
Dynamical mechanisms of how an 
RNN keeps a beat, uncovered with 
a low-dimensional reduced model
Klavdia Zemlianova1, Amitabha Bose2 & John Rinzel3

Despite music’s omnipresence, the specific neural mechanisms responsible for perceiving and 
anticipating temporal patterns in music are unknown. To study potential mechanisms for keeping 
time in rhythmic contexts, we train a biologically constrained RNN, with excitatory (E) and inhibitory 
(I) units, on seven different stimulus tempos (2–8 Hz) on a synchronization and continuation task, 
a standard experimental paradigm. Our trained RNN generates a network oscillator that uses an 
input current (context parameter) to control oscillation frequency and replicates key features of 
neural dynamics observed in neural recordings of monkeys performing the same task. We develop a 
reduced three-variable rate model of the RNN and analyze its dynamic properties. By treating our 
understanding of the mathematical structure for oscillations in the reduced model as predictive, we 
confirm that the dynamical mechanisms are found also in the RNN. Our neurally plausible reduced 
model reveals an E-I circuit with two distinct inhibitory sub-populations, of which one is tightly 
synchronized with the excitatory units.

The ability to estimate time is important for many activities like dancing and playing or listening to a musical 
instrument. Experimental and computational studies of the neural mechanisms underlying the ability to estimate 
time have primarily focused on the temporal estimation of isolated intervals1–3. However, how the brain keeps a 
musical beat, called rhythmic timing, likely involves different neural mechanisms that are yet to be explained4–7.

Unlike timing isolated intervals, rhythmic timing, also called beat-based timing, necessitates computationally 
distinct requirements. In particular, rhythmic timing requires aligning to a beat in both phase and tempo and 
requires the ability to internally maintain the learned rhythm in the absence of stimulus input (imagine tapping 
along to a song after it stops playing). Furthermore, the two modes of timing may be at least partially separated 
in the brain: beat-based timing is thought to rely on the premotor and supplementary motor areas8–11, basal 
ganglia6,12 and the parietal cortex13,14 unlike interval timing, which is more dependent on the cerebellum7,15–17. 
Alternative proposals, however, posit that the cerebellum may not be necessary for timing18,19 at all or that the 
parietal cortex may play a role in both20.

Tapping along to an isochronous beat is the simplest form of beat-based timing and has been extensively 
studied in human psychoacoustic studies21,22. Recent work has shown that macaques, too, can be trained to 
synchronize their motor behavior to a beat23,24 although, unlike humans, they don’t spontaneously do so25. 
Prior studies on electrophysiological recordings from macaques have characterized a number of features of 
neural data hypothesized to be related to the underlying rhythmic timing mechanism23,24. One such prominent 
feature is sequential firing, a type of dynamic coding26: neurons fire at varying phases between tap times thereby 
forming activity sequences that repeat between taps. Further, when neural activity is projected to a lower 
dimensional space using principal component analysis, the neural firing rates trace out circular trajectories 
whose circumference increases with decreasing stimulus frequency. Although previously proposed models for 
neural timing may show synchronization to a rhythmic stimulus and maintenance of the learned rhythm27, 
neuromechanistic explanations of the observed dynamical features of existing neural data are lacking.

Motivated by recent successes of recurrent neural networks (RNNs) to reproduce dynamical features of 
neural data28–32, we train an RNN on a standard rhythmic timing task to replicate observed neural features from 
macaque experiments. To mimic previous parametrizations of the RNN in related tasks, we assume the existence 
of an input drive as well as an adaptive neuronal process (e.g. error correction process33) that dynamically adjusts 
the magnitude of the input drive to the RNN. Based on this neuro-meaningful context parametrization that 
mimics the driving current in a biophysical model, training leads to a controllable network that can produce 
oscillations over a wide range of frequencies and matches key dynamical features of experimental data. Using the 
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RNN, we then develop a neurally plausible reduced model (E-I-I). Using this mathematically tractable model, we 
uncover dynamical mechanisms that explain the RNN’s oscillatory capabilities and propose distinct functional 
roles for two inhibitory subpopulations. Our novel dissection of the RNN’s oscillatory dynamics provides 
insights into how the brain potentially represents a musical beat.

Results
To examine potential mechanisms for rhythmic timing, we trained a recurrent neural network (RNN) with 500 
units (80% excitatory, 20% inhibitory) on a synchronization and continuation task (Fig. 1a)—a standard task 
in rhythmic timing literature. In this task, stimulus pulses are delivered equally spaced in time and a subject is 
asked to synchronize a motor action, such as a finger tap, with the stimulus sequence (synchronization phase) 
and then to continue producing that motor output at the same rate and phase after the stimulus is stopped 
(continuation phase). To model this task, the inputs to the RNN consisted of stimuli onset times (Istim), modeled 
as short pulsatile inputs delivered at the frequency of the stimulus, as well as a context cue (Icc), modeled as a 
constant input drive whose amplitude was inversely related to the interval between stimulus pulses (Fig. 1b). 

Fig. 1. RNN trained on the synchronization and continuation task replicates key features of neural dynamics. 
(a) Synchronization and continuation task. Stimulus pulses are presented equally spaced in time and the 
subject responds by first synchronizing their motor output with the stimulus (synchronization phase) and 
then continuing to produce the motor output at the same rate and phase in the absence of the stimulus 
(continuation phase). (b) Schematic of the RNN training. The RNN, composed of 500 hidden units with 80% 
excitatory (red) and 20% inhibitory (blue), receives two types of inputs: a context cue and stimulus pulses. The 
amplitude of the context cue is proportional to the frequency of the stimulus (purple for low frequency, teal 
for high frequency). The model output is a sinusoid of the same frequency as the stimulus input with the peaks 
of the sinusoids (“taps”) aligned to the stimulus tone times. Black horizontal bar on the output indicates one 
Inter-Tap Interval (ITI). (c) Firing rates of RNN units are normalized so that each unit’s activity is between 0 
and 1 (color gradient) and then sorted by the time at which each unit hits its maximal firing rate during the 
first ITI. Excitatory (red) and Inhibitory (blue) units are sorted separately. Time course of the output unit is 
shown above the heatmap in black. White vertical lines indicate model “tap” times. (d) Firing time courses 
of RNN units trace out circles when projected to the space spanned by the top three principal components 
(explain 61% of the variance). Color gradient indicates frequency of stimulus (purple = low frequency to 
teal = high frequency). Black circles indicate model output “tap” times. Inset at top right shows the noise-free 
time courses projected to the same space for the same trained frequencies with model “tap” times indicated 
with filled circles. (e) Standard deviation vs. mean of the circumference of trajectories from panel d. Trajectory 
circumference is computed as the arclength of the discretized trajectory in RN  taken between model output 
‘tap’ times. Mean and standard deviation is computed across individual cycles for each Icc (see “Methods”). 
(f) Simulated ITIs of the RNN output for Icc (grey) at every 0.01 step from 0.1 to 1.1. Yellow circles indicate 
the points for which the RNN was trained. All dynamics for panels c.-f. are taken from the RNN simulated 
in the continuation phase, after transients have settled and the time course is nearly periodic, with noise 
σin = σrec = 0.01 (see “Methods”).
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Essentially, the pulsatile inputs provided the network with information about phase and the context cue provided 
information about oscillation period. Finally, the stimulus tones were presented for the first one second of 
network input only (synchronization phase only) as in the experiments23,34, while the context cue was provided 
for the entire two seconds of network input (synchronization and continuation phases). We implicitly assume 
controllability through an adaptive process (not explicitly modeled) that dynamically adjusts the context cue 
parameter (e.g. by error correction33) to match and maintain the target beat. In short, the network is adaptive 
and not based on entrainment.

The output of the network, a scalar time course o, was required to produce a sinusoidal response lasting for at 
least two seconds with peaks of the output cycles aligned with the stimulus tones. We use the peak times of the 
sinusoidal output as a proxy for the command signal that would be sent to execute a motor action that would be 
synchronized with the stimulus pulses in this task and we will refer to peak times of the output cycles as model 
‘tap’ times. The network was trained on seven different frequencies: 2, 3, 4, 5, 6, 7 and 8 Hz—a natural range of 
frequencies for musical and speech rhythms22,35.

RNN reproduces key features of experimental data
The task-trained RNN replicates several features of the neural dynamics previously observed in neural data of 
macaques performing the same task23 such as sequential firing rates and firing rate trajectories that increases in 
circumference with increasing stimulus period20,33. To see if our model replicates the first finding, we sort RNN 
hidden units according to their peak firing times with units that fire early appearing in the top of the sequence 
(Fig. 1c). Since the peaks of the sinusoidal output of our model are a proxy for the tap events, we define the inter-
tap-interval (ITI) for our model to be the time between consecutive peaks in the output. This analysis of the 
RNN hidden units reveals weak sequential activity that repeats each ITI (Fig. S1). This sorting also reveals that 
most excitatory units are synchronized and fire maximally around the “tap” times (white vertical lines in Fig. 1c) 
with some units having weaker firing peaks that lead or trail the tap-focused units. In contrast, inhibitory units 
show stronger sequential structure in their firing patterns with some units firing at maximum rates at different 
ITI phases—28% of the inhibitory units fire within a phase range of 0.2 to 0.8 and are characterized as the Int-I 
group. In comparison, only 14% of the excitatory units are characterized as the Int-E group. While the sequential 
activity is weaker than observed experimentally, the RNN replicates the over-representation of units firing at the 
“tap” just as observed in the experimental data23.

Examination of the experimental data also showed that when the neural firing rate time courses are projected 
onto the space spanned by the top three principal components, the trajectories trace out circles such that the 
radius and variability increase with stimulus period23,34. Projecting the firing rates of the RNN units into their 
corresponding space similarly reveal circular-like trajectories (Fig. 1d) that also increase in radius and variability 
(Fig. 1e) with stimulus period. The model ‘tap’ times (indicated by colored dots in Fig. 1d) align themselves along 
a line in state space—also in agreement with experimental findings.

When visualized in state space, the trained RNN trajectories are organized as a cone-like shape with slow 
trajectories (Fig. 1d dark colors, large radius) on one end and fast trajectories (Fig. 1d light colors, small radius) 
on the other end. Although we only trained the RNN on seven frequencies, the trained RNN could interpolate 
between the learned context cues (driving the RNN with intermediate values of Icc produces oscillations of 
intermediate periods, see Fig. 1f) as well as extrapolate beyond the trained regime (Fig. 1f—notice ITIs, shorter 
and longer, for contexts cues above 0.8 and below 0.2, respectively). The finding that the RNN is able to generalize 
is likely related to a low-dimensional structure in the network whose output varies continuously with a tonic 
context cue, consistent with previous studies36–38. However, unlike previous work on single-interval timing, our 
model’s generalization capabilities extend this finding to oscillatory systems. A context-parameterized structure 
is intuitively appealing as speeding up (slowing down) tempo can be accomplished by transitioning up (down) 
along the cone-manifold’s axis by increasing (decreasing) the neural drive (Icc).

Developing a three-variable reduced model of the RNN
Having shown that the trained RNN reproduces several qualitative features of the neural data, we sought to 
understand the underlying dynamic mechanism of the RNN oscillatory solution by developing a reduced 
variable description. Close inspection of the RNN firing rate time courses (Fig. 1c) reveals that many of the units 
have highly similar activity patterns allowing us to identify four subpopulations: excitatory and inhibitory units 
that fire with a phase between (0.8,1) and (0, 0.2) of the “tap” time—which we will refer to as the tap excitatory 
(Tap-E) and tap inhibitory groups (Tap-I), respectively, as well as units that fire with a phase between 0.2 and 0.8 
of the model “tap” times—the inter-tap excitatory (Int-E) and inter-tap inhibitory groups (Int-I), respectively 
(Fig. 2a). The Tap-E, Int-E, Tap-I and Int-I account for 344/400 (86%), 56/400 (14%), 72/100 (72%), and 28/100 
(28%) of the units, respectively. Simulations show that silencing the entire Int-E group in the trained RNN 
does not destroy the ability of the network to form oscillations, though it affects the frequency range of the 
network output (Fig. S2). Silencing any one of the remaining groups prevents the network from oscillating or 
from producing oscillations at a wide enough range of frequencies suggesting that the remaining three groups 
are necessary to the mechanism (Fig. S2).

Motivated by this observation, we define a three-variable reduced model based on the three necessary 
RNN subpopulations: Tap-E (x), Tap-I (y), and Int-I (z) (Fig. 2b). The variables x, y, and z correspond to the 
subgroup-averaged activities of the hidden units. The evolution of these variables is defined by rate equations 
modeled after the formulation of the RNN:

 τxx
′ = −x +WxxFx (x) +WxyFy (y) +WxzFz (z) +Win

x Icc + Ibx (1)

 τyy
′ = −y +WyxFx (x) +WyyFy (y) +WyzFz (z) +Win

y Icc + Iby (2)
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 τzz
′ = −z +WzxFx (x) +WzyFy (y) +WzzFz (z) +Win

z Icc + Ibz (3)

 Fk (x) = cklog (1 + exp (akx− bk)) , k = x, y, z (4)

where connectivity weights between units and the input weight on the context cue ( Icc) are given by W  and Win

, respectively. The bias and time constant for each population k are given by Ibk  and τk, respectively. Since we are 
interested in the structure of the model that maintains oscillations during the continuation phase, we drop the 
stimulus tone input so that the only external input to the reduced model is the context cue (Icc). To approximate 
the effects of the RNN units’ heterogeneous properties, we replace the non-linearity in the reduced form with a 
soft-plus function, F (·), that is fit to the averaged ReLU functions for each subpopulation (Eq. (4)). Finally, we 
take the connectivity weights to be the group average weights from the RNN except for τz,Wzy,Wzz which we 
have hand-tuned (see “Methods”). Values for the model parameters are found in Table 1. The reduced model is 
simulated with zero noise, throughout.

As a first step, we look at the subgroup-specific activity of the RNN hidden units. Averaging the hidden 
unit activity in the RNN according to subgroup (Fig. 2c) revealed low amplitude activity for all three groups. 

Parameter Value  Parameter  Value

Wxx 8.949 Ibz −0.1

Wxy −7.40 τx, τy 10 ms

Wxz −2.952 τz 50 ms

Wyx 9.123 ax 150.134

Wyy −7.386 bx −0.476

Wyz −3.072 cx 0.007

Wzx 8.935 ay 62.873

Wzy −4 by 0.481

Wzz −1 cy 0.016

Win
x

0.048 az 87.0

Win
y 0.055 bz −0.781

Win
z

0.068 cz 0.012

Ibx, Iby 0

Table 1. Reduced model parameters.

 

Fig. 2. Distinct subpopulations in the RNN allow for the formulation of a three-variable reduced model. (a) 
Four distinct neuronal populations in the RNN are identified by first sorting the normalized firing activity 
(noise-free simulation) by peak firing time and grouping according to phase of peak firing rate. Example 
sorting during the continuation phase is shown for a stimulus of 5 Hz (Icc = 0.5). Excitatory and inhibitory 
units are sorted separately. Excitatory and inhibitory units that peak within a phase of 0.2 to the tap times 
(white vertical lines) form the tap excitatory and tap inhibitory groups (red and blue boxes, respectively). 
Inhibitory units that have peak firing rates with phases between 0.2 and 0.8 form the inter-tap inhibitory (green 
box) group. (b) Schematic of reduced model with three populations of units defined in panel a. Connectivity 
weights between groups are taken to be group-averaged RNN connection weights except for a few weights (see 
“Methods”). (c) Time course of the pre-rectified activity (x-variables in Eq. (1) of “Methods”) of RNN hidden 
units (averaged over units) according to group membership: red, blue and green curves correspond to the 
average Tap-E, Tap-I and INT-I time courses, respectively. Time course shown during the continuation (no 
stimulus input) phase (Icc = 0.5) and shading indicates ± standard error of the mean computed across units 
from the RNN simulated without noise during the continuation phase and after initial transients have settled, 
so that the individual units show their periodic response.
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Furthermore, the Tap-E and Tap-I groups appeared to be highly synchronized (firing rate balanced) and nearly 
identical while the Int-I group showed a phase offset in its time of peak firing compared to the Tap groups.

Analysis of the three-variable model
Qualitatively, we see agreement between the dynamics of the reduced model and the RNN. For small and large 
values of context cue (Icc), the system converges to a steady state (Fig. 3a and c, respectively). For intermediate 
values of Icc, the reduced model displays oscillations (Fig.  3b) with x (red) and y (blue) variables highly 
synchronized and z (green) showing a phase delay, in agreement with the RNN behavior of the averaged Tap-E, 
Tap-I and Int-I time courses shown in Fig. 2c. The RNN dynamics also converge to a steady state for Icc values 
beyond the RNN’s extrapolation regime, Icc < 0 and Icc > 1.1 (not shown). The reduced model produces a wide 
range of oscillation frequencies spanning 1 to 17 Hz (Fig. 3d) which overlaps with the produced frequency range 
of the RNN (Fig. 1f). The rise of ITI with decreasing Icc is steep and localized rather than gradual as in the RNN; 
the difference is perhaps due to a lack of mechanisms for sequential activity or explicit account of heterogeneity 
in the reduced model.

The parameter regimes that lead to oscillations can be identified in a compact description, the bifurcation 
diagram, of the response dynamics (Fig. 3e) using Icc as the control parameter. For Icc negative there can be 
multiple steady states, as explained in the Supplementary Information Sect. 3 and Fig. S3, but in this parameter 
regime, only one is stable (stable in red, unstable in black). Since x, y, and z are negative for this stable state, 
this corresponds to a state of no firing consistent with the time course shown in Fig. 3a. For large enough Icc 
(Fig. 3e red line for Icc > 1.57), there is a single stable state. Oscillations exist for intermediate Icc with trough 
to peak amplitude (Fig.  3e, green for max and min of oscillation during a cycle) decreasing and frequency 
increasing as Icc increases. The change in amplitude and period of the oscillations (as a function of context cue) 
can also be seen when projecting of the periodic solution onto the x vs. z plane (Fig. 3f). Note that points along 
each trajectory are plotted at each 1 ms increment, implying that longer period trajectories slow down near the 
southwest portion of the trajectory.

To understand how oscillations arise and disappear in this system, we take a closer look at the how the fixed 
points change stability. Starting at small values of the context cue (Icc < 0.19), there are three fixed points whose 
existence can be seen in Fig. 3e (black and red lines). As the context cue increases, the lower two branches of the 
bifurcation curve meet at a saddle node point and disappear. This is the parameter value at which the system 
changes between a regime with a stable steady state attractor to an oscillatory regime. The solution that appears 
for Icc = IHC

cc  has large amplitude and zero frequency (infinite period); it’s called a homoclinic orbit, a unique 
trajectory that approaches the saddle-node as t tends to plus or minus infinity (illustrated in Fig. S3a with a 
simple canonical model). The oscillation period is long for Icc near, but just greater than IHC

cc  and decreases with 

Fig. 3. In the reduced model, long-period oscillations arise from a homoclinic bifurcation and disappear 
as short-period oscillations via a Hopf bifurcation. (a) Example time courses of x (red), y (blue), and z 
(green) variables reduced model (Eqs. (1)–(4)) simulated with context cue Icc = −1.0 and τz = 50ms. (b, 
c) Time courses of the reduced model for context cues Icc = 0.5 and Icc = 1.8. Colors are the same as in a. 
Time courses in panels a., b., and c. are simulated without noise. (d) Oscillation period vs. context cue for 
the reduced model shown for τz = 50 ms. (e) One dimensional bifurcation diagram of the reduced model 
showing the effect of context cue (Icc) on model dynamics. The homoclinic and Hopf bifurcation points are 
indicated by IHC

cc (0.19) and IHB
cc (1.57), respectively. Red and black lines indicate stable and unstable fixed 

points, respectively. Green lines indicate the max and min z-values of the stable periodic orbit. Dashed lines at 
context cue levels of Icc = −1, Icc = 0.5 and Icc = 1.8 correspond to panels a, b, and c, respectively. (f) Example 
oscillatory trajectories for context cue values Icc = 0.197, 0.3, 0.5, 0.8 and 1.2 (gradients from yellow to purple; 
dots plotted for every 1 ms timestep) projected into the two-dimensional phase plane, z vs. x. Direction of flow 
is counterclockwise (black arrow).
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increasing Icc. At large values of context cue (Icc > 1.57), there is only one fixed point and it is a stable attractor. 
As the context cue is decreased from the right side of the Fig. 3e, oscillations emerge with small amplitude by 
destabilizing the steady state via a Hopf bifurcation (IHB

cc ) (Fig. S3b). These dynamical features reveal that for 
context cues less than IHC

cc , the reduced model converges to a stable fixed point (e.g., Fig. 3a); for context cues 
between IHC

cc  and IHB
cc , the system shows stable oscillations (e.g., Fig. 3b); and for context cue values above IHB

cc , 
the system again converges to a stable fixed point via a spiraling attractor (e.g., Fig. 3c). Furthermore, given that 
the reduced model is meant to inform the RNN, these observations allow us to make a prediction for the RNN: 
as the context cue increases, oscillations arise as long period, large amplitude oscillations from a homoclinic 
bifurcation and disappear as short period, small amplitude oscillations via a Hopf bifurcation. Further details 
about the oscillation dynamics are provided in the Supplementary Information Sect. 3 and Figs. S4, S5.

Assuming E-I firing rate balance allows further reduction to a two-variable model
The tight balance observed between the Tap-E (x) and Tap-I (y) variables suggests a further reduction of our 
model to a two-variable system by assuming that x and y are related by a scalar multiple taken to be the slope 
of the overlapping region of the nullclines (Fig. 3e solid line x, y ≥ 0). Introducing this assumption (y = 1.1x), 
the resulting two-variable system (Fig. 4a) is amenable to phase plane analysis without the need for projecting 
from a higher dimensional space. The oscillation trajectory strikingly resembles the projected limit cycle of 
the x− y − z model (compare Fig. 4a to 3f). An example trajectory is plotted at every 1 ms timestep (grey) 
and shows a slowing down near the southern end of the trajectory as observed in the three-variable reduced 
model. Furthermore, the qualitative dynamical features are preserved: oscillations emerge with long period via 
a homoclinic bifurcation that then disappear via a Hopf bifurcation as Icc changes from medium to high values 
(compare Fig. 4b to 3e). Finally, we see that the system retains small amplitude oscillations and a phase delay in 
the peak activity of the z variable (compare Fig. 4c to 3b).

Analysis of RNN dynamics confirms predictions from reduced model
Having identified the reduced model’s dynamic structure and attractor transitions, we searched for the 
corresponding features in the RNN. We identified a two-dimensional plane that captures the key fixed points 
affecting the RNN dynamics and investigated the changes in the RNN dynamics as a function of changes in 
context cue, (Icc) in this plane. To identify the relevant plane, we performed Principal Component Analysis 
on RNN time courses from trajectories initialized on the balance manifold in the non-oscillatory regime (see 
“Methods”) and chose the plane spanned by the first two principal components (this captures 80% of the variance 
for all noise-free RNN trajectories). Note that the projection plane was kept constant for the following analysis.

First, consider the RNN behavior for context cue values for which the system converges to a unique stable 
steady state. The top row of Fig. 5a shows the projection of three example trajectories (red curves) for three small 
values of the context cues (Icc = −0.5,−0.2 and 0.1). While it may appear that the example trajectories cross 
against the direction of the vector field (white arrows), it is important to remember that the vector field changes 
over the course of the trajectory; the shown vector field is computed at the final time point in the trajectory, after 
the system reaches its steady state (the complete dynamics over the course of the trajectory can be seen in Supp. 
Movie 2). From the shown vector field, we see evidence for three fixed points of the system (Fig. 5a top row, pink 
circle and triangles). As the context cue increases from − 0.5 to 0.0, the stable node (Fig. 5a top row pink circle) 
and saddle (Fig. 5a top row left pink triangle) come together and eventually coalesce at the onset of oscillations 
at Icc = 0.18 (not shown). Recall, we had predicted this behavior from our bifurcation analysis of the reduced 
model: a long-period oscillation appears as a (large amplitude) homoclinic orbit as the saddle-node bifurcation 
point is approached from negative to low values of context cue (Figs. 3g and 4b, red and black branches come 
together at the start of the green branch). The RNN dynamics transition from an excitable to oscillatory mode.

Fig. 4. Two variable reduced model. (a) Phase plane representation of the two-variable reduced model 
(obtained by assuming strong E-I balance: y = 1.1x) for Tap-E (x) and Int-I (z) variables. The limit cycle 
trajectory (grey; dots plotted for every 1 ms of trajectory) is a global attractor, Icc = 0.2; it crosses the x
-nullcline (red) vertically and the y-nullcline horizontally (green). The flow is counterclockwise (black arrow); 
peak of the Int-I inhibition occurs on the downstroke of the Tap-E excitation. (b) Bifurcation diagram of the 
two-variable reduction with context cue (Icc) as control parameter resembles that for three-variable model 
(Fig. 3e). The limit cycle attractor (green) transitions to a stable steady state (red) via homoclinic and Hopf 
bifurcations for IHC

cc = 0.07, IHB
cc = 2.16, respectively. Black lines indicate unstable fixed points. (c) Example 

time course of x and z variables for the same trajectory shown in (a)
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The second row of Fig. 5a shows example trajectories for larger values of context cue, Icc = 1.0, 1.5 and 2.0, 
projected into the same plane. The vector field for these projections is also computed once the system has reached 
steady state. An example trajectory (red) spirals towards the fixed point and as the context cue is increased, the 
fixed point becomes a stronger attractor and less spiraling is observed (Fig. 5a bottom row, compare panels from 
left to right). This behavior is indicative of a Hopf bifurcation in the RNN (at a context cue around Icc = 0.95) 
and corroborates its prediction from the reduced model (Figs. 3e and 4b, for Icc > IHB

cc ).

Fig. 5. RNN dynamics agree with reduced model predictions. (a) Two-dimensional projection of RNN 
dynamics for different values of context cue. In the top row, context cues Icc = −0.5,−0.2 and 0.1, there is 
a global stable steady state attractor on the left-hand side (dark purple region) and all trajectories end up 
there. In the bottom row, context cues Icc = 1.0, 1.5 and 2.0, the dynamics show a stable attractor again but 
now the trajectories spiral towards this fixed point. White arrows indicate the vector field in the projection 
plane; projected directions computed after the dynamics have evolved to be near steady state. Red curves 
indicate example trajectories. Color indicates speed with dark purple corresponding to slow speeds and bright 
yellow corresponding to fast speeds. Pink markers indicate fixed points deduced from flow maps with circles 
indicating stable fixed points and triangles indicating unstable fixed points. (b) Two-dimensional projection of 
RNN dynamics for Icc = 0.5 at three different time points during one cycle (period = 222 ms) of the oscillating 
trajectory. Colors are the same as in a. Pink circles and triangle indicate fixed points that are transient. Since 
the trajectory is oscillating, the vector field changes over time and the transient fixed points appear and 
disappear over the course of the oscillation. Inset shows averaged time courses for Tap-E (red), Tap-I (blue) 
and INT-I (green) sub-populations from the RNN with grey shading to indicate depicted time point relative to 
the time course.
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The behavior of the RNN in the oscillatory regime can be seen at three different snapshots in time in Fig. 5b. 
Note that the pink markers indicate “pseudo fixed points” of the system at the depicted point in time. These 
points are not fixed points of the system since they will disappear over the course of the oscillation. Pseudo 
fixed points are transient and not uncommon in dynamical systems where flows along manifolds are examined 
with some (slower) variables held constant. We show that the pseudo fixed points in these RNN projections and 
their ensuing effects on the dynamics may be associated with similar objects found in the three-variable reduced 
model (see Supplementary Information Sects. 3 and 4).

At the level of individual units, one signature of a homoclinic bifurcation is an elongation of near constant 
activity in the firing time course as the oscillation period increases. This happens because, after the saddle and 
attractor coalesce, the flow near to where the fixed points had been is slow. In other words, this “ghost” of the 
fixed points slows the oscillation. As the context cue increases, the ghost has less of an effect thereby reducing 
the window of slow speeds and thus decreasing the oscillation period. We see this elongation of the period of 
near constant activity with decreasing Icc prominently in the reduced model as well as the RNN (Fig. S6). Finally, 
another feature of the reduced model is that the oscillation amplitude (the distance between the green curves in 
Fig. 3e) decreases as the Hopf bifurcation is approached—this is confirmed in the RNN (Fig. S6).

Discussion
We developed a neurally plausible mechanism for the synchronization and continuation task that is controllable 
via the context cue to oscillate over a frequency range that matches the range of beat frequencies perceived by 
macaques and humans. By developing a reduced model, we were able to predict and confirm the dynamical 
features that gave rise to oscillations in the RNN. Based on our identification of three distinct neural populations 
in the RNN network that are necessary for oscillations, our reduced model is comprised of an excitatory and one 
group of inhibitory units that form a balanced sub-network with a second group of inhibitory units that create 
an elongated window of inhibition that allows the system to oscillate.

Our choice to include the context cue in the model formulation is meant to suggest that an animal performing 
the same task would develop a map from the stimulus inter-tone times to the produced rhythm. We do not 
describe the learning process for this map. Furthermore, our model is idealized to a functional brain region for 
the representation of the oscillation, such as the supplementary motor area or premotor cortex. We assume that 
the context cue is coming from another brain region that associates a tonic drive to the oscillator rhythm that 
matches the inter-stimuli tone interval. In other models37,39–41, a tonic input drive is a common controllability 
parameter. Finally, we found that introducing the context cue is necessary for the model to generalize between 
the trained stimulus frequencies.

The oscillation mechanism can be differentiated from previous models for rhythmic timing. Unlike entrained 
oscillator models5,42–45 where an endogenous brain rhythm entrains to the stimulus frequency, our model does 
not depend on sustained entrainment. Rather, the internally generated oscillation is tuned to the appropriate 
frequency through adjustment of the context cue. Unlike our model, entrainment alone is not be able to 
maintain the oscillation in the absence of a rhythmic stimulus (the continuation phase). The mechanism that 
we discovered through the RNN is more closely aligned to that of tunable oscillator models such as the Beat 
Generator Model33,46 or the SAM-MPM model39 where the oscillation frequency adapts to match that of the 
stimulus through learning rules. However, unlike the Beat Generator model which achieves slow oscillation by 
the incorporation of a slow variable, our model shows long period oscillations arising through a homoclinic 
bifurcation. Moreover, our model can be viewed as a novel network-based circuit model in contrast to a cellular 
oscillator model in the Beat Generator framework with the context cue (Icc) as the control parameter that sets 
the oscillation period. In the context of predictive coding theory for rhythmic timing47, our model can be viewed 
as the mechanism underlying the dynamic neural population trajectories in the medial premotor cortex that 
encode the distribution of timing of events in a rhythmic sequence. Finally, other models have addressed more 
complex rhythms48,49 but have done so at the cost of losing the ability to explain the neural dynamics observed on 
the short timescale as we have done here. Future work could apply the current framework to more complex tasks. 
Our RNN training paradigm utilized a sinusoidal output to align our model with dynamical features observed 
in the data such as circular trajectories, sequential firing patterns, and the ability of the model to generalize to 
untrained frequencies. Our investigation into other choices for the output found that non-sinusoidal, such as 
pulsatile-like, time courses replicated fewer of the observed features from the neural data.

With insights garnered from the RNN and reduced models, we suggest some experimental predictions that 
could help test our model. First, our models have two distinct sub-populations of inhibitory units: the Tap-I 
group that is highly synchronized to the Tap-E units and the Int-I group that shows sequential structure in the 
firing pattern. This architecture is consistent with previous experimental findings in other brain areas such as 
the visual cortex50 and auditory cortex51, where parvalbumin-expressing inhibitory interneurons pair up with 
co-tuned excitatory cells as well as with somatostatin interneurons. Oscillations are among the growing evidence 
for functional importance of such canonical circuitry52,53. A model of gamma oscillations in visual cortex is 
based on strong E-I balance based on parvalbumin-expressing inhibitory interneurons with somatostatin 
interneurons playing a critical role in producing the oscillations54—albeit this is for higher frequency oscillations 
than considered here. Taken together, these results suggest that the Tap-I units in our RNN might be mapped 
onto parvalbumin-expressing interneurons while Int-I units might be mapped onto somatostatin interneurons. 
We therefore suggest that somatostatin-like functional inhibition provides a mechanism for the elongated 
inhibition. Second, subject to neuronal subgroups being identifiable in experimental data, the firing rate 
time courses for this E-I pairing are expected to be highly synchronized. Third, the presence of a homoclinic 
bifurcation in our model suggests that as the oscillation period slows, there should be a sub-threshold plateau 
of near constant activity that immediately precedes firing during the “Tap” phase of activity. Another expected 
signature of homoclinic behavior is the lack of resonance in the autocorrelation of ITIs. In contrast, resonance 
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would be expected for the shorter period oscillations associated with a Hopf bifurcation mechanism55. Fourth, 
the formulation of the reduced model allowed us to disregard the inter-tap excitatory group suggesting that these 
cells could be silenced without destroying the network oscillation (albeit the overall frequency may change; Fig. 
S2). Interestingly, from the reduced model, we also found that we can silence the Int-I group and get oscillations 
along the firing rate balance manifold (Fig. S5).

In the three-variable reduced model, the variables x and y  are in strong balance as exemplified by the 
highly synchronized time courses of x and y (Fig. 2c). This balance is reminiscent of an inhibition-stabilized-
network balance operating in a regime where slow modulation of input leads to x and y both increasing or both 
decreasing in super-threshold activity ranges56,57. This behavior is unlike the noise-driven activity found near a 
subthreshold E-I balance state in the fluctuation-dominated regime described in spiking networks58.

The RNN shows sequential firing thereby achieving ITI timescales of hundreds of milliseconds despite the 
utilization of 10 ms time constants. In an effort to retain simplicity in our three-variable model, we chose the 
time constant, τz, of the Int-I group to be longer than that of Tap-E and Tap-I. We propose the interpretation 
that, functionally, sequential firing in the RNN (and in the neural data) serve to provide an extended duration 
of inhibition, acting effectively as if Int-I decays more slowly. Sequential activity has been found in many parts 
of the brain for a variety of different tasks (not restricted to timing) although the underlying mechanism for it 
has been shown to vary between regions. For instance, we found little evidence of strong chain-like connectivity 
suggesting that our sequential structure is unlike that seen in songbirds59 and is more related to sequences 
formed from parametric gradients of excitability as seen in the hippocampus60 and in the posterior parietal 
cortex61. During interval timing tasks, sequential firing activity has also been documented in the premotor cortex 
and the striatum62. Models have been used to replicate this finding38 where, unlike our model, the sequential 
activity arises from a structured difference between incoming excitation and inhibition into a unit. Interestingly, 
although more units are involved in slower frequency oscillations, we saw no increase in dimensionality (as 
measured by number of principal components need to explain the same level of variance) for longer sequences. 
In future work, it would be worthwhile to explore the effect of explicitly adding chain-like63 structures into 
the reduced model or to train a spiking network with spike-time-dependent plasticity with heterosynaptic 
competition on the synchronization and continuation task and to test if sequential activity emerges as suggested 
by previous computational studies64.

The ease of training RNNs and their success at replicating features of neural dynamics seen in experimental 
data has fueled interest in uncovering the mechanisms underlying the RNN solutions to tasks65–72. While we 
do not provide a one-size-fits-all approach to reducing a high dimensional network to an interpretable circuit, 
we do show how close inspection of the RNN unit activity can lead to the formulation of a circuit model with 
distinct neuron subpopulations. In doing so, we are better able to understand the functional mechanisms that 
underlie activity of the hidden layers of the RNN beyond those layers simply being a black box.

By training and then dissecting an E-I RNN, we have generated a novel, neurally plausible network model 
of rhythmic timing. Although previous work has described the occurrence of homoclinic bifurcations in rate 
models for neural networks73–76, finding such a dynamical feature in a timing task is new. Furthermore, our 
model and analysis not only offers interpretations of neural dynamics previously observed in experimental data 
but also posits functional significance for different interneuron subtypes.

Methods
RNN Formulation
The RNN consists of 500 firing rate units with distinct excitatory (80%) and inhibitory (20%) populations.

The dynamics of the RNN are described by the following equations:

 τx′ = −x +Wrecr +Win
cc Icc +Win

stimIstim + brec +
√

2τσ2
recζ  (5)

 o = Woutr + bout (6)

 r (x) = max (0, x) (7)

where x ∈ RN  is activity (analogous to a mean voltage77) of the N (= 500) RNN hidden units which are 
transformed into firing rates r via the ReLU non-linearity in Eq. (7). The recurrent weight matrix is given by 
Wrec, the vector brecdenotes the biases for each unit and ζ  denotes Gaussian white noise drawn independently 
for each unit. The input weight scalars are given by Win

cc ,W
in
stim ∈ RN . The two types of input: context cue and 

stimulus pulses are indicated by Icc and Istim, respectively. The time constant of τ = 10 ms was used for all units. 
The output (o) of the network is a linear combination of the firing rates with the weight matrix Wout ∈ RN  and 
a bias term bout. The RNN was trained with additive white noise for the stimulus input (σin = 0.01) and for each 
hidden unit (σrec = 0.01) . Self-connections were not permitted in the network to encourage sequential firing78. 
The quantities Win

cc ,W
in
stim,W

rec,Wout, brec, and bout are ‘learned’ during training of the RNN.

RNN training
The RNN was trained using continuous-time dynamics—Eqs. (5)–(7). Integration in time was by Euler’s method 
with a step size, dt, equal to 1 ms. The RNN was trained on the NYU computing cluster for 72 h and reached an 
RMSE = 0.13.

For each of the inputs (Icc, Istim) to the network, the Euler step increment at time t is modeled using:

 
∆I = max

(
0, dt Ik +

√
2ασ2

inN (0,1)
)
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where Ik = Icc or Ik = IStim, α = dt/τ  and σin = 0.01 corresponds to the standard deviation of the input noise.
The network was trained using the Pycog library79 using stochastic gradient descent algorithm with a learning 

rate of 0.01. We used the mean squared error cost function between the network output (o) and target function 
(ô):

 
RMSE =

√∑
(o (t)− ô (t))

2

Weights Wout,W in,Wbrec, brec, bout were all trained. Unless otherwise specified, all other training parameter are 
the defaults as given in Song et al.79.

Synchronization and continuation task
The RNN was trained with seven different pairs of inputs for T = 2s (frequencies = 2, 3, 4, 5, 6, 7, 8  Hz, 
equivalently periods = 500, 333.3, 250, 200, 166.6, 142.8, 125 ms). The inputs are of two types: Istim which was 
provided for 1 s, and Icc which was provided for 2 s and defined as follows:

 
IStim =

{
1 for Tonset + T tones ≤ t ≤ Tonset + T tones + 10ms and t ≤ Tonset + 1s

0 otherwise

}

where Ttones = [0, period, 2*period, … ]

 
Icc =

{ 100
period for t ≥ Tonset

0 otherwise

}

The output target was defined as

 
ô (t) =

{
cos

(
2πt

period

)
+1

2 for t ≥ Tonset

0 otherwise

}

Tonset was random on each trial and drawn from Uniform(0,100 ms).

Generalization performance
To test how the trained RNN generalizes to previously unseen frequency inputs, we gave the trained RNN 
context cue inputs in the range of 0.1 to 1.1 with a step size of 0.01. RNN inter-tap intervals were computed from 
50,000 ms of the continuation phase RNN output and each ITI was plotted in Fig. 1f.

Computation of RNN unit dynamics
Figure  1 panels c-e: Statistics of RNN trajectories are computed by first simulating the RNN with noise 
(σin = 0.01, σrec = 0.01) only during the continuation phase (i.e. the RNN was not provided with a stimulus 
pulse sequence) for 52,000 timesteps (dt = 1 ms) at each Icc. The first 2,000 timesteps are deleted to make sure 
that there are no transients and units are in their near-periodic activity patterns. Each 50,000 timestep time 
course is then divided into its inter-tap-intervals (ITIs) and statistics are computed over the corresponding set 
of ITI’s for each Icc.

Figure 2 panels a, c: RNN trajectories are simulated without noise (σin = 0.0, σrec = 0.0) only during the 
continuation phase. The first 2000 ms of a time course are dropped to make sure transients have passed and units 
are in their effectively periodic activity states. Each unit is normalized so that the firing activity falls between 0 
and 1. The normalized units are sorted by time of peak firing (when firing activity is at 1) during their first ITI 
after the 2000 ms of dropped time course (excitatory and inhibitory are sorted separately). Units that hit their 
max firing rate with a phase of within 0.2 of the model “tap” times are labeled ‘tap’ units and the remaining units 
are labeled inter-tap units.

Analysis of RNN dynamics
The projection plane for the analysis of RNN dynamics was kept constant for all panels in Fig. 5. This plane 
was selected by first simulating one hundred T = 500 ms noise-free trajectories of RNN units with context cues 
from the range of −1 to 0.2. Units were assigned to one of Tap-E, Tap-I or Int-I groups based on their firing 
phase during a noise-free simulation of a 5 Hz stimulus (Icc = 0.5) and group membership was fixed thereafter. 
On each simulated trajectory, the initial conditions for the hidden variables were selected so that the units that 
were grouped into Tap excitatory and Tap inhibitory units had the same value which was randomly chosen 
on each trial from the Uniform (0,1) distribution. All other units were individually randomly initialized in 
Uniform (−1,1). These trajectories were then concatenated together into a matrix of size T * 100 x N where T 
is the number of timesteps computed for each trajectory and N is the number of units in the RNN. Principal 
component analysis was performed on this matrix after it was normalized for each unit. The plane spanned by 
the first two principal components was selected for the projection. For noise-free trajectories, the top 2 principal 
components (PCs) accounted for 80% of the variance and the top 3 PCs accounted for 85% of the variance.

This choice of initial conditions for these trajectories was motivated by the observation that in the reduced 
model, several fixed points lie on the balance manifold (in the region where x and y nullclines are almost 
overlapping for x, y ≥ 0). Initializing trajectories at different points along this manifold meant that the resulting 
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trajectories should have their flows affected by these fixed points or the resulting strong vector field near to 
the balance manifold if the reduced model is a good proxy for the dynamics in the full RNN. PCA would then 
represent the directions in state-space that capture these dynamics as well. Indeed, we find that initializing points 
in the RNN near the predicted balance-manifold allowed PCA to find a plane capturing the predicted unstable 
fixed points. Initializing trajectories randomly in the full 500-dimensional space, in contrast, will capture the 
stable fixed point since all trajectories head toward the attractor but is unlikely to create trajectories that pass 
close enough to the balance manifold since the region of space that it influences is relatively small. In agreement 
with this, we found that initializing trajectories randomly (instead of around the balance manifold) and then 
performing PCA consistently only captured the stable fixed point but not the predicted unstable fixed points. 
Although we don’t know with certainty where the balance manifold lies in the full RNN, initializing all units that 
were grouped into either tap excitatory or tap inhibitory units to the same (random) value for each simulated 
trajectory worked well. It was important that we capture the plane with the fixed points on the balance manifold 
because, according to the reduced model, these fixed points are involved in the homoclinic bifurcation and we 
wanted to investigate if this was the case in the RNN as well.

Having defined the projection plane, the vector field was computed by first defining a vector, Iprojt , for 
each point in the projection plane to take the values in the plane for the first two components and filling the 
remaining components with their corresponding value at time t for a given example trajectory. This vector was 
then projected back to the full RNN state space, Iorigt , and simulated one step forward using the RNN to get, Iorigt+1
. Iorigt+1  was then projected back into the space defined by the principal components to get Iprojt+1  and the vector flow 
at point Iprojt  was given by the direction of Iprojt+1 − Iprojt . Speed is the L2norm of the RNN hidden unit activity, 
dxi/dt, computed similarly with dt=1 ms:

 
speed =

√√√√ 500∑
i=0

(dxi/dt)

2

.

Reduced model
The three- (Eqs. (1)–(4)) and two-variable reduced models were discretized for simulations using Euler’s method 
with a timestep of dt = 1 ms. Reducing the timestep to dt = 0.1 ms did not noticeably change the results.

Weights for the reduced model were taken to be the between sub-population averages from the RNN except 
for τz,Wzy,Wzz. As discussed in the Supplementary Information, the τz was increased to have oscillation 
periods in the reduced models more closely match up with the RNN. The exact value of τz does not affect the key 
findings as long as it is set to be in the oscillatory regime (Fig. S4b). The RNN averaged connectivity weights were 
adjusted for Wzy (from − 7.817 to -4.0) and Wzz (from − 2.599 to − 1.0) so that the model shows oscillations that 
have a frequence dependence on context cue. More specifically, the population averaged weights put the reduced 
model in the regime where the intersection of the nullclines occurred in the linear region of all of the nullclines. 
When this happens, there is no frequency dependence or change of steady state stability on the context cue 
because a small shift of the nullclines (due to changes in context cue) does not result in a change in slope of the 
nullclines at the point of intersection. However, if the nullclines intersect in the non-linear section, then small 
shifts of the nullclines (from changes in the context cue) do result in slope changes at the point of intersection 
of the nullclines and correspondingly, this results in changes in the oscillation frequency or change of steady 
state stability of the system. The two hand-tuned weights (Wzy and Wzz) were adjusted based on this principle to 
make the corresponding nullclines intersect in the non-linear region of the nullclines.

Bifurcation analysis
All bifurcation analysis was done using XPPAUT80 and the resulting data was imported into python to create 
the figures.

Data availability
The datasets used and/or analyzed, as well as computer codes used for simulations, during the current study are 
available from the corresponding author on reasonable request.
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