Math 481 Mideterm 1

Spring 2019

Prof. Bose

1. Prove the Principle of Nested Sets: If S_{1}, S_{2}, \ldots are closed nonempty subsets of R^{n} such that $S_{1} \supset S_{2} \supset \ldots \supset S_{r} \supset \ldots$ and $\lim _{r \rightarrow \infty} d\left(S_{r}\right)=0$, then the intersection

$$
I=\cap_{r=1}^{\infty} S_{r}
$$

contains exactly one point.
2. Suppose $f: R^{n} \rightarrow R$. Define what it means for f to be differentiable at a point $\mathbf{X}_{\mathbf{0}}$.
3. Suppose $f: R^{n} \rightarrow R$ and that $f, f_{x} . f_{y}$ and $f_{x y}$ exist on a neighborhood N of $\left(x_{0}, y_{0}\right)$, and $f_{x y}$ is continuous at that point. If $A(h, k)=f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}+h, y_{0}\right)-$ $f\left(x_{0}, y_{0}+k\right)+f\left(x_{0}, y_{0}\right)$ where h, k are sufficiently small (be specific in your answer), show that $A(h, k)=f_{x y}(\hat{x}, \hat{y}) h k$ for a point (\hat{x}, \hat{y}) (again be specific where this point is located).
4. If $T: R^{n} \rightarrow R^{m}$, define what it means for T to be an affine transformation. Explain why a transformation $F: R^{n} \rightarrow R^{m}$ that is differentiable at $\mathbf{X}_{\mathbf{0}}$ can be approximated by an affine transformation in a neighborhood of $\mathbf{X}_{\mathbf{0}}$.
5. Find the largest subset of R^{2} on which

$$
f(x, y)=\frac{x^{2}+y^{2}}{x-y}
$$

is continuously differentiable. Justify your answer by quoting the appropriate theorem.
6. Prove that if $h(u, v)=f\left(u^{2}+v^{2}\right)$ then $v h_{u}=u h_{v}$.
7. Use the chain rule to find $H^{\prime}(U)$ where $H(U)=F(G(U))$ where

$$
F(x, y)=\left[\begin{array}{c}
x^{2}-y^{2} \\
\frac{y}{x}
\end{array}\right], \quad G(u, v)=\left[\begin{array}{c}
v \cos u \\
v \sin u
\end{array}\right]
$$

