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First Draft Research Paper

Abstract:

Bursting oscillations are prevalent in the Nervous System. Phase Response Curves (PRCs) 
are studied and utilized to explain the oscillatory behavior of neurons involved in the Nervous 
System of complicated organisms found in nature. We study the oscillatory bursting behavior of 
the Cancer borealis and exploit the properties of a square bursting model to describe the 
phenomena of periodic bursting. We break up the bursting dynamics within a period and 
analyze them separately and independently to predict the next burst. Standard spike analysis 
and PRCs are used to construct the full PRC of the bursting oscillation. We derive conditions for 
which addition, subtraction, and truncation regularly occur, and modify our method for these 
special cases. The method described in this paper is beneficial because it utilizes the 
construction of standard spike PRCs to develop more complicated bursting oscillatory PRCs.

Introduction:

Oscillators and periodic behavior are frequently found in nature. Neurons are known to 

exhibit a variety of oscillatory dynamics. Our studies involve the rhythmic motor patterns in the 

crustacean Stomatogastric Nervous System (STNS). Periodic bursting was found in the AB - PD 

coupled neuronal oscillator of the Cancer borealis. This coupled neuron is the pacemaker of the 

pyloric rhythm recorded from the Stomatogastric Ganglion (STG), located in the STNS of the 

Cancer borealis. The STG consists of an intricate network of neurons responsible for the sorting 

of food particles before they are further digested. Data is collected from recording the PD 

neuron in the STG using standard laboratory procedures of dissection and electro-physiological

recordings.
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Bursting oscillations are characterized by an active phase of condensed spikes, and a 

silent phase of steady resting behavior as shown in figure 1. These bursts occur with a constant 

period which makes it convenient to study the periodic behavior using Phase Plane Theory and 

the Phase Response Curve (PRC). The PRC is a plot displaying phase shifts of period due to a 

singular perturbatory stimulus along the period. With the knowledge of the PRC we can predict 

future states of the oscillation given certain input stimulus along its period. This can be 

accommodating when describing more complicated neuronal networks and coupled neurons, 

where there are multiple stimuli from linked neurons.
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Fig. 1. Voltage trace of a bursting period is shown of the model (above) and the PD recording 

(right). The active phase composed of rapid, condensed spikes. The silent phase consists of 

steady, resting behavior.
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Mathematical models are often used in understanding bursting oscillations. We used a 

square bursting oscillator with similar properties to the PD neuron. This is a modified Morris –

Lecar Model associated to a slow variable calcium current. This model is governed by a set of 

differential equations with a stable periodic solution. This is a crucial element that exists in both 

the model and the neuron, which guarantees that a solution will always tend to this periodic 

solution. In this paper we will discuss some of the dynamic properties found in periodic bursting 



P a g e | 3

from studying the PRC of recordings taken from the PD neuron of the Cancer borealis and the 

model described with similar relevant properties. 

The goal and objective of our research is to develop a simple method of constructing the 

PRC of a bursting oscillator. A bursting oscillation is complicated to analyze and involves many 

anomalies. The spiking PRC is relatively standard and simple to create and interpret. We take a 

spike – to – spike approach to the burst and construct coherent PRCs. We consider the PRC over

sections of the period in an attempt to describe the full PRC. We break up the period into the 

active phase or fast dynamics and silent phase or slow dynamics, and then try to understand 

them independently. We can then patch them together to understand the full dynamics.

Another phenomenon we discovered was the addition and subtraction of spikes within the 

burst. Under certain conditions on the parameters of the model we see an extra or the loss of a 

spike. With further investigations we try to generalize these conditions. Concepts of the adjoint

theory, the infinitesimal PRC, are utilized. We apply basic phase plane analysis and geometric 

aspects to Ermentrout’s Chapter 7 Neural Oscillators 1 Weak Coupling [1] model in examining 

the spikes within the burst. For these special circumstances we modify our method of 

constructing the full PRC to incorporate the extra or missing spike.

This paper contains a brief description of the Cancer borealis and the PD neuron, and 

includes an explanation of relevant procedures used in the laboratory. We show methods of 

construction for our different PRC plots. There is a brief discussion of the model and the phase 

plane analysis. The concept and method used in developing the full PRC using the analysis of 

the pieces is introduced and fully explained. Then evidence of spike addition and subtraction is 

shown and general conditions are derived. Modifications to our method are shown to 

incorporate the addition and subtraction of spikes within the burst. We then relate this and 

earlier results to describe the full PRC and its properties.
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Methods:

Biological Aspect and Laboratory Procedures: The stomatogastric ganglion (STG) consists of a 

network of neurons which control the muscles of the stomach. We focus on the pyloric rhythm, 

one of the rhythms produced by the STG. The pyloric rhythm is a three part cycle consisting of a 

large sized burst of impulses from the LP neuron, followed by a small burst of impulses from the 

PY neuron, and end in a medium burst of impulses from the PD neuron. This recording is usually 

taken from the lvn of the nerve. After we extract the STG from the Cancer borealis and keep it

in a Petri dish under physiological saline of low temperature and certain pH (It should look like 

Figure 2), we isolate the lvn with a vaseline well. A potential difference is created between the 

neighborhood surroundings of the lvn inside the well and the outside of the well. An electrode 

is placed inside the well and the voltage difference is recorded. The recording obtained by the 

procedures above is called an extra – cellular recording. The stn is the section of the ganglion

where the pyloric neurons can be found. To get an intra – cellular recording of individual 

neurons we must desheath the stn. All neurons are then exposed and we are free to take 

readings by positioning an electrode proximate to the neuron. To identify the PD neuron we fit 

the bursting intra – cellular recording to the PD complex of the extra – cellular pyloric rhythm. 

This will reveal the PD neuron because it is easy to identify the PD impulse from the pyloric 

rhythm; the simultaneous intracellular burst is the PD nerve (Figure 3). We isolated the PD 

neuron to prevent interference and input stimuli from synaptic neurons by adding 

pharmaceutical agents such as Tetrodotoxin (TTX) or Picrotoxin. Another more time consuming 

method is to find the LP neuron (which is the only synaptic linked neuron) and hyperpolarize it 

to suppress it from spiking. These procedures allowed the PD neuron to oscillate with minimal

natural external inputs.
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Fig. 2. Architecture of the Stomatogastric Ganglion (STG) [2]

Fig. 3. The intra – cellular PD burst is shown above and it occurs simultaneously with the medium sized PD impulse from the 
pyloric rhythm on the bottom. The pyloric rhythm consist of the LP (large impulse), PY (small impulse), and PD (medium 

impulse) tri – phasic rhythm. These recordings are time scaled.
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Mathematical Concepts and General Definition of PRC:  The PRC is a plot of the period shift
due to a perturbation. If we normalize by the period we can describe points along a period by 
its phase. Given perturbations along the phases of the period we can record the time shift of 
the next burst. Let’s call Po the period of the unperturbed oscillator, this will include the time 
duration between the start of a spike to the start of the next spike. The perturbation or 
stimulus input is measured from the start of the spike (Pp) and is normalized to represent the 
phase of perturbation, Pp/Po. The new period after an input stimulus P’ is measured, in the 
same way, from the start of the spike (These definitions are portrayed in Figure 4a). Using these 
definitions we can call the period shift or difference ∆P = Po – P’. We normalize this for our plot 
of the PRC (∆P/Po vs. Pp/Po). By definition of period shift we can see immediate qualitative 
information. If ∆P is positive we have an advance in period due to the perturbation. Likewise if 
∆P is negative we see a delay in period. In short if ∆P > 0 we should see an advance in period of 
the next spike, where as if ∆P < 0 there would be a delay in the period. The qualitative 
information held in the plot of a PRC describes approximate cycle delay or advance due to the 
perturbation applied. This can be applied to a bursting oscillator measuring a period from the 
start of a burst to the start of the next burst as shown in figure 4b. These general definitions 
and methods were applied in the construction of PRCs for the biological recordings of the 
Cancer borealis and the Modified Morris – Lecar Model.
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Fig. 4a. Voltage trace illustrating characteristics used in defining the spike PRC
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Fig. 4b. Voltage trace illustrating characteristics used in defining the burst PRC 
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Software and PRC of Biological Recordings:  Phase Response, a lab software created by Farzan 

Nadim, was used to calculate the PRC of the Cancer borealis. This software records the period 

of a selected cycle, and normalizes it to calculate the phase of points along the cycle. It then 

injects a given amplitude of current to the next cycle at a given phase calculated from the 

previous cycle. We defined the phase from 0 (the beginning of the burst) to 1 (the beginning of 

the next burst) and injected current at 0.1 intervals. We waited a minimum of 4 to 5 cycles in 

between inputs to give the oscillator time to return to steady state, and stabilize its period. The 

signals were recorded, saved, and later analyzed for the construction of the PRC. The signals 

were analyzed using Clampex, a widely-used data acquisition and analysis program for the 

control and recording of current-clamp experiments developed by Axon CNS Molecular Devices

[3]. The PRC constructed here uses the same definitions given above. An obstacle we came 

across was the variability of the biological oscillator. Due to external conditions such as 

temperature of saline or other external frequencies the period was dynamic. To account for this 

we repeated the procedures several times and averaged them. 

Model:  The model we adopted, as mentioned earlier, is a modified Morris – Lecar [Appendix]

with a slow variable calcium current. The 3 dimensional square burster model is comprised of 

the following ordinary differential equations as described in Lee & Terman’s Uniqueness and 

Stability of Periodic Bursting Solutions [4]:
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Depicted above are the general equations of the 3D Morris – Lecar where v represent 
voltage potential, w represents the behavior of gated channels within the cell, and Ca
represents the intracellular calcium. C is the capacitance, and Σ I represents the sum of current.
ms(t-τ) represents the stimulus properties of the model, where m is the amplitude, s is 
composed of the product of two heavy side step functions giving impulse like behavior, and t-τ
gives the duration of the perturbation. Notice the ε in the calcium differential equation, this is 
the “slow variable” of the calcium dynamics [ε ∈ (0,1)]. Figure 5 depicts a geometric model for bursting dynamics. The S shaped curve represents the set of fixed points. The lower branch consists of stable fixed points, and the middle branch of saddle points. The cylindrical surface of the upper branch represents the limit cycle behavior of periodic solutions. This is the essence of the burst. When a trajectory passes near the lower branch of stable fixed points it is attracted to a neighborhood moving to the right. This represents the silent or resting phase. The slow dynamics push the trajectory to the periodic branch at the right most point of the S shaped curve. The trajectory now passes near and around the periodic branch representing the rapid spike of the burst. This is the active phase. The trajectory must now pass through the homoclinic orbit to fall back to the silent phase. This represents one cycle of the bursting solution. A more formal and extensive description isgiven in David Terman’s An Introduction to Dynamical Systems and Neuronal Dynamics[5]. 

Fig. 5. Geometric model for bursting dynamics. A trajectory flowing 
near the upper branch (P) represents the active phase or bursting of 
the model. A trajectory passing near the lower branch represents the 
silent phase.
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Results and Dicussion:

PRC Piece By Piece: It is generally simpler to construct the PRC of a spike oscillation than it is 

for periodic bursting. We break our bursting oscillation into pieces to ease the effort of 

constructing the PRC of the full bursting oscillation. We use a spike analysis to describe the 

active phase. In figure 6 you will find how the period of a full burst is dissected. The period 

between spikes are labeled Pn where n=1, 2, 3. The period of the silent phase is Psilent. The 

period of the full burst is Pfull and is obviously the sum of the periods that make it up: 

1 2 3full silentP P P P P                                           (2)  

A Few Necessary Assumptions: It is reasonable to assume that the corresponding unperturbed

periods are roughly constant through phase plane theory and concepts of limit cycles. One 

assumption that has to be made is that perturbations applied to the oscillator during a certain 

period duration will only cause a shift in the following spike without drastically affecting the 

oscillation as a whole. Given a perturbation we will have a change in the period of the full burst, 

P’full. This is composed of the sum of the other periods but we will need to account for the 

change in period depending on location of perturbation. For example a perturbation in P1

causes an advance or delay in the second spike and the other spikes shift accordingly without a 

change in their periods. Therefore a perturbation in P1 causes a shift in the second spike 

changing the period to P’1 and the period of the entire burst to P’full. Here we will have P’full = P’1

+ P2 + P3 + Psilent. An advance or delay in the second spike has caused a change in the 

corresponding period, P1, and the period of the full burst Pfull; the other periods (P2, P3, Psilent) 

remain the same but shift correspondingly. This is shown in figure 7 where ∆t is the same for 

each shift.

Another assumption we make is that our perturbations do not cause an addition or 
subtraction of a spike; the number of spikes are constant. For perturbations that cause addition 
or subtraction of spikes complications are aroused that must be accounted for. This 
phenomenon of addition or subtraction of spikes will be addressed later. Intuitive conditions 
for which addition and subtraction will be derived and certain adjustments to the method will 
be made accordingly.
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Fig. 6. Voltage trace illustrating the method of breaking up the full period of a burst. P
1

corresponds to the period between spikes 1 and 2. P
2
 and P

3
 are defined in the same way 

respectively. Psilent is the period of the silent phase. These periods sumed together are Pfull, the 

period of the full burst.
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Fig. 7. A perturbation in between spike 1 and 2 causes a delay in the second spike by T, but 

leaves the other spikes unaffected. They shift accordingly, this is shown where T is the same. By 

comparison we can tell that P2 and P3 are unaffected.
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As a reminder, the goal here is to predict the next burst just by the knowledge of the 

occurrences of the smaller piece. So far we have discussed the unperturbed periods P1, P2, P3, 

Psilent, and Pfull. These are easily attainable. With a perturbation we have P’full, a shift in the full

period. The location of the perturbation is also necessary and we have a corresponding shift P’i, 

where i = 1, 2, 3, or silent depending on the location of the perturbation. We can calculate the 

PRCs of the broken periods easily since it is a spike PRC. These values are shown by φi(θ), the 
phase response as a function of the input phase and defined as:

'

( ) i i
i

i

P P

P
  


1,2,3,i silent                ( 3)

Knowing the corresponding PRCs we can obtain the shift of the pertaining period, P’i . With 
simple algebra we find:

' (1 ( ))i i iP P                                             (4)
This allows us to get the shift in the next burst P’full :

' ' (1 ( ))full n i n i i
n n

P P P P P               (5)
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Here i symbolizes the period which was perturbed and n symbolizes the 
unperturbed periods. Notice P’full, “the unknown”, is solved for “the knowns;” the smaller 
periods it is composed of Pn and Pi, and the PRC of the perturbed period φi(θ).

A More General Approach: We can solve for the PRC of the bursting oscillator in a general 

manner using a similar approach. All definitions and assumptions made above apply in this 

approach as well. We use a backwards approach to solve for the PRC of the bursting oscillator. 

Let us start with the definition of the PRC and assume the perturbation was applied between 

the first two spikes advancing or delaying P1 to P’1.

'

( ) full full
full

full

P P

P
 




                                          (6)

Where 1 2 3full silentP P P P P   

And
' '

1 2 3full silentP P P P P   

We can apply the definition to these and we are left with:

'
1 1( )full

full

P P

P
  



We can manipulate φfull(θ) by dividing the top and bottom by 
1

1

P
. Let 1

1

fullP
P

P



 for 

convenience. 
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1

1

( )
( )full

P

   

We get an equation for the bursting oscillator’s PRC in terms of the PRC of the first two 

spikes. Similarly we can derive an equation for a perturbation between the second and third 

spikes, third and fourth spikes, and in the silent phase. We will have the following respectively:

2

2

( )
( )full

P

   
,

3

3

( )
( )full

P

   
,

( )
( ) silent

full

silentP

   

This is easily generalized where the PRC of the full bursting oscillator is proportional to the PRC 

of the sectional period the perturbation is applied divided by
full

i
P

P
Pi



 :

( )
( ) i

full

iP

   
        (7)

Where i (1, 2, 3, silent) represents 
the location of the perturbation
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Sufficient Conditions of Spike Addition and Spike Deletion: There are rarities when an 

additional spike appears in the burst or there is the loss of a spike. Complications occur with 

addition and subtraction of spikes, obviously amendments must be made in these cases. To 

consider this problem the conditions of their occurrence should be known. Under the 

conditions derived, our methods of construction will be modified to incorporate the extra or 

loss of spikes.

The trajectory depicted in figure 5 is a solution to the equations (1). We can call this 

trajectory  and is a stable manifold. We adopt the standard definition for the phase map 
1: M S  where S1 is the unit circle and  defines the phase or asymptotic phase of a point 

in M depending on whether the point is on  or in an appropriately defined neighborhood 

of .  The unit circle S1 is depicted in figure 8, and points along S1 represent phase of a point 

along the stable manifold . We depict 0  as the phase at which our burst begins and 

eb  is the phase at which the burst ends. The spikes within our burst occur at phases 

between 0  and eb  .

Fig. 8. We show the unit circle S1 that we have 

mapped our solution onto.  = 0 is where we 

define our burst to begin and  = eb is where
we define our burst to end. In our model we 
have four spikes which we can show with points 
along S1.
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             We adopt the phase equation as Ermentrout [ref]: 1 ( ) ( )pZ I    . Here 

 represents the flow of phase and ( )Z  is the adjoint or infinitesimal PRC and ( )pI  is the 

perturbatory input. Notice with no input ( )pI  is 0 and our equation describes a unit circle. Let 

p be the phase of perturbation and f be the phase point after perturbation and [0, ]p eb  , 

eb being the phase at the end of a burst without any perturbation. If we are going to have spike 

addition, it is necessary that 0  so that the phase point traces out old values again and allows 

the possibility of tracing the older spikes again. To rule out the possibility of spike addition we 

could require that 0  for [0, ]eb . This requirement implies that ( ) ( ) 1pZ I    . If we 

assume that the adjoint is strictly positive in some relevant region, we see that positive input or 

excitatory perturbations cannot cause spike addition since they satisfy the restriction. Notice 

that only negative input or inhibitory perturbations with strong values violate this restriction 

and cause spike addition; whereas small magnitude inhibitory input cannot cause spike 

addition. These conditions were reflected in our model.

To show conditions for the inputs which cause spike deletion we continue with our 

analysis. Let 0 p f eb     and define maxISI

T
  , where maxISI is the maximum interval 

between two spikes within the burst. Define T as the period of the entire oscillation. To 

guarantee spike deletion we require that
p

p

T

T

dt
 


 



  , where  is the duration of the 

perturbation. This is the same as saying f p    , or that the phase point has been taken to a 

phase point that is at least equal to the maximum “phase length.” We make substitutions and 

manipulate the interval to get: 

(1 ( ) ( )) ( ( ) ( ))p p

p p

p p

T T

T T

Z I dt Z I dt
   

 
      

 

      (8)
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Multiplying both sides by 1  and using the average value theorem of calculus we 

obtain:

pI Z
 



                 (9)

Here we have given a constant measureable value to the average product of pI and Z . 

The perturbation is usually a predetermined constant applied square pulse; this allows us to 

rearrange the equation like so:

pI
Z

 




  (10)

We now have sufficient conditions on our perturbation or input current which cause 

spike deletion for when the perturbation duration,  , is arbitrarily small. With a few 

modifications to our derivation we can derive similar conditions on the input current for spike 

addition. These conditions do not define all occurrences of spike addition and deletion; this is 

just an intuitive mechanism where spike addition and deletion can be seen. 

Modifications Incorporating Addition and Subtraction: Now that we have an idea of when 

addition and subtraction occurs we can describe the changes that must be made to use our 

method of predicting the next burst. We can demonstrate this modification for addition with 

the following:

' '
full n i a

n

P P P P   (11)
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This is a simple to concept where n
n

P represents the sum of the inter-spike periods 

which do not contain a perturbation; '
iP represents the inter-spike period with a perturbation; 

aP is the new period due to a spike addition. The period due to an added spike is not always 

known, so a naïve but sufficient approach for spike addition is to measure the period created 

due to an addition and substitute this value for aP . You can then continue the analysis as usual, 

and calculate P’full. From this value, φfull(ߠ) is calculated through simple algebra for the given 

input.

This can be a bit tricky for spike deletion because we don’t know which spike has been 

deleted. Since our model only deals with four spikes, this can be managed easily by case. We 

will describe case 1 if a perturbation is applied in P1 and a spike is deleted afterwards, equation 

(5) can be modified as follows:

1' 'full d silentP P P P  

The second case will occur if we perturb in P2 causing spike deletion will result in only one 

remaining spike, (leaving P1 and P’2). We can use the above equation where Pd = P’2. The third 

case is a perturbation applied in P3 this can only cause burst truncation in which the burst ends 

abruptly. In a case of truncation we should measure the changed Psilent, and take the sum of the 

inter-spike periods to get P’full.

In the cases of spike addition and deletion we obtain the phase response using the 

definition of a PRC, equation (6), with the value of P’full calculated.
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Concluding Remarks:

There are limitations to the technique described above. This approach is a good 

approximation for first order PRCs. First order oscillations are described as a perturbation 

where the trajectory comes back to steady state or before the trajectory reaches zero-phase

(usually marks the start of a spike). Whereas a higher order perturbation occurs when the 

trajectory passes zero-phase before it comes back to steady state. These are depicted in a two 

dimensional model where the solution is represented by a stable limit – cycle.

Fig. 9. The right picture shows a first order PRC where the trajectory returns to 
the limit-cycle before zero-phase. The left is a higher order PRC where the 
trajectory returns to limit-cycle after zero-phase.
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We can improve upon the approach described by taking into account the changes on 

the other inter-spike periods due to earlier perturbations. We assumed the only period affected 

is the perturbation containing period. If we can come up with a way to consider the affects of 

perturbation due to all inter-spike periods following a perturbation, we can construct the full 

PRC more accurately and realistic. A way to do this is to fit a well defined function onto the 

PRCs of the inter-spike periods. I can apply this function to the second and third inter-spike 

periods taking into account the shift of the previous periods. This will give the new periods after 

a perturbation, and the sum of these gives a more accurate and realistic full period shift. This 

will result in a better approximation for the full PRC. This requires further research.

We have shown the construction of the full PRC described by breaking the period into 

parts and using spike PRCs is a beneficial technique because of the simplicity in calculate spike 

PRCs. The construction of spike PRCs are standard as opposed to the complexity of a burst PRC. 

It is also helpful when applying oscillatory perturbations within the period where there is a 

single perturbation in the inter-spike periods. This can be found in a neural network such as the 

stg when the active phases of two bursting oscillations are not in phase. Here the spikes of the 

active phases act as perturbations acting upon the others period so long as there is one 

perturbation in each inter-spike period. Our model gives a first ordered PRC approximation to 

any perturbed oscillation with a restriction upon the number of perturbations between each 

spike.
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Appendix

Model Code used on XPP:

dv/dt = ( I - ICa-(gk*w+gkca*z)*(V-VK)-gl*(V-Vl)+m*(s(t-tau)))/c
dw/dt = phi*(winf(V)-w)/tauw(V)
dca/dt=pert*eps*(-mu*Ica-ca)
tau'=0
Ica=gca*minf(V)*(V-Vca)
z=Ca/(Ca+Ca0)
v(0)=-18.7
w(0)=.071
ca(0)=10.39
minf(v)=.5*(1+tanh((v-v1)/v2))
winf(v)=.5*(1+tanh((v-v3)/v4))
tauw(v)=1/cosh((v-v3)/(2*v4))
s(t)=heav(t)*heav(sigma-t)
param vk=-84,vl=-60,vca=120
param i=45,gk=8,gl=2,c=20
param v1=-1.2,v2=18,pert=1
param m=0,sigma=50 t0=931
#param_fig1-3 v3=2,v4=30,phi=.04,gca=4.4
param v3=12,v4=17.4,phi=.06666667,gca=4
param v3=12,v4=17.4,phi=.23,gca=4
param mu=.2,ca0=10,eps=0.005,gkca=.25
aux zbar=z
aux icaa=ica
aux vprime=( I - ICa-(gk*w+gkca*z)*(V-VK)-gl*(V-Vl)+m*(s(t-tau)))/c
aux prc=1-t/t0
aux phase=tau/t0
aux amp=m
@ xp=zbar,yp=v,xlo=0,xhi=1,ylo=-75,yhi=20,total=2000,dt=1,meth=gear,toler=1e-5
@ dtmax=5,dtmin=1e-10,bound=1000
@ back=white
Done
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