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A B S T R A C T

Circadian clocks are comprised of networks of cellular oscillators that synchronize to produce endogenous
daily rhythms in gene expression and protein abundance. These clocks have evolved to align the physiology
and behavior of organisms to the 24-h environmental cycles arising from Earth’s rotation. Rapid travel across
time zones causes misalignment between an organism’s circadian rhythms and its environment, leading to
sleep problems and other jet lag symptoms until the circadian system entrains to the external cycles of the
new time zone. Experimental and modeling work has shown that phase tumbling, defined as desynchronizing
networks of circadian oscillators prior to an abrupt phase shift of the light-dark cycle, can speed up the process
of reentrainment. Here, we use a mathematical model of circadian oscillators and 2-D entrainment maps to
analyze the conditions under which phase tumbling has a positive, neutral, or negative effect on reentrainment
time. We find that whether or not phase tumbling is beneficial depends on the size of the external phase shift
and the location of the perturbed oscillator with respect to the fixed points and invariant manifolds of the
entrainment map.
1. Introduction

Circadian rhythms are endogenous biological oscillations with an
intrinsic period of nearly 24 h. The circadian clock entrains to the exter-
nal light-dark cycle and other 24-h periodic signals in the environment
conferred by Earth’s rotation. Circadian clocks are an evolutionary
adaptation to these daily environmental cycles that align the physiology
and behavior of an organism to appropriate times of the day. Robust
circadian rhythms enable an organism to anticipate recurring events
such as sunrise, sunset, and meal times. The circadian timekeeping sys-
tem is also flexible enough to adjust to seasonal changes in daylength.
However, modern society presents challenges to the circadian system,
such as night shift work and long-distance transmeridian air travel, for
which the clock did not evolve to handle [1].

An abrupt shift in the phase of the light-dark cycle, as occurs when
switching from day shift to night shift or rapidly traveling across time
zones, disrupts the alignment between circadian rhythms and environ-
mental cycles. This misalignment leads to a variety of symptoms –
including fatigue, insomnia, gastrointestinal disturbances, and impaired
cognitive performance – that persist until the circadian clock entrains to
the external cycles of the new work schedule or time zone. Treatments
and strategies to speed up the reentrainment process are needed to
reduce the duration of these symptoms [2]. Recently, researchers have
proposed that perturbing the circadian clock shortly before traveling,
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or before switching shifts, can reduce the amount of time it takes the
clock to reentrain [3–6]. In this paper, we use mathematical modeling
and dynamical systems analysis tools to explore when and how such
perturbations can aid reentrainment.

The central circadian clock in mammals, the suprachiasmatic nu-
cleus (SCN), is a network of about 20,000 neurons located in the
hypothalamus. The SCN is capable of generating self-sustained cir-
cadian oscillations in the absence of external inputs. These oscilla-
tions entrain to external light-dark cycles through the retinohypotha-
lamic tract, a direct connection between the SCN and intrinsically
photosensitive retinal ganglion cells [7]. Individual SCN neurons can
also generate self-sustained circadian oscillations even when isolated
from the network. The core intracellular timekeeping mechanism is
a transcriptional-translational negative feedback loop in which the
transcription of certain clock genes are inhibited by their own protein
products, leading to ∼24-h rhythms in gene expression and protein
abundance. Vasoactive intestinal peptide (VIP) is a prominent inter-
cellular signaling molecule within the SCN that plays a major role in
synchronizing these rhythms across SCN neurons [8]. Unexpectedly,
An et al. [3] found that brief exogenous application of VIP to SCN
brain slices in vitro can desynchronize SCN neurons, leading to a
reduction in gene expression rhythm amplitude at the population level.
vailable online 8 February 2025
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Based on previous studies associating lower-amplitude oscillations with
enhanced entrainment properties [9–17]. An et al. hypothesized that
VIP-induced desynchrony could accelerate reentrainment of SCN tissue
rhythms to phase shifts in environmental cycles. To test this hypothesis,
An et al. maintained SCN brain slices under a 12-h:12-h warm:cool
cycle (8:00 PM warm, 8:00 AM cool) for 13 days before treating the
slice with either VIP or vehicle (artificial cerebral spinal fluid) at
4:00 PM. Eleven hours later, the VIP- and vehicle-treated slices were
subjected to a 10-h advance of the warm:cool cycle. Gene expression
rhythms in the VIP-treated slices entrained to the new temperature
cycle within 5 days on average, compared to nearly 10 days for the
vehicle-treated slices.

An et al. also showed that VIP pretreatment in vivo can speed up
reentrainment to a shift in the light cycle. In these experiments, mice
were implanted with cannulae directed at the SCN and kept under
a 12-h:12-h light:dark cycle (7:00 AM lights on, 7:00 PM lights off)
for 7 days before receiving VIP or vehicle at 10:00 AM. The lights
were turned off after the injection and then turned back on at 11:00
PM, resulting in an 8-h advance of the light schedule. The locomotor
rhythms of VIP-treated animals entrained to the phase-shifted light
schedule approximately 3 days faster than those of vehicle-treated
animals.

To explain these findings, An et al. proposed that VIP pretreatment
accelerates entrainment through a ‘‘phase tumbling’’ mechanism anal-
ogous to the ‘‘run and tumble’’ pattern of bacterial chemotaxis. In this
paradigm, VIP application causes transient desynchrony due to hetero-
geneous responses across the population—the phases of individual SCN
cells are affected by VIP stimulation to varying degrees [4]. Some of
these ‘‘tumbled’’ cellular phases happen to align well with the phase of
the new light-dark cycle. These cells ‘‘run’’ towards the new cycle, and
speed entrainment of the population overall by communicating their
proper phase through intercellular coupling.

Roberts et al. [5] have observed a similar phenomenon with circa-
dian clock neurons in the fruit fly Drosophila. Unlike the mammalian
brain, the fly brain responds directly to light in vitro, enabling Roberts
et al. to study how clock gene expression rhythms are affected by light
stimuli. They found that a light pulse transiently desynchronizes fly
clock neurons, and that once cells resynchronize following the light
pulse they exhibit greater synchrony and stronger rhythms than before
the pulse.

These studies provide experimental evidence that desynchronizing
networks of circadian oscillators prior to an abrupt phase shift of
the light-dark (LD) cycle can speed up the process of entrainment. In
this paper, we use a mathematical model of the Drosophila molecular
clock [18] to analyze the dynamics of phase tumbling and determine
the conditions under which it has a positive, neutral, or negative effect
on reentrainment time. To do so, we consider a pair of mutually cou-
pled oscillators that receive periodic, 24-h light-dark forcing. A stable,
limit cycle solution exists for this model in which the oscillators are syn-
chronized and entrained to the LD-cycle. Starting from this entrained
limit cycle solution of the forced system, we systematically consider a
set of phase tumbled (de-synchronized) initial conditions across a range
of LD phases. We find that after a change of LD phase, only in some
circumstances does phase tumbling speed up reentrainment relative to
leaving the oscillators synchronized. In other cases, phase tumbling is
either neutral or negatively impacts reentrainment times. To quantify
and explain our findings, we use both direct simulations of systems of
ordinary differential equations (ODEs) as well as discrete entrainment
maps [19–23]. The entrainment map is two-dimensional and its fixed
points correspond to entrained solutions. We show how the stable and
unstable manifolds of these fixed points arrange the dynamics and
provide insight into the circumstances and reasons why phase tumbling
may or may not be beneficial. We also extend our model to the case of
three coupled oscillators to show how to use the two-oscillator results
to make predictions about the larger network. The results for the larger
network also support the hypothesis that phase tumbling, in and of
itself, is only beneficial for certain LD phase shifts.
2

Fig. 1. Schematic of model network. Both oscillators 𝑂1 and 𝑂2 receive light input
where 𝐾𝐿1

and 𝐾𝐿2
represent the forcing strength of the 24-h LD input. The oscillators

are mutually coupled with strengths 𝛼12 and 𝛼21.

2. Models and methods

We use the Novák–Tyson (NT) model [18] for the molecular circa-
dian clock in the fruit fly Drosophila melanogaster. The model consists
of two state variables, 𝑀 and 𝑃 , which represent mRNA and protein
concentrations, respectively. Equations that govern these variables are:
𝑑 𝑃
𝑑 𝑡 = 𝜈𝑝𝑀 − 𝑘𝑓ℎ (𝑃 ) − 𝑘𝐷𝑃 − 𝑘𝐿𝑓 (𝑡)𝑃

𝑑 𝑀
𝑑 𝑡 = 𝜈𝑚𝑔 (𝑃 ) − 𝑘𝑚𝑀

(1)

where 𝑔(𝑃 ) = 1∕ (1 + 𝑃 4) and ℎ(𝑃 ) = 𝑃∕
(

0.1 + 𝑃 + 2𝑃 2). The model
exhibits oscillations with a period of nearly 24 h in the absence of light-
dark forcing. The dynamics of 𝑃 are faster than 𝑀 , at least for part of
their excursion through phase space. In Drosophila, protein degradation
occurs during darkness, but light increases this degradation. Thus, 𝑘𝐷
represents the degradation rate during darkness, and 𝑘𝐿 represents the
additional degradation rate due to light. The parameter 𝑘𝑓 reflects the
strength of positive feedback that results from dimerization protecting
the protein from degradation [18,24]. The parameters 𝑣𝑝, 𝑣𝑚, and 𝑘𝑚
are rate constants for translation, transcription, and degradation of
mRNA, respectively. The term 𝑓 (𝑡) is a periodic square-wave function
representing the light-dark (LD) forcing that equals 1 when lights are
on and 0 when lights are off. For convenience, we assume a 12:12
photoperiod, though other cases may be considered without difficulty.

2.1. The coupled Novak-Tyson model

We consider two identical NT oscillators that are mutually coupled.
Fig. 1 shows a schematic of the basic network structure. The model
consists of an externally prescribed LD forcing which has direct input
of strength 𝑘𝐿𝑖

to each oscillator. Each NT oscillators is coupled to the
other with strength 𝛼𝑖𝑗 indicating the direction from oscillator 𝑖 to 𝑗.
Later in the Results section we will also consider the generalization to
more oscillators.

The equations that describe the dynamics of the coupled model are:
𝑑 𝑃1
𝑑 𝑡 = 𝜈𝑝𝑀1 − 𝑘𝑓ℎ

(

𝑃1
)

− 𝑘𝐷𝑃1 − 𝑘𝐿1
𝑓 (𝑡)𝑃1

𝑑 𝑀1
𝑑 𝑡 = 𝜈𝑚𝑔

(

𝑃1
)

− 𝑘𝑚𝑀1 + 𝛼21𝑀2𝑔
(

𝑃1
)

𝑑 𝑃2
𝑑 𝑡 = 𝜈𝑝𝑀2 − 𝑘𝑓ℎ

(

𝑃2
)

− 𝑘𝐷𝑃2 − 𝑘𝐿2
𝑓 (𝑡)𝑃2

𝑑 𝑀2
𝑑 𝑡 = 𝜈𝑚𝑔

(

𝑃2
)

− 𝑘𝑚𝑀2 + 𝛼12𝑀1𝑔
(

𝑃2
)

.

(2)

The parameters 𝛼12 and 𝛼21 denote the coupling strength. In previous
work [23], we have studied the strictly hierarchical network that results
from setting 𝛼21 = 0, 𝛼12 > 0, and 𝑘𝐿1

> 0, 𝑘𝐿2
= 0. Now we extend that

study in the context of phase tumbling to the fully coupled model for
which 𝛼12 and 𝛼21, 𝑘𝐿1

and 𝑘𝐿2
are all positive. The specific parameter

values and their units are presented in Table 1.
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Table 1
Model parameters. As in [18], C𝑝 and C𝑚 represent characteristic concentrations for
rotein (𝑃 ) and mRNA (𝑀), respectively.
Parameter Value Units

𝑘𝐷 0.105 h−1

𝑘𝐿1
, 𝑘𝐿2

0.105 h−1

𝑘𝑓 2.1 h−1

𝑘𝑚 0.105 h−1

𝑣𝑝 2.1 C𝑝C−1
𝑚 h−1

𝑣𝑚 0.105 C𝑝C𝑚h−1

𝛼12 , 𝛼21 0 or 0.0945 C𝑝C𝑚h−1

2.2. Methods for determining reentrainment times

To determine reentrainment times, we first describe the LD-
ntrained periodic solutions to which phase-tumbled solutions will

entrain. Consider the uncoupled model when the parameters 𝛼12 =
𝛼21 = 0. We and others have shown that the NT model [18] can
entrain to a 24-h LD forcing. Fig. 2(a) shows the 𝑃 -𝑀 phase plane
as a projection onto which the separate lights on (black-nullcline) and
lights off (blue-nullcline) phase planes are jointly shown. Since the
two oscillators are identical, the LD-entrained solution represents the
uncoupled limit cycle for both oscillator 1 and 2, respectively 𝑂1 and
𝑂2. Note that we will often separately refer to the LD-entrained limit
cycle for 𝑂1 and 𝑂2. This refers to the projection of the LD-entrained
solution onto the appropriate 𝑃 -𝑀 phase space. Red portions of the
trajectory indicate when the lights are on, and black when lights are
off. Hourly markings are placed in green circles along the trajectory.
Phase plane analysis is most typically used in 2-dimensional systems
by using the nullclines to visualize fixed points and directions of flow.
Here we extend that analysis by understanding how the nullclines and
limit cycles change when lights are on or off, as well as a function
of the different types of coupling. In Fig. 2(a), the two different 𝑃 -
ullclines correspond to when the lights are on or off and can be found
y setting the right-hand side of the first equation in (2) equal to zero
ith different values of the forcing 𝑓 (𝑡). Similarly, the 𝑀-nullclines

s obtained by setting the right hand side of the second equation of
2) to zero with 𝛼21 = 0. The intersection of the 𝑀-nullcline with

either of the 𝑃 -nullclines occurs along the middle branch of the latter
and is unstable, and the projection of the stable periodic limit cycle
surrounds it. Panel (b) shows the associated time courses of all four
variables where different pairs overlap. Panels (c) and (d) correspond
to the projected phase planes and trajectories in the uni-directional case
when 𝛼12 > 0 and 𝛼21 = 0. Note here that the projected limit cycle of
𝑂1 is identical to that in panel (a), while that of 𝑂2 now has larger
amplitude (also shown in panel (d) time courses). There are now three
𝑀-nullclines shown: the original one from panel (a) as well as two
others labeled min (max) 𝑀-nullcline. The latter two correspond to
the 𝑀-nullcline that occurs when 𝑔(𝑃1) is at its min (max) which shifts
the 𝑀-nullcline to the right. Panels (e) and (f) show the projected limit
cycles and time courses when 𝛼12 = 𝛼21 > 0. Because the oscillators are
identical, these are again overlapping.

Reentrainment involves choosing an initial condition in phase space
nd determining how long before the ensuing trajectory reaches and
tays within a pre-chosen neighborhood of the LD-entrained solution.

Eq. (2) represents a five-dimensional phase space, four for the inde-
pendent variables and a fifth for the time variable. This is too large
a phase space to study reentrainment, so we narrow down the study
to something tractable. We first transform the time variable into the
LD phase of light onset by performing a mod 24 operation. The phase
will then be defined between 0 and 24, with 0 being the phase at

hich lights turn on, and then allowing phase to align with the hourly
arkings. Thus, in a 12:12 LD cycle, the lights turn on at phase 0 and

turn off at phase 12. We choose a Poincaré section at 𝑃1 = 1.72 and
.15 ≤ 𝑀1 ≤ 0.25 which intersects the LD-entrained limit cycle of 𝑂1.
3

To study reentrainment, we fix 𝑂1 at this intersection point, and allow
𝑂2 to have an initial condition anywhere along its own LD-entrained
limit cycle. Each point on that solution has a defined phase between 0
and 24. Thus, we restrict our study to consider initial conditions that
ave two different variations from the LD-entrained solution: a new
hase of light onset and a new phase of 𝑂2.

To assess entrainment, we place 𝑂1 on the Poincaré section and 𝑂2
anywhere along its own LD-entrained solution. We run the simulation
until the return time for 𝑂1 to its section falls within 12 min of 24 h.
The entrainment time for 𝑂1 is then defined as the sum of these return
times. The criteria for 𝑂2 is the same except that we add on the initial
time it takes for the oscillator to cross the Poincaré section for the first
time. The maximum of these two reentrainment times is then defined
to be the total reentrainment time.

Fig. 3(a) shows two trajectories. The blue curve corresponds to
𝑂1 which initially starts on the Poincaré section, completes one cycle
and returns to the section. The associated first return time (≈22 h) is
lotted in panel (b) with a blue dot. The orange curve is the trajectory

of 𝑂2 that begins at a location chosen along its LD entrained cycle.
In Section 2.3, we explain how to relate an initial value of 𝑂2 to a
hase. Panel (a) shows two crossings of the section; the first has a

short crossing time (referred to as the first return time in panel (b)
with the lowest orange dot ≈4 h), and then a longer second return time
of approximately 20 h. Note in panel (a) that while the second return
ocation of 𝑂2 to the Poincaré section appears to be close to that of 𝑂1,

these are occurring at different times and are thus not synchronized.
ventually the blue and orange dots converge to 24 h after enough
eturns and entrainment is declared.

2.3. Derivation of the entrainment map

In a series of prior papers [19,22,23], we have developed a tool
called the entrainment map to facilitate finding the phase of entrain-
ment of circadian oscillators with respect to the LD-cycle. In [19–21],
we studied just a single oscillator forced by a 24-h LD signal, and
onstructed a one-dimensional entrainment map that measures the
hase, denoted with the variable 𝑥, with respect to the onset of the
ights of the circadian oscillator each time it crosses a Poincaré section.

e showed that the map generally has two fixed points, a stable one,
𝑠, that corresponds to the LD-entrained solution and an unstable one,
𝑢, that, if the light intensity is low enough, corresponds to an unstable

limit cycle (see [25] for details). Fig. 4(a) shows a schematic of the 1-
imensional entrainment map for a single oscillator. Fixed points occur
hen the map crosses the diagonal at 𝑥𝑠 = 4 and 𝑥𝑢 = 15. Their stability

can be read off based on the slope at the crossing; stable (unstable) if
the slope is less (greater) than 1 in magnitude. The map is periodic
both on its top and right boundaries because of the mod 24 operation.
Fig. 4(b–c) show a schematic of how the stable and unstable fixed
oints of the map translate to phases associated with limit cycles. The
alue 𝑥 = 0 is where lights turn on and 𝑥 = 12 is where they turn off.
scillator 1 lies at the Poincaré section. The values 𝑥𝑠 and 𝑥𝑢 are the
hase distances from 𝑥 = 0 to the location of the Poincaré section. Note
hat since LD phase is measured when 𝑂1 lies on its Poincaré section,
he schematic circle rotates to place 𝑥 = 0 in the appropriate location
or the initial LD condition being considered. This is reflected in the
ifferent locations of red (lights on) and black (lights off) in panels (b)
nd (c).

In this paper, because we have two circadian oscillators, the en-
trainment map is two-dimensional. It is constructed using the Poincaré
section, the initial LD phase, and the initial 𝑂2 phase. Starting with 𝑂1
on the Poincaré section, as above, let 𝑥 equal the phase from when the
lights last turned on and let 𝑦 equal the phase of 𝑂2 on its LD-entrained
imit cycle; see Fig. 4(d). Note that unlike the location of 𝑥 = 0, which
hanges depending on what initial LD phase is chosen, the location of
= 0 is always fixed since it is associated with the stable LD-entrained

solution. Indeed, since the two oscillators are synchronized on the LD-
entrained solution, 𝑦 = 0 always lies a distance 𝑥 before the Poincaré
𝑠
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Fig. 2. Entrained solutions: phase space and time courses. (a) The dynamics of the uncoupled 24-h entrained system, in which the limit cycles of 𝑂1 and 𝑂2 are identical and
overlap. The red portion occurs when lights are on, and the black portion occurs when lights are off. Green circles represent hourly markings. The direction of flow is clockwise.
(b) Overlapping time courses for both 𝑀 and 𝑃 variables. (c) The dynamics of the hierarchically coupled system, in which there is no coupling from 𝑂2 to 𝑂1. The 𝑂2 limit cycle
(dashed curve) has larger amplitude than the 𝑂1 limit cycle (solid curve), but both are entrained to the 24-h LD forcing. (d) Time courses show the resultant larger amplitude of
𝑃2 compared to 𝑃1. (e) The dynamics of the fully coupled system, with overlapping limit cycles. (f) Time courses also overlap and have larger amplitude than in (b).
section. The schematic in Fig. 4(d) also shows that the value |𝑦 − 𝑥𝑠| is
the amount of phase-tumbled desynchronization.

To provide some intuition on how to interpret the variables 𝑥 and
𝑦, we consider a jet lag scenario. Suppose 𝑥 = 0 corresponds to 6 AM.
Then, the stable fixed point 𝑥 = 4 corresponds to 10 AM. In panel
4

𝑠

(b), since 𝑂1 is at 𝑥 = 4 and the LD cycle is 12:12, it will receive 8
more hours of light. Now consider panel (d), which shows an example
of traveling across time zones. Here, 𝑂1 is at 𝑥 = 6, corresponding to 12
PM. This is equivalent to having traveled 2 time zones east, and 𝑂1 will
only receive 6 more hours of light due to the shift in the LD cycle. This
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Fig. 3. Illustration and calculation of return times. (a) The Poincaré section and phase plane trajectories. The 𝑂1 trajectory starts on the Poincaré section (lower blue diamond),
moves clockwise, and terminates when it first returns to the section (upper blue diamond overlapped by upper red square). The 𝑂2 trajectory starts on its own limit cycle at an
arbitrary phase, and crosses the section twice (red squares). (b) Seven return times measuring the transit times are shown for when an oscillator’s trajectory leaves the Poincaré
section until it returns. The first 𝑂2 return time is very short, consistent with (a). By the fifth return time, both oscillators are nearly entrained and take 24 h to return.
Fig. 4. Schematic identifying phases, initial conditions, and phase-tumbled desynchrony. (a) Typical one-dimensional entrainment map for a single oscillator. Intersection points
with the diagonal correspond to stable (𝑥𝑠 = 4) and unstable (𝑥𝑢 = 15) fixed points. (b)–(d) 𝑂1 always begins at the Poincaré section 𝑃 (gray bar) located at the local minimum of
the circle. Red (black) curves indicate hours when lights are on (off); green circles are hourly markings. Evolution along the phase circles is clockwise. (b) The stable configuration
of phase (𝑥𝑠 = 4) for a single oscillator. Note that the Poincaré section is crossed four hours after the lights are turned on, as indicated by the blue arrow associated with 𝑥𝑠. (c)
The unstable configuration of phase (𝑥𝑢 = 15) for a single oscillator. The phase circle is rotated relative to panel (b) such that the Poincaré section is crossed fifteen hours after the
lights are turned on, as indicated by the blue arrow associated with 𝑥𝑢. (d) Phases of the coupled system for an arbitrary choice of LD and 𝑂2 initial conditions. The location of
𝑥 = 0 is chosen arbitrarily to lie on the phase circle, while the location of 𝑦 = 0 is fixed to be 𝑥𝑠 hours before the Poincaré section. The value |𝑦 − 𝑥𝑠| is the initial phase-tumbled
induced desynchrony that indicates how far 𝑂2 has been shifted from the Poincaré section 𝑃 .
is the only perturbation that 𝑂1 receives. In contrast, 𝑂2 will receive
two perturbations: the 2-h shift in the LD cycle, as well as some amount
of phase tumbling. First, let us consider the phase tumbling portion.
In panel (d), the initial condition of 𝑂2 has been perturbed (phase-
tumbled) to 𝑦 = 11. Thus, due to phase-tumbled induced desynchrony
alone, 𝑂2 is expecting to receive 1 more hour of light, as if it were
5 PM. This ‘‘fictive’’ arrival time would correspond to having traveled
7 time zones east, which is exactly |𝑦 − 𝑥𝑠|. However, due to the 2-h
shift in the LD cycle, 𝑂2 will actually receive 6 more hours of light,
just like 𝑂1. To summarize, therefore, the variable 𝑥 can be interpreted
as the arrival time of both 𝑂1 and 𝑂2 (12 PM). The variable 𝑦 can be
interpreted as the fictive arrival time due to phase tumbling without
considering the shift in the LD cycle.

To calculate the map, we solve the set of Eqs. (2) from an initial
value of (𝑥, 𝑦) until 𝑂1 returns to the Poincaré section. From there, by
employing techniques we developed in Liao et al. [23], we determine
the phase at which the lights last turned on and the current phase for
5

𝑂2. Let 𝐼 = [0, 24]. By following this procedure for all initial conditions
(𝑥, 𝑦) ∈ 𝐼 × 𝐼 we derive the entrainment map, which can be written:

𝑥𝑛+1 = 𝐹1(𝑥𝑛, 𝑦𝑛) (3)

𝑦𝑛+1 = 𝐹2(𝑥𝑛, 𝑦𝑛). (4)

Here the subscript 𝑛 refers to the iterate of the map starting with the
initial value 𝑛 = 0. A fixed point of the map satisfies

𝑥 = 𝐹1(𝑥, 𝑦) (5)
𝑦 = 𝐹2(𝑥, 𝑦). (6)

The 𝑥-nullcline is the set of points that satisfy Eq. (5) and the 𝑦-
nullcline is the set of point that satisfy Eq. (6). These nullclines can
be found using a geometric method introduced in [23,26,27]. Namely
consider the equations 𝑧 = 𝑥 and 𝑧 = 𝐹1(𝑥, 𝑦). Both have domain 𝐼 × 𝐼
and are thus two-dimensional graphs. The intersection of these graphs
in (𝑥, 𝑦, 𝑧) space is a one-dimensional curve which is the 𝑥-nullcline.
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Fig. 5. Total reentrainment time for the four distinct coupling cases. The type of coupling is indicated on the left of each row. Total, 𝑂1, and 𝑂2 entrainment times (in days) are
shown in columns 1, 2, and 3, respectively. Row 1: (a)–(c) The uncoupled case. It is straightforward to see how the heatmap in (a) follows by choosing the maximum time from
(b) and (c). See text for a detailed description. Row 2: (d)–(f) The effect of coupling from 𝑂2 into 𝑂1. The long reentrainment time in (a) and (b) is destroyed by the coupling.
Panels (c) and (f) are identical since 𝑂2 does not receive any input from 𝑂1. Row 3: (g)–(i) The effect of coupling from 𝑂1 to 𝑂2. Now panel (h) is identical to (b) since there
is no new input to 𝑂1. Alternatively, the coupling from 𝑂1 to 𝑂2 introduces some regions of faster reentrainment near the formerly very yellow bands, but more importantly, a
new band of slow entrainment near 𝑋 = 14. This band indicates that 𝑂2 quickly synchronizes with 𝑂1 and thus is slowed down in its reentrainment due to 𝑂1. Row 4: (j)–(l) The
fully coupled case. Note the similarity between panels (e) and (k). Also note that panel (l) has qualitatively the same shape since the reciprocal coupling has the effect of making
the various entrainment times equalize. Column 1: The black dots represent the initial condition (14.5,9.5). Note how the different forms of coupling lead to different entrainment
times.
Similarly we find the 𝑦-nullcline. The intersection of the projection of
these nullclines onto 𝐼 × 𝐼 space corresponds to fixed points of the
map. As we will show in the Results section, for the parameter sets
of interest, the entrainment map has four fixed points. One of the fixed
6

points is a stable node, two are unstable saddle points and the last is an
unstable node. Understanding their stable and unstable manifolds will
be critical for explaining the reentrainment results that we numerically
obtain.
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Fig. 6. Distributions of entrainment times. Violin plot showing the distribution of total
entrainment times across all LD phases and initial O2 phases with no coupling (blue),
unidirectional coupling (orange and yellow), and bidirectional coupling (purple). The
white dot is the median entrainment time for each case. The case of bidirectional
coupling has the lowest reentrainment times on average, and in particular shows a
reduction in the longest reentrainment times.

2.4. Numerical methods

Numerical simulations were performed in MATLAB (Mathworks
Inc, Natick, MA). The ode15s solver was used to integrate the ODE
systems. Computations associated with the entrainment map utilized
methods described in [23]. Further details and code are provided in
the following Github repository: https://github.com/daybrown/Phase-
tumbling-project/.

3. Results

3.1. Reentrainment time analysis

Fig. 5 displays a heat map for the three types of re-entrainment
time under the four different coupling possibilities. The first column
depicts the total reentrainment time, and the second and third columns
show the reentrainment times for 𝑂1 and 𝑂2, respectively (defined in
the Methods section). The four rows consider each of the four different
coupling scenarios. The LD phase is plotted on the horizontal axis, and
the phase of 𝑂2 is plotted on the vertical axis. Examining the uncoupled
case shown in the first row, panel (b) shows that the phase of 𝑂2 has no
impact on the reentrainment time of 𝑂1, evidenced by the invariance
of the heat map in the vertical direction. Also note the vertical dark
blue and red lines. These lines occur at phases at which 𝑂1 is at the
stable (𝑥𝑠 = 5.635) and unstable (𝑥𝑢 = 14.5) fixed points of the one-
dimensional entrainment map, respectively. Similarly, panel (c) shows
the dark blue (fast) and yellow (slow) reentrainment times for 𝑂2. Note
that the diagonal in this figure represents situations in which 𝑂2 is
placed at an initial condition 𝑦 that is exactly matches the shift of
the LD phase 𝑥; in other words 𝑂2 starts entrained to the LD-cycle
and remains so. Note that panel (c) does not display the same type
of invariance as (b) because there is a qualitative difference between
the initial conditions of 𝑂1 and 𝑂2. For 𝑂1, the initial condition always
lies on the Poincaré section, while for 𝑂2, the initial value denotes a
point on its LD-entrained solution and not necessarily on the section.
The maximum times from panels (b) and (c) at each (𝑥, 𝑦) are then
used to compute the total reentrainment time in panel (a). Considering
row 2, coupling from 𝑂2 to 𝑂1 does not change the reentrainment time
for 𝑂2; note panels (c) and (f) are identical. It does quite dramatically
change 𝑂 reentrainment time as shown in panel (e), by on one hand
7

1

shortening the long entrainment times near 𝑂1’s unstable fixed point
(red line from (b) destroyed), and on the other hand, lengthening
the entrainment time near its stable fixed point (blue line from (b)
destroyed). Both make sense since the coupling will initially move 𝑂1
away from a neighborhood of its stable and unstable phase. Row 3
shows that the coupling from 𝑂1 to 𝑂2 has similar effects, noting the
differences in panels (c) and (i) and the lack of change from (b) to (h).
For the fully coupled case shown in row 4, the different areas of slow
entrainment (yellow curves) are now attributable to both 𝑂1 and 𝑂2,
but in different ways. The primary effect of 𝑂2 coupling onto 𝑂1 is to
shorten the 𝑂1 reentrainment times (note the darker yellow in panel
(e) has been replaced by lighter yellow or green in panel (k)).

There are several other features of these heat maps that we wish
to highlight. In panels (a), (b), (g) and (h), the red vertical line at
𝑥 = 14.5 passes through the unstable fixed point associated with 𝑂1’s
one-dimensional entrainment map. In this two-dimensional setting, the
red line represents the stable manifold of what we will show is an
unstable saddle fixed point of a two-dimensional map that lies on that
line (see Section 3.2). Initial data that lie close to this manifold will
initially pass close to the unstable fixed point, and be trapped there for
a large amount of time, before eventually converging to the stable LD-
entrained solution. This is why the initial conditions on the red vertical
line take so long to entrain. In panel (a), we also observe two yellow
bands. Initial conditions in these bands also have long entrainment
times. The band that intersects the red vertical line suggests that there
may be an invariant structure at the intersection point and that the in-
variant manifold of that structure lies within the yellow band (this will
also be discussed in Section 3.2). Note that when this yellow band hits
either the lower or right boundary, because of periodicity it emerges
from the upper or left boundaries, respectively. This suggests that there
is also an invariant structure lying within the upper left yellow band.
Moving down the first column, note the change or the consistency
of these red and yellow bands as the different directions of coupling
are introduced. Importantly, the yellow bands persist indicating that
invariant structures persist in the coupled system. Qualitatively, while
panels (d) and (j) look quite similar, indicating that the coupling from
𝑂2 to 𝑂1 plays a more critical role in the reentrainment process than
coupling from 𝑂1 to 𝑂2, this is not an accurate conclusion. The fully
coupled network is symmetric so there really is no difference between
𝑂1 and 𝑂2. The reason that the effects appear to be different has to
do with the placement of the Poincaré section and the requirement
that time measurements are made when 𝑂1 lies on the section. In each
panel of the first column appears a black dot at 𝑥 = 14.5 and 𝑦 = 9.5.
This point is chosen to illustrate how the different forms of coupling
affect reentrainment time for the same initial condition. Note that in
panel (a) and (g), the black dot lies in the red band indicating long
reentrainment, which from panel (h) can clearly be attributed to a
long reentrainment time for 𝑂1. Alternatively, in panels (d) and (j),
the invariant structures (yellow bands) do not contain the black dot,
thereby leading to faster reentrainment.

To assess the overall impact that coupling between oscillators has
on their reentrainment, we used violin plots to compare the distribu-
tions of total reentrainment times for simulations with no coupling,
unidirectional coupling, and bidirectional coupling across all LD and 𝑂2
initial phases (Fig. 6). On average, coupling speeds up the entrainment
process: the median reentrainment time is 5.7 days with no coupling,
5.6 days with 𝑂1 ← 𝑂2 coupling, 5.4 days with 𝑂1 → 𝑂2 coupling, and
5.3 days with 𝑂1 ↔ 𝑂2 coupling. Certain types of coupling can also
help reduce the length of reentrainment encountered in the worst-case
scenarios: the longest reentrainment time is 14.9 days with either no
coupling or 𝑂1 ← 𝑂2 coupling, 12.6 days with 𝑂1 → 𝑂2, and 11.6 days
with 𝑂1 ↔ 𝑂2 coupling. Note that there is an asymmetry between the
𝑂1 ← 𝑂2 and 𝑂2 ← 𝑂1 cases. This arises because the initial location of
𝑂1 is always on the Poincaré section, whereas the initial location for
𝑂2 can be anywhere along its own LD-entrained limit cycle. Swapping
the coupling therefore will have different effects on reentrainment.
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Fig. 7. Nullclines of the entrainment maps for the four types of coupling. Intersection of the nullclines corresponds to fixed points of the map. In each panel, the fixed point A
is a stable node, B and C are saddles, and D is an unstable node. (a) The 𝑥-nullclines are vertical, since the oscillators are uncoupled. Fixed points A and B lie on the diagonal,
indicating that the oscillators are synchronized. (b)–(c) When the coupling is not symmetric, the entrained solutions of the oscillators are not in phase. There is a phase difference
between the oscillators leading to points A and B lying off of the diagonal. Note the changes to the 𝑥- and 𝑦-nulclines in (b) and just the 𝑦-nullclines in (c). This has to do with the
choice of using 𝑂1 as the reference oscillator for the Poincaré section. (d) Nullclines of the fully coupled system where fixed points A and B again lie on the diagonal indicating
in-phase synchronization.
3.2. The two-dimensional entrainment map

In the previous section, we suggested that the red and yellow bands
were signs of invariance. Here we more explicitly address this claim
and explain how long entrainment times can arise. Consider the two
dimensional map defined by Eqs. (3) and (4). In the Methods section
we described how to find the 𝑥 and 𝑦 nullclines associated with this
map, namely the set of points that satisfy Eqs. (5) and (6). By plotting
these nullclines in the 𝑥 − 𝑦 phase space of the map, we find points of
intersection which correspond to fixed points of the map. In Fig. 7, we
have plotted nullclines for the four different cases of coupling. In each
panel, there are four intersection points. Given this is a two dimensional
map, then sum of the dimensions of the stable, unstable and center
manifolds of each of these fixed points must be two. To understand the
nature of these fixed points, we first discuss panel (a) for the uncoupled
case. In the uncoupled case, both Oscillator 1 and 2 have stable and
unstable points independent of the other oscillator. Point A at (𝑥, 𝑦) =
(5.635, 5.635) is where both 𝑂1 and 𝑂2 are at their stable fixed points
with regard to their own one-dimensional maps. Thus this point has
a two-dimensional stable manifold. Note that for the uncoupled case,
point A must lie on the diagonal since the oscillators are identical and
thus have the same value for the stable fixed points. An initial condition
corresponding to point A is, by definition, entrained to the LD-cycle.
Point B is where 𝑂 is at its unstable fixed point, but 𝑂 is at its stable
8

1 2
fixed point. Thus, B is a saddle point, with a one-dimensional stable
manifold and one-dimensional unstable manifold. Point C is the same,
except the stability of 𝑂1 and 𝑂2 is reversed. Point D is where both lie
at the unstable fixed points of their one-dimensional maps. Thus, point
D has a two-dimensional unstable manifold. Therefore, the vertical red
band in Fig. 5(a) is actually the stable manifold of the saddle point
B which emanates as a part of the unstable manifold of point D. It is
now easy to understand the yellow diagonal band near the bottom right
and top left portions of Fig. 5(a). These are the one-dimensional stable
manifolds of the saddle point at C that emanate from the unstable node
point D. Finally, that point A corresponds to the stable node of the map
explains why the region of Fig. 5(a) near 𝑥 = 5 and 𝑦 = 5 has the
shortest entrainment time. The fixed points of panels (b), (c) and (d) of
Fig. 7 have the same stability characteristics as those in panel (a). Note
that the location of the fixed points moves but stays in a neighborhood
of the locations of panel (a).

In Fig. 8(a), we re-plot the heat map of the fully coupled case, but
now overlay the fixed points of the map obtained from the intersection
of the nullclines. Points B, C and D all lie within the yellow slow
entrainment bands. For the saddle points B and C, these are the one-
dimensional stable manifolds, that coincide with the strong and weak
unstable manifolds of the unstable node point D. The heat map does
not reveal, however, the unstable manifolds of the saddle points, nor
the stable manifolds of point A. To get a better sense of those, we plot
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Fig. 8. Dynamics of entrainment map. (a) Heatmap of the fully coupled case. The four black dots are the fixed points of the corresponding 2D map. The white arrows are map
iterations starting from the white star (12,12), the magenta arrows are map iterations starting from the red star (12,5), and the black arrows are map iterations starting from the
black star (12,2). (b) Iterations of the map. Arrows indicate the direction of the next iterate. The saddle-like structure of points B and C (upper two red dots) can be discerned.
Attraction to the stable node A (lower left red dot) occurs strongly along the diagonal.
Fig. 9. Reentrainment time for three specific initial phases. (a) For the same LD phase 𝑥 = 12, perturbing the phase of 𝑂2 can either increase or decrease the reentrainment time.
(b) The beginning portion of the time courses for reentrainment starting from three distinct initial conditions. The black time course is the entrained solution and serves as a
reference. It is clear that when increasing 𝑦 = 5 to 𝑦 = 12, the reentrainment process is faster, while decreasing 𝑦 = 5 to 𝑦 = 2 slows down the reentrainment process.
in Fig. 8(b) the vector field of the map while overlaying in red dots
the fixed points. From this figure, the unstable directions of points B
and C are clearly evident and it is also clear that a large set of iterates,
but not all, approach the stable fixed point along the diagonal. Looking
again at panel (a), we plot the set of iterates starting at three distinct
initial conditions (12, 2) (black), (12, 5) (red) and (12, 12) (white) to show
how they approach the stable node A. The black iterates, starting in
a yellow band of long entrainment, follow the stable manifold of C
(through the bottom of the graph to the top by periodicity) before
eventually tracking the unstable manifold of C towards point A. The
red iterates starting at 𝑦 = 5, march into A horizontally indicating that
𝑂1 and 𝑂2 remain synchronized as they both entrain. Finally, the white
iterates start on the diagonal for which 𝑂2 is already in the correct
phase alignment with LD. These iterates move towards point A along
the diagonal indicating that 𝑂2 maintains its phase alignment as 𝑂1
entrains.
9

3.3. Phase tumbling

In this subsection, we study the effect of phase tumbling the os-
cillators prior to beginning the reentrainment process after a shift in
phase of the light dark cycle. Recall that phase tumbling refers to the
amount of desynchronization of the phases of 𝑂1 and 𝑂2 at the moment
that they receive a change of the LD phase. In particular, since 𝑂1 is
always kept at the Poincaré section, a desynchronization is achieved by
changing the initial location of 𝑂2 along its limit cycle as measured by
𝑦. Phase-tumbled desynchrony is then defined to be |𝑦 − 𝑥𝑠|, where, in
this case, 𝑥𝑠 = 5.635. A key take away from this section is that phase
tumbling does not always lead to faster entrainment. In fact, it depends
quite critically on the change of LD phase as well as the specific value
of the tumbled phase.

In the following, we focus on the fully coupled system. Fig. 9(a) is a
duplication of Figs. 5(j) and 8(a). At LD phase 𝑥 = 12, we have plotted
the three different reentrainment times associated with 𝑦 = 2, 5 and 12.
As can be seen both from the time course shown in panel (b) and from
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Fig. 10. Comparing phase-tumbled and synchronized reentrainment times. In all
panels, we computed the difference in reentrainment time after an LD shift between
𝑦 = 5.635 (𝑂1 and 𝑂2 remain synchronized) and other initial phases that have been
tumbled. (a) Colorbar indicates how many fewer hours or how many more hours it
takes phase-tumbled initial conditions to reentrain than it does synchronized initial
conditions. Blue colors (negative values) indicate faster reentrainment due to phase
tumbling, i.e. where phase tumbling is beneficial. Red colors (positive values) indicate
phase-tumbled initial conditions that are slower to reentrain, i.e. where phase tumbling
is detrimental. White (a value of 0) indicates that the reentrainment time was the
same for phase-tumbled and synchronized initial conditions, i.e. where phase tumbling
is neutral. (b) For each LD phase, we compute the percentage of beneficial and
neutral initial conditions. The advantage of phase tumbling is most pronounced in
a neighborhood of 𝑥 = 17, due to moving initial conditions away from the unstable
node that exists for the synchronized solution at 𝑦 = 5.635.

the total reentrainment time values, phase tumbling helps for the 𝑦 = 12
case, but hurts for the 𝑦 = 2 case. The explanation is straightforward.
Any initial condition that lies in a neighborhood of a stable manifold
of an unstable saddle point will take longer to reentrain since it will
track the stable manifold to a neighborhood of the saddle point before
iterating away towards the stable node. The initial value at 𝑦 = 2 lies
near the stable manifold of saddle point D. Alternatively, when 𝑦 = 12,
𝑂2 is at a location of phase space where it would naturally have been
it were actually entrained to the LD cycle (since 𝑥 = 12). This initial
condition leads to the fastest entrainment. Thus in the case of 𝑦 = 2,
phase tumbling leads to longer reentrainment, and the case 𝑦 = 12
leads to faster reentrainment relative to the case where 𝑂1 and 𝑂2 are
minimally phase tumbled and remain nearly synchronized (𝑦 = 5).

To quantify this across a range of initial values in 𝑥 − 𝑦 space,
consider Fig. 10. In panel (a), at each vertical slice we computed the
time difference for reentrainment starting at 𝑦 = 5, which is close to
the synchronized initial condition of 5.635, compared to the reentrain-
ment time for phase tumbled initial conditions. Negative values (blue
portions) indicate the degree to which phase tumbling is beneficial
to speeding up reentrainment, and positive values (red portions) are
the opposite. Not surprisingly the worst cases fall along the invariant
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manifolds of points B, C and D from Fig. 8. The figure gives a clear
indication of regions where phase tumbling is expected to be beneficial,
neutral or detrimental. Panel (b) plots the percent of 𝑂2 initial phases
along each vertical stripe of panel (a) for which phase tumbling is
beneficial (blue) or neutral (white). Several conclusions can be drawn
from panel (b). For small LD phase shifts near the stable phase of
𝑥 = 5, phase tumbling is not beneficial. This occurs because when
the phase shift is small, it makes little sense to desynchronize the
oscillators and place one of them far away from the entrained solution.
For larger phase shifts, namely near LD phases 𝑥 = 17, almost all phase
tumbling is beneficial. The reason is that at 𝑥 = 17 the unstable node
D (Fig. 8(a)) lies within the slow entrainment yellow band. So any
phase tumbling that moves the initial condition outside of the yellow
banded regions will be beneficial. Taking a vertical slice at 𝑥 = 17,
one observes that most, but not all, initial conditions lie outside of a
yellow band so phase tumbling will be helpful in those cases. For LD
phases near 𝑥 = 19, phase tumbling is surprisingly detrimental. This
is because the stable manifold of saddle point B is almost vertical in a
vertical tubular neighborhood of that value. Thus, any phase tumbling
would likely cause the initial condition to lie in a yellow banded slow
entrainment region. Finally, as can be seen from the blue bars in panel
(b), for almost all LD phases, there do exist initial values at which phase
tumbling is beneficial. However, the tumbling has to be to a specific set
of phases as documented in panel (a). Taken on average, the percentage
of initial conditions for which phase tumbling is beneficial is 27.0%,
while those for which phase tumbling is neutral is 27.4%. Thus, phase
tumbling of initial conditions will be detrimental about 45% of the
time, highlighting the need to be cautious when using phase tumbling
as a strategy for reducing entrainment time.

3.4. Generalization with more than 2 oscillators

Having extensively explored the case of two oscillators, let us use
the insights gained to extend our findings to the multi-oscillator case.
However, extending this understanding to scenarios involving more
than two oscillators presents new challenges as the increase in the num-
ber of possible interactions and pairwise combinations grows rapidly
with each additional oscillator. As a result the general 𝑁 oscillator case
is too difficult to geometrically visualize using the entrainment map,
though we have addressed the dynamics of this case using a simpler
Kuramoto model in other work [22]. Instead, here we focus on the
extension to three oscillators where we can use the previous sections
results to qualitatively predict and understand some of the ensuing
dynamics. Consider the following equations:
𝑑 𝑃1
𝑑 𝑡 = 𝜈𝑝𝑀1 − 𝑘𝑓ℎ

(

𝑃1
)

− 𝑘𝐷𝑃1 − 𝑘𝐿1
𝑓 (𝑡)𝑃1

𝑑 𝑀1
𝑑 𝑡 = 𝜈𝑚𝑔(𝑃1) − 𝑘𝑚𝑀1 + (𝛼21𝑀2 + 𝛼31𝑀3)𝑔(𝑃1)

𝑑 𝑃2
𝑑 𝑡 = 𝜈𝑝𝑀2 − 𝑘𝑓ℎ

(

𝑃2
)

− 𝑘𝐷𝑃2 − 𝑘𝐿2
𝑓 (𝑡)𝑃2

𝑑 𝑀2
𝑑 𝑡 = 𝜈𝑚𝑔(𝑃2) − 𝑘𝑚𝑀2 + (𝛼12𝑀1 + 𝛼32𝑀3)𝑔(𝑃2)

𝑑 𝑃3
𝑑 𝑡 = 𝜈𝑝𝑀3 − 𝑘𝑓ℎ

(

𝑃3
)

− 𝑘𝐷𝑃3 − 𝑘𝐿3
𝑓 (𝑡)𝑃3

𝑑 𝑀3
𝑑 𝑡 = 𝜈𝑚𝑔(𝑃3) − 𝑘𝑚𝑀3 + (𝛼13𝑀1 + 𝛼23𝑀2)𝑔(𝑃3).

(7)

In this model, all oscillators receive LD forcing of the same strength
(𝑘𝐿1

= 𝑘𝐿2
= 𝑘𝐿3

= 0.105). The oscillators are all-to-all coupled with
a common strength given by 𝛼𝑖𝑗 = 0.04725. The rest of the parameters
have the same meaning as the two-oscillator model.

Generalizing the methods of the previous section to the three os-
cillator case would require defining a three-dimensional map in which
we would set a Poincaré section on the first oscillator, for example,
and then have to track the three free phases, LD, 𝑂2 and 𝑂3. Such a
map would be difficult to visualize and analyze. However, by studying
specific situations, namely, by choosing specific LD phases to study, we
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can reduce the problem back to a two-dimensional map. In doing so,
e can understand the role of phase tumbling and make predictions of
hen phase tumbling will be beneficial, neutral or detrimental.

In Fig. 11, we select three particular LD phases. In panels (a) and
(b), the LD phase is fixed at 12. By starting 𝑂2 and 𝑂3 near 12 too,
fast reentrainment is observed because the latter two cells are already
aligned to the LD phase. This is similar to our findings from Fig. 8(a).
The yellow slow entrainment bands near the vertical line 𝑂2 = 2 or
the horizontal line 𝑂3 = 2 exist because in the two oscillator case, the
initial condition (𝑥, 𝑦) = (12, 2) was in a yellow band (see Fig. 8(a)).
Since there is a symmetry with regard to 𝑂2 and 𝑂3, the heat map is
also symmetric about the diagonal. In panel (b) we choose different
𝑂2 phases and sample over the range of 𝑂3 phases to show where
ong or fast reentrainment occurs. These results show that different

initial 𝑂2 phases lead to different sets of 𝑂3 phases that lead to faster
reentrainment. In panel (c) and (d), the LD phase is fixed at 5, where
𝑂1 is near its stable entrained phase. Here regions that lie near the
diagonal have fast entrainment with the exception of those that lie near
the vertical 𝑂2 = 17 or horizontal 𝑂3 = 17 lines. These are the values
at which the saddle point B and its stable manifold existed in Fig. 8(a).
In panel (d) the local min near 𝑂3 phase equal to 5 when the initial
𝑂2 phase is also 5 makes sense since all oscillators are near the stable
phase. The local maximum for each of the curves occurs near 𝑂3 phase
equal to 17 corresponding to the yellow regions of panel (c). Finally, in
anels (e) and (f), the LD phase is fixed at 17, where 𝑂1 is at its worst
ntrained phase. Not surprisingly, the slowest reentrainment occurs
hen 𝑂2 and 𝑂3 have initial conditions that are not near their aligned
hase of (17, 17). Instead, again using information from Fig. 8(a), note

that point D lies at (17,5) and has very slow reentrainment. This means
that the vertical and horizontal lines at 𝑂2 = 5 and 𝑂3 = 5 will have
the longest reentrainment. In summary, we have used information from
the two oscillator case of the previous section to determine, in specific
cases, when faster or slower reentrainment for the three oscillator
case should occur. In turn, these results further illustrate that phase
tumbling, in and of itself, does not always lead to faster entrainment.

4. Discussion

Entrainment of the circadian cycle to the 24-h world is critical for
the proper functioning of humans and other species. Beyond just en-
trainment, however, is correct alignment of the entrained phase to the
24-h light dark cycle. For humans, this can be measured, for example,
through core body temperature, which shows a local minimum just
before waking when properly aligned. The entrainment and alignment
can be thrown off due to a variety of factors such as rapid travel
across time zones (jet lag) or for workers who engage in shift work.
In these circumstances, rapid reentrainment and realignment of the
circadian rhythm is beneficial. The process of reentrainment is quite
complicated and involves both reentrainment and synchronization of
multiple oscillators in a single brain region (e.g. SCN) as well as
across multiple different circadian systems organized in a hierarchical
manner (e.g. peripheral oscillators [22,23,28,29]). Iterated maps rep-
resenting ODE models of the circadian system can provide insights into
ntrainment dynamics [30,31].

In this paper, using a combination of simulations and analysis, we
have concentrated on the case of a single region consisting of multiple
oscillators to assess how to most quickly reentrain them after a change
f LD phase. Past studies have suggested that desynchronizing these
scillators, phase tumbling, speeds up the reentrainment process. The
esults of this paper show that phase tumbling may be effective, but
nly in some situations that depends on the extent of both the LD
hase shift as well as the specific amount of desynchronization achieved
hrough phase tumbling. Using the two-dimensional entrainment map,

we showed that for the two-oscillator case, there exist four possible
ntrained solutions. Only one of these is a stable solution. In particular,
here exists an unstable entrained solution corresponding to a saddle
11
point of the map in which the two oscillators are synchronized. When
the LD phase shift places the synchronized oscillators in a neighborhood
f this saddle point, reentrainment is quite long. Thus, any phase
umbling is beneficial as it moves the oscillators away from the stable
anifold of the saddle point. On the contrary, for other LD shifts, phase

umbling may place an oscillator in the vicinity of a stable manifold of
a saddle point. The iterates of the map then track this stable manifold
to a neighborhood of the saddle point before eventually deviating.

his causes long reentrainment times. Fig. 10 summarizes our findings
across all phase shifts and phase tumbled initial conditions. As shown
in the figure, almost 50% of phase tumbled initial conditions lead to
longer reentrainment times than if the oscillators were to have remained
synchronized. We further showed how our methods can be used to
assess a network of three oscillators, though there are limitations in
this extension as discussed later.

Throughout the paper we used a 12:12 LD duty cycle as well
as a single intensity of light. There is no problem in extending to
different LD duty cycles, however there are limitations in that entrain-
ment is lost if there is too little light or dark within a given 24-h
period. We have previously described how to handle changes in light
intensity using multi-lux maps [21]. However the intensity of light
oes have non-intuitive effects on models of circadian oscillators. For
xample, as noted earlier, for one-dimensional entrainment maps at
igher light intensities, the unstable fixed point need not correspond
o an actual unstable periodic orbit; see [25]. Another non-intuitive

finding is that for Kuramoto models [32], and likely one-dimensional
phase models, fixed points can disappear through various bifurcations
as light intensity increases [22]. We have not observed the loss of
ixed points in models that utilize higher-dimensional circadian models.
hese mathematical curiosities remain to be better understood, along
ith any potential biological consequences.

Reentrainment is often studied using a phase response curve (PRC)
hich measures the change in phase of an oscillatory in response to

a small perturbation. The PRC is constructed under the assumption
that the perturbation keeps the oscillator in a neighborhood of its
stable limit cycle. In the current study of phase tumbling, neither the
desynchronizing inputs to the oscillators nor the change in LD phase
an be considered perturbations. They are much larger and thus PRC

methods are not well suited to address the questions that arise from it.
Alternatively, the entrainment map [19] was developed specifically to
handles all possible changes in LD phase across 24 h. The extension to
consider two oscillators, first addressed in [23], also was undertaken
to allow for changes of phase of the second oscillator across 24 h.
In these studies it was the ability to identify fixed points of the map
and the ensuing invariant manifold structure that allowed us in the
current context to understand the effects of phase tumbling. However,
the entrainment map does have some limitations. In particular, it is not
well-suited to handle networks of large numbers of oscillators because
the dimension of the entrainment map makes it untenable to calculate
and analyze. There are other methods, such as considering a bank of
phase oscillators in a continuum limit, that are capable of modeling
such cases. Often, however, those models are not well connected to
the underlying circadian biology. Another drawback of the entrainment
map, that we have previously identified, is that the fixed points of
the map do not necessarily correspond in a one-to-one manner with
actual periodic solutions of the full set of equations (see [20] for further
discussion of this point). However, Creaser et al. [25] performed a
bifurcation analysis of a circadian oscillator model that demonstrated
the existence of several phase space objects predicted by entrainment
maps.

Mathematical findings and their significance to properties of circa-
dian entrainment are related to previous findings of others [33,34] as
well as some of our prior work [20,22,23]. For example, in their study
of recovery from jet lag, Kori et al. [34] defines what they call a ‘‘jet
lag separatrix’’. They reduce their study to a one-dimensional phase
model and this separatrix turns out to be an unstable fixed point of
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Fig. 11. Reentrainment times for distinct LD phases for the three-oscillator network. (a)–(b) The phase of LD is fixed at 𝑥 = 12 as in Fig. 9. The phases of 𝑂2 and 𝑂3 are varied.
Note that the yellow long reentrainment bands correspond to starting either 𝑂2 or 𝑂3 in a yellow band of Fig. 9(a) at (12, 2). See text for a detailed description. Panel (b) shows
how the reentrainment time varies with different initial 𝑂3 phases for different values of initial 𝑂2 phase. The local min (yellow curve) near 𝑂3 at phase 12 is where 𝑂2 and
𝑂3 start at the entrained phase. (c) and (d) The phase of LD is fixed at 5, which is near the entrained phase. The total reentrainment time is faster near (5,5) and slower near
(17,17). This, and the ensuing yellow, bands are consistent with either 𝑂2 or 𝑂3 lying near the stable manifold of a saddle point. Panel (d) shows a local min near 𝑥 = 5 when
𝑂2 also begins at 5, and a local max near 𝑥 = 17, which is in vicinity of a stable manifold of a saddle point. (e)–(f) The phase of LD is fixed at 17, which is near the worst case
of entrainment for the two-oscillator model. Slower entrainment occurs along both the initial phases 𝑂2 = 5 and 𝑂3 = 5, indicating that reentrainment is dictated by 𝑂1. Panel (f)
again shows that when 𝑂2 and 𝑂3 start at a phase that is entrained to the LD-phase shift of 12, fast reentrainment follows.
that model. Thus on the circle, it repels phase values sending them in
opposite direction and thereby forms a separatrix of the phase space
much in the same way that the saddle points of the entrainment map
do. Lu et al. [33] also finds a similar phenomena in their study of
12
jet lag. They use the Ott–Antonsen ansatz to derive a single complex
equation of the order parameter. Since their equations are essentially
two-dimensional, they find saddle, unstable and stable nodes much like
ours.
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There has been relatively little prior modeling work focused explic-
tly on the phase tumbling hypothesis. Roberts et al. [6] modeled the
Drosophila circadian clock as a network of 60 coupled Goodwin oscil-
ators [35]. They studied the dynamics of resynchronization following
ransient desynchrony in response to a phase-advancing light pulse, but
id not simulate reentrainment to a phase-shifted light-dark cycle. An
t al. [3] modeled the SCN as a network of 49 cells coupled through

VIP signaling using a stochastic version of Leloup and Goldbeter’s 16-
dimensional model of circadian gene regulation [36]. They computed
the phase response distribution (PRD) for pulses of VIP administered
rom Circadian Time (CT) 0 to CT24 (with CT0 defined as the minimum

of Period gene expression). The PRD, which is similar to a PRC but
isplays the distribution of cellular responses rather than the aggregate
esponse, showed the least phase dispersion near CT4 (the stable phase
f entrainment) and the most phase dispersion at CT22. We speculate
hat CT4 corresponds to the stable fixed point of an entrainment map
point A in Fig. 7) and CT22 corresponds to the unstable node of an

entrainment map (point D in Fig. 7). Simulations of their model with
 pulse of light applied at CT19.5 and every 24 h thereafter converged

to CT4 more quickly when initialized with desynchronized cellular
phases (cells uniformly distributed between CT0 and CT24) than when
initialized with synchronized cellular phases (all cells initialized at

T19.5). Based on their modeling results, the authors proposed the
following strategy for minimizing jet lag: A traveler should arrive at
heir destination at a time when they would receive light exposure near

CT22.
Our modeling study differs from An et al. [3] in that we simulated

the entire range of possible phase advances and delays of the light-dark
cycle due to travel (LD phase from 0 to 24) across the entire range
of possible degrees of desynchronization for two oscillators (O1 initial
phase held constant and O2 initial phase varied from 0 to 24). Our
findings suggest that phase tumbling does not provide a guarantee of
faster reentrainment, and, in fact, may lead to longer reentrainment
times than if the oscillators remain synchronized.

Translating this to a direct application, we conclude that deliber-
ately inducing phase tumbling after travel as a strategy for reducing jet
ag would be inherently risky due to its potential to increase rather than
ecrease reentrainment times. However, there are certain LD phases for
hich phase tumbling is mostly beneficial or neutral. Thus, based on
ur modeling results, we propose the following strategy for reducing
et lag: A traveler should perturb (i.e. phase tumble) their clock upon
rrival only if the LD phase in their destination time zone puts them
n the neighborhood of the unstable node of the entrainment map.
uture work is needed to determine how the location of the unstable
ode depends on network size, heterogeneity, and other parameters.
urthermore, employing this strategy requires knowledge of the trav-
ler’s circadian phase. While direct measurement of circadian phase
s costly and impractical, indirect estimation using a combination of
ata from wearable devices and mathematical modeling can be quite
ccurate [37–39]. Other jet lag ‘‘pretreatment’’ strategies have been

proposed [40–42], including a recent approach that exploits circadian
memory (in the form of amplitude, rather than phase, coordinates) to
hasten reentrainment [43]. Both experimental and modeling studies
have shown that a stimulus of a certain strength applied at a certain
phase can reduce the amplitude of a circadian oscillator to nearly
zero and place the oscillator in a phaseless position referred to as the
‘‘singularity’’ [13,15,44–47]. Intentionally suppressing the amplitude
f the oscillator upon arrival could shorten reentrainment time by
llowing the trajectory to take a shortcut across phase space [20,25].
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