here that we are plotting 𝜃1 − 𝜃0 and 𝜃2 − 𝜃0 so an increase

n these values is a delay, and a decrease is an advance.

.6. Generalization to 1 +𝑁 oscillators

We now return to study the full hierarchical system consisting of
+𝑁 oscillators (2). As mentioned in the model section, we choose the
oincaré section to lie at 𝜃𝑁 = 𝜋. This leads to an 𝑁-dimensional map

for the phase of lights 𝑥, the phase of the central oscillator 𝑦 and the
phases of the other peripheral oscillators, 𝑧𝑖, 𝑖 = 2,… , 𝑁−1. We choose
the values of 𝑘 and 𝛼𝑖 to lie within a parameter space that is equivalent
to that of Case I of the 𝑁 = 2 network. In particular, it is not hard to
show that 𝛼𝑖−1 ≥ |𝜔0 − 𝜔𝑖| is a necessary condition for entrainment.

Using the work of the previous section, it is fairly straightforward

o construct the following inductive argument. The one-dimensional
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𝑁 = 1 entrainment map has two fixed points. The two-dimensional
entrainment map has four fixed points. If the 𝑁 = 𝑘 map has 2𝑘 fixed
oints, then the 𝑁 = 𝑘 + 1 map has 2𝑘+1 fixed points. Thus in the
+ 𝑁 dimensional system, there are 2𝑁 fixed points. The stability of

hese fixed points can be determined inductively. At each deeper level
f the hierarchy, each fixed point spawns two new ones, an unstable
nd stable one that inherit the existing stability properties from the
igher level. For example, label the four fixed points of the 𝑁 = 2
ap as 2𝑢𝑢, 2𝑢𝑠, 2𝑠𝑢, and 2𝑠𝑠 with 𝑢 and 𝑠 corresponding to unstable

and stable. The number of such symbols yields the dimension of the
appropriate manifold of that fixed point. Then for the 𝑁 = 3 map
the eight fixed points would be labeled 3𝑢𝑢𝑢, 3𝑢𝑢𝑠, 3𝑢𝑠𝑢, 3𝑢𝑠𝑠, 3𝑠𝑢𝑢, 3𝑠𝑢𝑠, 3𝑠𝑠𝑢
and 3𝑠𝑠𝑠. As is evident, only one of the fixed points is stable (that
with only the 𝑠 subscript), while the remaining fixed points are all
unstable. Of those, one of them has eigenvalues that are all larger than
one in absolute value (that with only the 𝑢 subscript). The remaining
unstable fixed points all possess both stable and unstable directions
(i.e. higher dimensional saddle points). Regarding the direction of and
time to entrainment, it is too difficult to fully categorize each of the
possibilities. We note that based on our three-oscillator results, we
conjecture that the fastest path to entrainment lies along the strong
stable manifold of the stable fixed point. It is extremely difficult to give
general conditions for the direction of entrainment since this depends
critically on the initial position of each oscillator. Our results from the
three-oscillator case suggest that the stable and unstable manifolds of
the unstable fixed points will divide the phase space into regions where
oscillators converge in different directions.

3.7. Application of the entrainment map to hierarchical models with mutu-
ally coupled peripheral oscillators

Having shown how to apply the entrainment map to hierarchical
feed-forward networks, we now apply it to a model with multiple,
mutually coupled peripheral oscillators. We will use the model of Kori
et al. [24] who studied a network with one central and two peripheral
oscillators and used an order parameter to reduce the phase of the
peripheral oscillators to an averaged phase oscillator. The goal here
is to determine if desynchronizing (phase tumbling) the peripheral
oscillators at the moment of the LD phase shift leads to faster reentrain-
ment. Eq. (3) describes the system. Note that each peripheral oscillator
couples to the others and is assumed to be symmetric, 𝛼2 = 𝛼3. The
averaged phase 𝜃̄(𝑡) is defined by

𝑅𝑒i𝜃̄ = 1
2
(𝑒i𝜃2 + 𝑒i𝜃3 ), (17)

where 𝑅(𝑡) is the synchronization level; when the value of 𝑅 is at
extremes, 1 and 0, the oscillators are either completely in-phase or are
𝜋 degrees out of phase. Kori et al. [24] showed that

𝑅(𝑡) = |cos
𝛥𝜃(𝑡)
2

|, (18)

where 𝛥𝜃(𝑡) = 𝜃2(𝑡) − 𝜃3(𝑡). Notice that 𝑅(𝑡) is a function of 𝑡. The phase
difference of 𝜃2 and 𝜃3 changes over time but does become 2𝜋-periodic
with small amplitude about its mean as the solution entrains. We fix the
𝑅 value to a value near the mean of this steady state of 𝑅(𝑡) to define
the averaged system. The new model that we consider is given by
𝑑𝜃0
𝑑𝑡

= 𝜔0

𝑑𝜃1
𝑑𝑡

= 𝜔1 + 𝑘𝑓 (𝜃0) sin(𝜃0 − 𝜃1)

𝑑𝜃̄
𝑑𝑡

= 𝜔̄ + 𝛼𝑅 sin(𝜃1 − 𝜃̄).

(19)

The parameters that were not previously defined are 𝜔̄ = 2𝜋∕29, 𝑘 =
0.08, 𝛼 = 0.1, 𝑅 = 0.88. The 𝑘 value is chosen based on the results
from the last section so that the central oscillator is entrained. The
order parameter value for 𝑅 is chosen to be in a neighborhood of the
mean 𝑅 value obtained from simulation for the entrained solution of
10
the full set of Eqs. (3). The two-dimensional entrainment map is built
now by placing the Poincaré section on the central oscillator at 𝜃1 = 𝜋.
The variable 𝑥 continues to represent the phase of light and 𝑦 now
epresents the phase of the averaged oscillator.

In Fig. 10(a), we plot the nullclines where blue represents 𝑥-
ullcline, red represents 𝑦-nullcline. The 𝑥-nullclines are now vertical
ince the Poincaré section is taken on the central oscillator thus
ecoupling the light phase from any dependence on the averaged
scillator. Intersections of the nullclines, as before, correspond to fixed
oints of the entrainment map. The stable fixed point is labeled 𝐴,
he two saddles points are 𝐵 and 𝐶 and the unstable node is point
. Fig. 10(b) shows the entrainment time required for each initial

ondition. There is very little dependence on 𝑦 for this choice of
arameters, indicating that the entrainment of the central oscillator
o the light-dark forcing governs entrainment times. Fig. 10(c) shows
he results of the Lagrangian Descriptor method which clearly reveals
he structure of the manifolds of the fixed points. Notice here that
he color is slightly different than in previous figures (green means
ero gradient). The phase differences for the full model (3) and the
veraged model (19) are shown in Fig. 10(d). The top panel shows that
or the chosen parameters, 𝜃1 and 𝜃3 entrain to LD cycle through phase
dvance (the curves decrease), while the other peripheral oscillator, 𝜃2
ntrains initially through phase advance followed by phase delay. By
omparison, the phase difference of the averaged phase equation (lower
anel) captures only some of the dynamic behavior of the system.

We now turn our attention to the question of whether desynchro-
ization of the peripheral oscillators affects their reentrainment times
fter an abrupt change in the light-dark phasing. An et al. [21] suggest
hat desynchronization of oscillators at the time of shift in the light
hasing can speed up their ultimate reentrainment. Kori et al. [24],
lternatively, suggest the opposite. Indeed they suggest that the evo-
ution of the order parameter 𝑅 value from the desynchronized levels,
.g. close to 0, towards its ultimate mean steady state value will lead
o slower reentrainment since the effect of the central oscillator will
ave opposing effects on the peripheral oscillator. The basis for the Kori
t al. claim is that the rate at which the average oscillator entrains is
roportional to 𝑅 (see Eq. (8) in their paper). Thus smaller values of
lead to slower reentrainment. We show here that in some sense both

re partially correct. In fact, we will show that the level of synchrony
f the peripheral oscillators in the stable entrained solution seems to
etermine the efficacy of phase tumbling. In particular, when 𝑅 is close
o one, phase tumbling does not seem to affect reentrainment times
ver a range of light onset phases. When 𝑅 is smaller, then phase
umbling can either speed up or slow down the reentrainment.

To assess this, we computed how quickly the order parameter as a
unction of time 𝑅(𝑡) approaches its mean steady state value. Fig. 11(a,
) shows two different cases, 𝑅 ≈ 0.88 and 𝑅 ≈ 0.74. In both simu-
ations we started one simulation with oscillators 2 and 3 completely
ynchronized (solid blue), 𝑅0 = 1, and another simulation with the
scillators maximally separated by, 𝜃2(0) = 𝜃3(0) + 𝜋 (red dashed),
0 = 0 with the light phase at 𝑥 = 0. As is evident, the order parameter
volves in different ways for each of the cases, but there is not much
ualitative differences in the time in which the 𝑅0 = 0 and 𝑅0 = 1 time
ourses reach a neighborhood of the mean 𝑅 value for each case. So
he actual initial synchronization level at 𝑡 = 0 may not meaningfully
ffect synchronization time. What is true is that for the smaller 𝑅 value,
anel (c), the time in hours to reach this steady state is longer (by about
wo days), which is consistent with the claim of Kori et al. However
he convergence to the mean 𝑅 value is not the same as entrainment.
n Fig. 11(b, d), we plot the reentrainment times over a range of
ifferent initial 𝑅0 values (0, 0.35, 0.7, 1.0) for a range of different
hase shifts of light onset shown by different values from 0 to 24 on the
orizontal axis. Note from panel (b) that when the ultimate entrained
olution is itself fairly well synchronized, 𝑅 ≈ 0.88, the initial synchrony
alue 𝑅0 plays no role in determining the reentrainment time. Indeed
he interpolated curves nearly overlap one another. This shows that
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Fig. 10. Entrainment map for the averaged oscillator model: (a) The 𝑥-nullcline (blue) and y-nullcline (red) of the entrainment map intersect at four fixed points labeled A–D.
(b) Entrainment time required for each initial condition. (c) The Lagrangian Descriptor method which plots the gradient of the arclength for iterations for each initial condition
uncovers the manifolds of the various fixed points. The strong stable and unstable manifolds of fixed points A and D are independent of the averaged oscillator phase since the
Poincaré section lies at 𝜃1 = 𝜋. (d) The phase difference between oscillators of the original model and the averaged model; see text for more details.
phase tumbling has little effect in changing reentrainment times for this
case. Alternatively, panel (d) shows that when the entrained solution
displays a greater phase difference between the peripheral oscillators,
then 𝑅0 and the initial phase of the light determine the reentrainment
ime. Thus phase tumbling here has an effect on entrainment times.
owever, there is little, to no predictability of whether phase tumbling,

.e. starting with small 𝑅0, will decrease reentrainment times. There are
ertainly cases where it does, consistent with An et al. but it is appears
o be highly dependent on the initial phasing of the light onset.

. Discussion

In this paper, we established a mathematical basis through which to
nderstand the entrainment of circadian oscillators in a few different
ierarchical systems. We utilized the well known and widely applicable
uramoto model [18] to consider a relatively low-dimensional phase
pace. Generalizing from previous work [15,16], we were able to derive
n 𝑁-dimensional entrainment map for a feed-forward hierarchical
etwork, which we then analyzed in detail for the case 𝑁 = 2. Fixed
oints of the map correspond to stable and unstable periodic solutions
f the original equations. Importantly, we showed how the stable and
nstable manifolds of the fixed points organized the iterates of the
ap leading to a clearer understanding of the time to and direction

f reentrainment of oscillators after an abrupt change in the light-dark
hasing in the network. We also derived a two-dimensional entrain-
ent map for a system consisting of a central and two mutually coupled
11
peripheral oscillators. There we analyzed the time to entrainment as a
function of the initial and final levels of synchrony of the peripheral
oscillators. We showed that desynchronized initial conditions can lead
to faster reentrainment, but only for specific switches of the light
onset phase and only when the peripheral oscillators in the stable
phase-locked solution are not too tightly synchronized.

We demonstrated that the fixed points of the entrainment map
correspond to different types of phase-locked solutions of the circadian
system. For 𝑁 = 2 and parameter values in which there are four
fixed points, the stable fixed point represents the solution in which
the central and peripheral oscillators are entrained to the light-dark
forcing, the two saddle-points represent solutions where one of the two
oscillators is entrained but the other is in an unstable state. and the
unstable node where both are in an unstable periodic state. In turn, the
stable and unstable manifolds of the saddles organize the convergence
of iterates to the stable entrained solution. That the manifolds of the
map guide the direction of entrainment, on one hand, is somewhat
surprising given that the manifolds of a map, in general, do not separate
phase space in the way they can for flows. However, for the case
of entrainment of a single central oscillator, Creaser et al. [10] have
shown via simulation and bifurcation continuation methods that the
stable and unstable manifolds of the limit cycle solutions of a two-
dimensional model do guide the direction of entrainment. Thus we
expect that this is also the case for the lower dimensional phase-
based models. Given, earlier findings of Bordyugov et al. [20] that
reduced phase models can accurately mimic more complex biochemical



G. Liao and A. Bose Mathematical Biosciences 351 (2022) 108883

v
a
b

m
u
t
e
i
t
l
c

Fig. 11. (a) The evolution of synchronization level of two specific simulations with 𝑅 ≈ 0.88 (anti-phase and in-phase initial conditions shown in dashed red in solid blue,
respectively) show similar convergence times. (b) For four different initial 𝑅0 values, the reentrainment times with different initial phase of light onset shown here by different
alues along the horizontal axis given in hours. (c) For another stable value 𝑅 ≈ 0.74, where we increased the heterogeneity of the peripheral oscillators by changing 𝜔2 = 2𝜋+2.4

29
nd 𝜔3 =

2𝜋−2.4
29

, the anti-phase solution has faster convergence. (d) Similar to panel (b) in set up. Here desynchronization of the peripheral oscillators shortens the reentrainment
ut only for a range of light shifts.
odes, our findings indicate that there may be some general principle
nderlying the dynamics of feed-forward hierarchical circadian sys-
ems regardless of the model equations being used. Namely, for each
ntrained solution or unstable periodic solution, as a new oscillator
s added to the chain in the hierarchy, two new solutions arise, one
hat is stable and another that is unstable with respect to the phase-
ocked state at the higher level that spawned them. Thus a system of 𝑁
oupled oscillators can exhibit parameter regimes in which 2𝑁 periodic

solutions exist, with only one being stable. All other solutions display
some form of instability, 2𝑁 − 2 being of saddle type, and a lone fixed
point that is an unstable node. The results found here are also consistent
with earlier numerical findings of Leise and Siegelmann [5] whose
work showed that peripheral oscillators need not entrain in the same
direction as central ones. As we show in Fig. 8 there can be considerable
variation in how these oscillators entrain based on their initial states. In
some cases, the entrainment can systematically be categorized as phase
advancing or phase delaying. But in other cases, different oscillators in
the network can entrain through some combination of directions.

One goal of the work was to clarify whether phase tumbling of
peripheral oscillators [21–23] leads to faster entrainment. Using a com-
bination of the order parameter formulation applied to the entrainment
map together with simulations of the full mutually coupled network,
we showed that for the Kuramoto model, no definite answer can be
provided. Depending on parameters, initial conditions and the phase
of light onset, phase tumbling may speed up, slow down or have no

effect on reentrainment times. We could not find a systematic way to

12
predict when phase tumbling would be beneficial. This may be due
to the one-dimensional nature of the intrinsic phase space of each
Kuramoto oscillator. Trajectories have very limited ability to deviate
in phase space unlike what might occur if higher dimensional and
more complicated circadian oscillators are considered. Indeed, using
a Poincaré oscillator, which models both the amplitude and phase of
oscillations may be more relevant. This is of particular interest given
the recent findings of Jeong et al. [7] who show in experiment and
with biochemical modeling that strong oscillators that receive direct
LD input can display fast reentrainment despite having large amplitude
oscillations. They argue that strong oscillators have high sensitivity to
light meaning that groups of strong oscillators naturally desynchronize,
leading to phase tumbling for which there is fast reentrainment. It
would be of interest to see if a reduced phase–amplitude model can cap-
ture this behavior and whether the structure of the invariant manifolds
of the phase space continue to guide the reentrainment process.
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Appendix A. Derivation of Eq. (15)

From the first of Eq. (14), a necessary condition for entrainment is
𝜌(𝑥, 𝑦, 𝑘, 𝛼1) = 24. Substituting into Eq. (12), and simplifying yields,

∫

24

0
sin

(

𝜃1(𝑠) − 𝜃2(𝑠)
)

𝑑𝑠 =
2𝜋 − 24𝜔2

𝛼1
. (A.1)

From the Mean Value Theorem for integrals, there exists a 𝑠1 ∈ [0, 24],
such that

sin
(

𝜃1(𝑠1) − 𝜃2(𝑠1)
)

=
2𝜋 − 24𝜔2

24𝛼1
=

𝜔0 − 𝜔2
𝛼1

(A.2)

Simplify the second equation of (14) to obtain

∫

24

0
𝑓 (𝜃0(𝑠)) sin

(

𝜃0(𝑠) − 𝜃1(𝑠)
)

𝑑𝑠 =
2𝜋 − 24𝜔1

𝑘
. (A.3)

Notice that, 𝜃0(𝑠) = 𝑥+𝜔0𝑠, so we apply a change of variable 𝑢 = 𝑥+𝜔0𝑠,
to obtain

∫

𝑥+2𝜋

𝑥
𝑓 (𝑢) sin

(

𝜃̂0(𝑢) − 𝜃̂1(𝑢)
)

𝑑𝑢 = 𝜔0
2𝜋 − 24𝜔1

𝑘
, (A.4)

where 𝜃𝑖(𝑢) = 𝜃𝑖(
𝑢−𝑥
𝜔0

), 𝑖 = 0, 1. If 𝑥 > 𝜋, then the integral is only nonzero
during the interval [2𝜋, 3𝜋],

∫

3𝜋

2𝜋
sin

(

𝜃̂0(𝑢) − 𝜃̂1(𝑢)
)

𝑑𝑢 = 𝜔0
2𝜋 − 24𝜔1

𝑘
(A.5)

If 𝑥 < 𝜋, the integral has two nonzero parts.

(∫

𝜋

𝑥
+∫

𝑥+2𝜋

2𝜋
) sin

(

𝜃̂0(𝑢) − 𝜃̂1(𝑢)
)

𝑑𝑢 = 𝜔0
2𝜋 − 24𝜔1

𝑘
(A.6)

Using the periodicity of sine function, we can shift the second integral
by 2𝜋,

(∫

𝜋

𝑥
+∫

𝑥

0
) sin

(

𝜃̂0(𝑢) − 𝜃̂1(𝑢)
)

𝑑𝑢 = 𝜔0
2𝜋 − 24𝜔1

𝑘

∫

𝜋

0
sin

(

𝜃̂0(𝑢) − 𝜃̂1(𝑢)
)

𝑑𝑢 = 𝜔0
2𝜋 − 24𝜔1

𝑘

sin
(

𝜃0(𝑠2) − 𝜃1(𝑠2)
)

=
2(𝜔0 − 𝜔1)

𝑘
,

(A.7)

where the second equality is equivalent to Eq. (A.5), the last equality
again uses the Mean Value Theorem and we change 𝜃̂ back to 𝜃.

Appendix B. The Lagrangian descriptor method

The Lagrangian descriptor method was first introduced in [27].
This tool is able to provide a global dynamical picture, including a
method to visualize the geometric structures associated with stable
and unstable manifolds for arbitrary flows and maps. Additionally,
the implementation is relatively simple compared to other methods.
There are other construction methods such as Search Circle [28] and
growing method [29] for finding invariant manifolds. However, the
implementation of these methods is not as easy as the Lagrangian
descriptor method for the current context and are thus less suitable.

Consider the map defined by 𝑥 ↦ 𝐹 (𝑥), 𝑥 ∈ R𝑛. Similarly to [30],
we define the Lagrangian descriptor by considering an orbit {𝑥𝑖}𝑁𝑖=−𝑁 ,
with 𝑥0 = 𝑦 over 𝑁 forward or backward iterates; here we are using
generic variables 𝑥 and 𝑦, which have distinct meaning from their use
13
in main part of the manuscript. The Lagrangian descriptor function is
defined by

𝑀(𝑦,𝑁) =
𝑁−1
∑

𝑖=−𝑁
‖𝑥𝑖+1 − 𝑥𝑖‖. (B.1)

To understand why 𝑀(𝑦, 𝜏) is useful for revealing the geometric struc-
tures of the vector field, consider two initial conditions 𝑦1, 𝑦2 in that
hase space. If 𝑦1, 𝑦2 are close enough, then 𝑀(𝑦1, 𝜏) and 𝑀(𝑦2, 𝜏)

should be too, at least for a small number of iterates. But this is not true
when we choose two points in different dynamical regions of the vector
field. For example, for two regions separated by a stable manifold of
an unstable fixed point. 𝑀(𝑦, 𝜏) will have a qualitative difference on
the boundary. Hence, the derivative of 𝑀 along these boundaries is
discontinuous. Thus the sharp changes in properties of 𝑀(𝑦, 𝑡) reveal
the stable manifold of the fixed point.

Turning now to Fig. 9(c), the Lagrangian descriptor method reveals
where there are large gradients in 𝑀 , which we have associated with
the stable and unstable manifolds of points A and B. However, the
direction of movement of iterates along these putative manifolds is
not consistent. Consider the stable manifold of saddle point B (light
blue curve). Iterates in the right portion of the graph move towards B.
Because of periodicity of the domain, the iterates on this curve near
the left boundary should point left and down, while those on the top
boundary should point up and right. This is inconsistent with this curve
being the stable manifold of B. Instead we conjecture that there is an
additional structure in the space that is acting as a separatrix forcing
iterates to move in different directions. Perhaps the methods of Creaser
et al. [10] extended to maps may be able to resolve this issue.
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