Notes for Math 611 Numerical Methods for
Computation — Fall 2002

Bruce Bukiet*

Introduction

Purpose: Approximating solutions efficiently for scientific and mathematical problems.
Numerical methods are especially useful when problems cannot be solved analytically or
if the analytical solution is not meaningful.

The Basics

e students must have a solid understanding of single-variable calculus (Calc I and 2)
e students should know some partial differentiation

e students must be know how to program in a programming language

e students should have a basic knowledge of linear algebra and ordinary differential

equations

What you’ll learn: I hope

e where approximation methods come from
e why they work and why they sometimes don’t work

e when to use a particular method and why

*Department of Mathematics, Department of Biomedical Engineering, Center for Applied Mathemat-
ics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102

e how to check your work: for example, for the trapezoidal method for numerical
integration, the error should decrease by a factor of 4 when the grid spacing halves.
If it does not decrease by a factor of 4, you have an error in the code or the integrand
is not sufficiently smooth.

You have to understand what you are approximating well enough to construct a
reasonable approximation. It is important to learn the underlying concepts. However,
numerical methods is also experimental. You can learn alot from trying a computation
out and seeing how it goes.

Some examples of usefulness of numerical methods
Finance

e compound growth and investments (ODE)

e mortgages and annuity issues (root finding)

e options pricing (PDE)

e minimizing costs (Optimization)
Engineering

e Multiple mass springs (ODE)

e Heat transfer (BVP - PDE, Interpolation)

e Chemical concentrations and masses (Integration)

Numerical methods often involve taking a continuous problem and making it discrete;
e.g. root finding: sequence of iterates
e.g. ODE: discretize and iterate
e.g. PDE: linear algebra and solving linear equations

Algorithm: systematic procedure for solving a problem.

For each method, we might discuss:
e what is it used for
e what is the basis of the method
e how efficient is it / storage requirements / computational time
e under what conditions does the method apply
e when might the method fail to converge, or give incorrect results

e what does the error look like, can we bound it — how fast is convergence

Don’t just trust any answer a computer spits out. Think about whether the answer
makes sense. Understand the problem (and its likely solutions) as well as possible before
using the computer. Think of simple examples you can test the method with.

To develop a numerical method means, in most cases, that one applies a small number
of general and simple ideas. One combines these ideas in a simple way with one another
and uses information from the mathematics or the physics of the problem.

Advantages of numerical methods:

e Numerical answers can often be obtained when no analytical solution exists.

e.g. length of sinz is [V1 + cos? zdx

e Sometimes analytical solutions can be difficult to understand (messy formulas) —
numerical results might be easier to understand.

Disadvantages of numerical methods:

e Solution is approximate but can be made as accurate as desired

e Numerical methods must use specific input. We cannot get solutions with pa-
rameters in them from a numerical computation, so numerical results may not be
as general as analytical solutions. It often can be easier to analyze behavior and
properties if you have an analytical solution.

Some topics we’ll cover include:

e Solving for the roots of nonlinear equations

Solving systems of Linear Equations

Interpolation and Approximation of functions

Approximating derivatives and Integrals

Solving Ordinary Differential Equations

As with many math problems in the real world, we must turn the problem into one
or more equations to solve or functions to minimize or maximize.

Example: Two intersecting mine shafts meet at an angle of 123°. The straight shaft is 7
ft wide and the entrance shaft is 9 ft wide. What is the longest ladder that can negotiate
the turn at the intersection of the 2 shafts?

3

Calculus Review

e Convergence of a sequence of real numbers: lim,, ,,x, = = if for all real € > 0,
there exists (3) a real N s.t. |z — z,| < ¢ whenever n > N

example: 1, 3/2, 7/4, 15/8, 31/16,... — 2.
e (™ function has Oth and first n derivatives continuous.

e Intermediate Value Theorem: If f € Cla,b] and K is any number between f(a)
and f(b), 3 a number ¢ € (a,b), s.t. f(c¢) = K.

%{:?0) when it exists. Derivative = slope.

e Derivative: f'(zg) = limgy_yq,
o Differentiability implies continuity.

e Extreme Value Theorem: If f € C'[a,b], then the maximum and minimum are
attained either at the endpoints or where f' = 0.

e Taylor Series: If f € C™(a,b) and f™' exists on [a, b] then
f@) = 10) + @=0f(0) + @—0PfQ) + o + @=0"1"(0) + Ra(a)

where ¢ € [a, b] and

_ e (@ — o

Bn(2) (n+1)!

e Taylor Series for functions of two variables:

fl@y) = [fla,b)+ (z —a)fe(a,b) + (y —) fy(a,b)
1
+ (=) fu(a,0) + 2z —) (y = B) fay (@, 0) + (y = 0)* fyy (@, 0)) + -
Example: Work out the Taylor series for f(z) = e®. Error term is (nil)!x"“ef. Find

n such that we are guaranteed that our approximation is within 107% of the exact value
for -1 <z <1.

The more terms we take in the Taylor series, the better the approximation ought to be.
The error is smallest near the point around which we expand the series and usually grows
as we go further away. (See Figs. 1.1 and 1.2, pp. 5-6 Epperson)

e Rolle’s Theorem: If f € C'[a,b] and if f(a) = f(b) = 0, then 3 a number ¢ € [a, b]
s.t. f'(e) = 0.

e Mean Value Theorem (MVT): If f € C'[a,b], then 3 a number ¢ € (a,b) s.t.
F(e) = LO-1@

b—a
e Generalized Rolle’s Theorem: Let f € C™(a,b). If f vanishes at the n+ 1 distinct
numbers zg, Z1, ..., in [a,b] then 3 a number ¢ € (a,b) s.t. f™(c) = 0.

e Mean Value Theorem for Integrals: If f is continuous and integrable on [a, b] then
3 a number ¢ € (a,b) s.t. [0 f(z)dz = f(c)(b—a).

e Weighted Mean Value Theorem for Integrals: If f is continuous on [a,b] and g is
integrable on [a, b] and g does not change sign on [a, b], then 3 a number ¢ € (a,b)
sit. [0 f(z)g(x)dx = f(c) [P g(x)dx. If g(z) = 1, this reduces to the Mean Value
Theorem for Integrals.

e Discrete Average Theorem: If f is continuous on [a, b], then f(n) = Y p_; arf ()
where all the ay > 0 and >-}_, a, = 1 for some value of n € [a, b].

The MVT allows us to replace function differences with simpler differences. For example,
| cos(x1) — cos(za)| < |1 — 2]

Errors and Some basics

Errors:

Errors can arise in a number of ways when solving problems numerically.

e Truncation error: errors caused by the method itself e.g. €® ~ 1+ z +2?/2+ 2%/6
but terms are left out.

e Round-off error: computers don’t maintain an infinite number of digits. L.e., com-
puters use floating point arithmetic

Example: Find the roots of 22 + 62.1z + 1 = 0.

The correct values are -0.01611 and -62.084.

Using the quadratic formula with 4 digits (chopped) gives -0.02 and -62.05.
The error is caused by subtractive cancellation.

Another example is 22 + 3000.001z + 3 = 0.

Here, the true solutions are x = —0.001 and = = —3000.

The computed solutions are x = 0.0 and = = —3000.

We discuss how to deal with this situation soon.

If we want to add many identical numbers, eventually adding new ones will have no
influence on the computed sum since they will be small with respect to the current
sum. If the values vary in size, it is best to add the small ones first to reduce
round-off error.

Eg X0

E.g. with 3 digit chopping, add 5004+-5004+8+-8+...20 times + 8. The results will
not equal 8+8+ 20 times +8 + 500 + 500

E.g. Adding a small number to a large number can result in ignoring the small
number 101 + 1010

E.g. Evaluate e7'9 using the Taylor series around z = 0. (Two problems arise:
subtractive cancellation and it takes many terms until the terms get small). It is
better to consider -z and use the series for €'’

e Errors in original data: Coeflicients that are imperfectly known or experimental
data that is not exact can lead to errors in the solution, especially if the method
or model equations are very sensitive to the input.

e Blunders: test runs help but are no guarantee that your equations and coding are
correct

e Propagated error: error in succeeding steps can depend on earlier errors (e.g. in
ODE solvers). If errors are magnified with each step (iteration) as the method
proceeds, eventually they will overshadow the true value, destroying its validity.
We call such a method unstable. For a stable method, applied to a stable problem,
errors made at early points die out as the iterations proceed.

Example: Consider the iteration schemes:
Poy1 = (1/3)pn and puio = (10/3)ppi1 — pn
with pp = 1 and p; = 0.33333.... Use 5 digits chopping:

Step First method Second method Exact

2 0.11111 0.11110 0.11111

3 0.037036 0.037000 0.037037

4 0.012345 0.012230 0.012346

3 0.0041150 0.003766 0.0041152
6 0.0013716 0.000323 0.0013717
7 0.00045720 —0.0026893 0.00045725

Significant digits - How many digits in the number have meaning? It is not worth com-
puting a solution to many digits of accuracy if the input is not known very accurately.

6

The numbers dids...dndp+1...dp, (With di # 0) and dids...dpen11...€, agree to n sig-
nificant digits if 0 < |d,4+1 — en41| < 5, otherwise they agree to n — 1 significant digits.
Another definition of significant digits: p approximates p, to t significant digits if ¢ is the

largest non-negative integer s.t. % <5x1071.

Computer Issues

e FEzxponent underflow - the computer thinks the number is zero. (The number is so
close to zero, the computer can’t tell difference.)

e Ezxponent overflow - the computer thinks the number is infinity. (The number is
larger than any number the computer can represent.)

e Machine epsilon - how small a difference between two values a computer can rec-
ognize. 1 + € = 1 according to the machine where € is the largest such value.

Absolute error = | true value - approximate value |
Relative error = (absolute error)/|true value|

Find the absolute error and relative error if the true value is 10/3 and the approximate
value is 3.333. Find number of significant digits to which these two values agree.

Relative errors can be a bigger problem when the correct answer is close to zero, espe-
cially after many operations.

Recall the Example: Find the roots of 22 + 62.1z + 1 = 0.

The correct values are -0.01611 and -62.084.

Using the quadratic formula with 4 digits (chopped) gives -0.02 and -62.05

The absolute errors are 0.00389 and 0.034, respectively.

The relative errors are 0.2415 and 0.00055, respectively.

The small value has smaller absolute error but larger relative error.

It is better here to compute the larger solution using the quadratic formula and use
2129 = 1 (product of roots = ¢) to compute the smaller value.

Another useful trick that could have been applied in this case is rationalizing the numer-
ator.

o Accuracy refers to how closely a computed or measured value agrees with the true
value.

e Precision refers to how closely computed or measured values agree with each other.
One might have very good precision but the value may be quite incorrect. Such an
occurence is likely due to systematic error or blunders.

e Inaccuracy refers to systematic deviation from truth.

7

e Imprecision describes scattered results.

Error analysis usually does not take into account machine errors. We often will assume
perfect computational precision when analyzing error. Machine error is usually handled
separately (if at all). The primary tool we will use in analyzing errors is Taylor series.

Stability: We want small changes in initial data to give small changes in the results of
our algorithm. (Well-posedness is the concept that this is true for the exact solution).
Do errors grow using the algorithm? If so, how fast?

Linear growth E, ~ C'Eyn is considered stable

Exponential growth E,, ~ C"E, with C > 1 is unstable.

Note: A problem can be found for any numerical method such that the method will “barf”
on the problem. So it is very important to make sure the solution found numerically
makes sense.

Convergence of solutions: Often our analysis will show that a numerical method will
yield improved results if we reduce the step size, h (for example in solving ODEs, and
integration). If the method is O(h?) then halving the step size should improve the
approximation by a factor of 4. If is it O(h?®), halving the step size should improve the
approximation by a factor of 8 and so on. We can see the convergence rate graphically for
such cases by plotting error vs. step size on a log-log plot. For example, if Error ~ Ch*,
then In Error ~InC 4+ 41nh, which is a line of slope 4 on the log-log plot.

In determining the order of convergence or convergence rates, some terms are more
important than others. We usually deal with these leading order terms or the parts of
them that have the greatest effect.

For iteration methods, we consider convergence in terms of how a new iterate compares
with the current iterate. If Error;.; ~ C Error; with |C| < 1, the method converges
linearly. (If |C| > 1, the errors grow and the method diverges — Error, ~ C"Errorg).
If Erroriyy ~ C (Error;)P, the method is converging with pth order. (Called quadratic
convergence if p = 2).

Consider an example with values o = 3.5, z;1 = 3.1875 and 29 = 3.0264 converging
to z* = 3. Approximate the order of convergence.

You should be prepared to perform numerical experiments to increase your awareness
of computational errors and possible ill-conditioned systems. Such experiments may
involve repeating the computations with a different step size or method and comparing
the results. We may employ sensitivity analysis to see how the computed solution changes
when we change model parameters or input values.

Survey of Simple Methods and Tools

Horner’s Rule

Operation count: how many add/subtracts and multiply/divides. Operation count is
responsible for how much time it takes to solve a problem numerically (on the computer).
It also tells us how much the work grows as we refine our computations.

Useful sums:
1+2+..+n=(n)(n+1)/2 and 12 + 22 + ... 4 n? = Wt)Cnt)
usually we care only about the leading terms O(n?) for example.

Trick to reduce operations: z® — 10z + 100z — 100 = ((z — 10)z + 100)z — 1000 or
—100 + ((100 + (=10 + z)x)z); The first way requires 5 multiplications and 3 additions,
while the second requires only 2 multplications and 3 additions.

This is called Horner’s rule.

Difference Approximations to the Derivative

Example: Consider f'(z) ~ w + O(h).

flm+h)—f(x) _ f(=@) + hf'(x) + $h2"(E) — f(x)
h - h .

Using Taylor series, we have
So, f'(z) = IEHR=IE — Zhpr(e).

Consider f(z) = e*.

Use 4 digit chopping to approximate f'(1) with A~ = 1, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001, 0.0001.
Error ~ %90 4 Afh (round-off + truncation) where M is related to f”(z) on the interval
and the 0.0001 is from noting that subtracting 2 numbers with value approximately 3
and chopping after 4 digits can gives errors from -0.0001 to +0.0001. (The values of
F(1+ h) are 7.389,3.004,2.857,2.773,2.745,2.731,2.721,2.718 and f(1) = f'(1) = 2.718
giving computed values of 4.671,2.860,2.780,2.750,2.700,2.600,3.000,0.00).

Here, the effect of round-off error creeps up. (This is one of the rare times we’ll
consider round-off error). If the values of f are off by up to €, then f’(z) can have error
up to € + Shf"(€) so as step size shrinks, the second derivative term shrinks but the
round-off term grows. So there is a balance and there is a “best” step size to use (Found
approximately by minimizing the error term with respect to h).

Notice that:

+ $h2f"(z) + %h?’f”’(gl) and
+ %h2f”(x) _ gh?’fm(&)

Thus, f(z 4+ h) = f(z — k) = 2hf'(z) + K[(&) + (&)

_ fl@+h) - flz—h)
2h

fl@+h) - flz—h)
2h

— SRE) + F(E)]
or

f'(x) =
by the Discrete Average Theorem.

1 mn
— SR (E)

Ex: Compare results for f/(1) where f(z) = e® with both approximations with h = 1/8
and h = 1/16. Look at the error. Compare O(h) to O(h?).

Euler’s Method

This method is easy to understand, apply and code up. It is not used much (because
there are other easy to apply methods that have smaller error), but presents the main
ideas of alot of numerical methods for ODEs in a simple form.

o Lett; = a + th, where h = ”’T“, dividing the interval from a to b into N pieces.
e We have & = f(y,t)
e So, y(tix1) = y(ts + h) = y(t;) + hf(yi,t;) + ... by Taylor’s Theorem.

e We ignore the higher order terms, giving us the difference equation:
wiy1 = w; + hf(wit;)

e (We've called the computed values w and will continue to do so later on in the
course).

e Since the first term ignored has order h?, in one step, the error has order h2.
e Since going from ¢t = a to t = b takes ”’T“ steps, the total error is about th’T" ~ h.
e It can be shown more carefully that the error

hM)
|yi - wi| < i[ehh - 1]

where L is the Lipschitz constant and M is an upper bound for y”(£) where £ € |a, b].

10

Pictorially, we are approximating the ODE be a tangent line of length A (in the ¢ direc-
tion). We then repeat the procedure from the new (computed) point, w(t;+1)-

Example: Use Euler’s method for % = —2t — y where y(0) = —1 using h = 0.1 to
approximate y(0.4).

Take a look at Fig. 2.4 Epperson and Tables 2.5 and 2.6 pp. 50-51.

Linear Interpolation

Drawing a line connecting 2 points of f(z) at zo and 21 gives pi(z) = == f(20) + =22 f(21).
Check this goes through the points. It can be shown using cleverness and Rolle’s Theorem
(pp. 54-55 of Epperson) that the error is bounded by %(ml — x0)*maz| f"(£)|.

It makes sense that this is correct for lines but not parabolas so the error should be
related to the second derivative.

The Trapezoidal Rule

e Consider the linear polynomial for 2 points zy and x; as just described.

e Then f f(z) dz = ffol[%f(o) + =20 f () + f’l(g(x))(w;zo)(zfxl)] di.

Z1—T0

e We can pull out the f”(£(x)) term because the rest doesn’t change sign on the
interval. Letting h = 1 — z(leads to

[s = B + - o)

Trapezoidal’s Rule: One step error is 'f—;f”(f) If h = ”‘T“ then

Abf(x) dx ~ g[f()‘f’Qfl +2f2+...+2fn—2+2fn—1+fn]

To compute the error:

h?’f” nh?,f/r _ (b _ a)f”h2

n pieces with error each for a total error of o = D

Approximate f(z) = e® on [0,1] with A = 1/2, and 1/4 and look at error in Table
2.9 p. 64 Epperson.

11

Work Ex. 2.6 Epperson p. 65. How small should the mesh be to approximate
Ji e **dx with error less than 1037

A note on stability of the trapezoidal rule: If f(x) is off by at most € at each value,
then the integral computed will have an error at most the original error plus (b — a)e
since the method will change each piece by at most %h(e + ¢€). Multiply by b_T“ pieces to
get (b— a)e.

Nonlinear Equations

Examples of Applications:

e When does a nonlinear function equal a certain value? E.g., For a pharmaceutical
to be effective, its concentration in the blood must stay above a certain value. One
would like to know at what time the concentration will hit that value so another
dose can be given.

e In free-all with resistance, can we approximate the coefficient of (linear) drag from
the model and data? (Assuming v, m, g and ¢ are known; v(0) = 0).
dv cv gm

hab— - - 271 = ct/m
dt g m v c()

e For what value(s) of z are 2 nonlinear functions equal?
e Minimizing the cost to build a road where it costs different amounts through dif-

ferent parcels of land. See story, p. 80 Epperson

For the methods described in this section, we begin mathematically by subtracting the
functions or bring all terms to one side to get f(x) = 0. A solution to such an equation
is called a root.

Ex. Find where z = tanx on [4,4.5]. Use x — tanz = 0.

Bracketing a root - Graphing can give us an estimate of a root, but we can miss when
two roots are close to one another or think there is a root when f is close to zero. If f is
continuous and we know that f(a)f(b) < 0 then there must be at least one root on [a, b],
by the IVT.

How can we tell that a continuous function f(z) has exactly one root on an interval [a, b]?
Show that f(a)f(b) < 0. This guarantees at least one root. If, in addition, f'(z) does

12

not change sign on [a, b], f(x) is monotonic on the interval and so can have at most one
root on [a,b]. Thus, f(z) has exactly one root on [a, b].

Example: Show f(z) = x* —x — 1 has exactly one root on [1,2].
Bisection: Work through a few steps to approximate a root of f(x) = z* + z? — 3x — 3
on [1,2] How do we know there’s a root in the interval? IVT (/3 is a root);

Start with zep, and Zright; Tnew = %(iﬂleft + Tright)
Keep one previous point such that f(Z,ew) * f(Zoa) < 0, i.e., they have opposite sign.
Continue until Z,;gnt — Zief+ is smaller than the desired tolerance and/or f(zmiq) <TOL.

Some issues to note about bisection:

e Bisection always converges (if f is continuous and you have starting values such that
f(a)f(b) < 0 where a and b are the starting x values at the endpoints). Bisection
is a global method.

e Length of interval: L, = 5-Lo after n steps (or iterations). So we can compute
the number of steps we’ll need to reach our error tolerance. Take the final answer
to be middle of final interval. This implies: 2L,LLO * % <TOL =€ = n >
—1 + log, % So for the initial interval [1,6], how many steps would it take to be

sure our approximation is within 1073 of the exact value? (n = 12).

e Early estimates may be better than later ones. Convergence isn’t necessarily closer
with each step.

e This method will find exactly one solution (it is very robust) on the interval, so
beware if there is more than one root on the interval.

o We might prefer a tolerance where f < TOL but f might be very flat.

e Bisection is not as fast as other methods but is sometimes used to get somewhat
close to the root and then we let another method take over.

e Roots at large values of z may be found solving using the substitution y = 1/z.
e Bisection will not be able to find roots that are even multiple roots since the function

does not change sign there.

If we want to estimate >v/25 we can solve 3 — 25 = 0. Often it’s nicer to write expres-
sions as polynomials. In theory, you can then do the computations without a “fancy”
calculator.

13

Order of convergence: If |e,.1| approaches Kle,|P as n — oo we say the method is of
order p. Errors usually don’t decrease quite this quickly until we are near the root for
most methods.

Bisection has |eni1] = 3|en|' == Bisection is first order - or of order 1.
Secant Method and Regula Falsi

If f(zo)* f(z1) < 0, we can draw a line connecting (o, f(zo)) and (z1, f(z1)) and take
intersection of this line with the z-axis as the next iterate.

The slope of line through (zg, f(zo)) and (x1, f(z1)) is the same as slope of line through
(z1, f(z1)) and any (x,y) on the line, so

y—flw) flo1) = flwo)

r — I T1 — 2o

where y = 0 when z = x5, giving xo = 71 — f($1)% or

Tpt1 — Tp

f(@ni1) — f(@n)

Tn+2 = Tp41 — f(a:n—f—l)

Work a couple of steps for 22 —3 = 0 on [1,2]. If we keep the old value of z such that we
always bracket the root, the method is called Regula Falsi - or method of false position.
This is more stable but might have slower convergence.

We hope that our values of z,.o get close to some value z,, where f(z,) = 0. If so,
the method converges. This kind of method is called a fized point method since when we
continue iterating, we hope to get to a number that when entered on the right (i.e., if
Tp = Tny1 = T.) yields the same value on the left.

Some issues to note about Secant and Regula Falsi:

e The closer the function is to linear near the root, the quicker the convergence will
be.

e The method can also be written z,,9 = Znf %;:ﬂf;gﬁw") but this is more prone

to round-off error. (Subtractive cancellation).

e The new value, x,,o, is not guaranteed to be in the interval bounded by z, and
Zns1 for the Secant method. On the other hand, z, o, must be bounded by z,, and
Zn41 for Regula Falsi.

14

We’ll skip this proof. If we have time, maybe we’ll come back to it later.
Section 3.10.3 has a very nice analysis

Error analysis (for the Secant method): Notice that this method is of the form
Tnt2 = O(Tnt1, Tn)

This is a two-point fixed point method. The new value depends on two previous values.

. Letgb(u,v):u—){gzguz if u #v.

e Asu — v for C! functions, this becomes ¢ (u,u) = f "(z4) #0

at the point of interest (where f(z.) = 0), ¢(z4,2,) = a:* Le., we have a fixed
point. That is, if we start with x; = 2o = x,, we get the new Value é(u, u) also

=z,.
¢(U, $*) =Uu-— % =Ty = ¢(33*71))
and (lsu(u: 33*) =0= st(x*; U) = ¢uu(u: 33*) = (bm)(a:*; 'U)
® So
¢(x* +p,$*+Q) = ¢(.’L‘*,.’E*) +p¢u($*,$*)+q¢v($*,l‘*)

;[p2¢uu(x*a x*) + 2pqq5m,(a:*, -T*) +4q ¢m}($*a x*)] + O(pQ)?’
= 2.+ 0+ 0+ 5[0+ 2pgouy (., z.) + 0] + O(pg)®

e So, if ¢, is the error at the nth step z, — x,,, we have
€n42 = Ty — Tpy2
Ty — ¢($n+1, In)
Ty — d)(.’E* —€n41,Tx — en)
Ty — (.T* + €n+len¢uv($*7 -T*) + O(€n+1€n)3)
= €n+2 = Cen—f—len

en—|—2

e Since we have convergence if the error gets smaller (exponentially) with each iter-
ation, we have convergence if |Ce, 1| < const < 1, i.e., if e,,0 < €py1.

e For ' =1 we can easily compute the order of convergence.
Let exy1 =~ ef.

.. 1
This gives ex1 =~ €} but we also have eg 1 ~ ege_1 ~ ekek/”.

So, eh ~ exey, e
Thus, p=1+1/p=p*—p—-1=0=p= % but only the + makes sense.

So convergence order is about 1.62.

15

Regula Falsi This is the same as Secant Method but we always keep the previous z
value such that z,4 and Z,., bracket the root. Le. f(Zyq) * f(Zpew) < 0. Convergence
is more difficult to analyze here, but in general Regula Falsi is slower, but more robust
than Secant Method. This is a common trade-off in numerical methods.

Problems can be constructed such that bisection converges more quickly than Secant or
Regula Falsi. This is true especially when f is very flat near the root. E.g. f(z) = z'%—1
on [0, 1.3].

Newton’s Method

Idea: Draw a line tangent to y = f(z). Where this tangent line crosses the z axis is our
next iterate.

Derivation: (xg, f(zo)) is our first guess and the slope there is f(zq).
The equation of the tangent line is y — f(zo) = f'(xo)(z — o).

When y =0, we have x =21 = x9 — J{’((Z?))) or, in general,
In+l = Tp — f(l'n)

Work a few steps for 2?2 = 3 with z; = 1.

Note the relationship of Newton’s method to Secant and Regula Falsi. I.e., how

Tpt2 = Tpy1 — f(fe?;;i(ff}r(lzjn) — Tpy1 — J{((ZT:I)) as Tp41 — Ty

Comment: We can also use Newton’s Method to find complex roots but we must start
with a complex guess.

Another derivation of Newton’s method is to write the Taylor series for f(z) around z,,
to get f(z) = f(zn) + (x — z,) f'(zn) + Truncate (ignore (z — z,)? and higher order
terms) and let z,,1 be where this line crosses the z-axis.

This yields 0 = f(zn) + (41 — 20) f'(n) OF Tpy1 = 25 — ,{/((:;2))-

Some issues to note about Newton’s Method:

e f'(z) may be difficult or messy to calculate.

e There will be problems if f'(z) ~ 0 near x = z,, since the denominator will be
zero. Convergence can be slow for very flat functions. We’ll discuss this further
later. Consider Newton’s method on f(z) = e* —x — 1, which has a double root
at z = 0.

16

e There can be problems when there are big changes in f'(x) near the root. Consider
f(x) = 2 —1 with initial guess 7y = 1/2, then z; = 52. See e.g., p. 91
Epperson Figs 3.3 and 3.4. These demonstrate the importance of a good initial
guess and the robustness of bisection.

o If z(is not “close enough to the root”, the method may not converge or may
converge to a far away root. For example, if there is an inflection point at z,. E.g.
3 . .
f(x) = — % + 2 with zp = 1 oscillates. Draw examples.

e Newton’s method can oscillate near a minimum that is not near a root.
e The crucial assumption is that the quadratic term of the Taylor series (and higher
order terms) can be ignored without adverse consequences.
Two fundamental numerical methods ideas:
1. Replacing a general function by a simpler function and doing the computation
exactly on the simpler function. (e.g. f(z) by a line).

2. Given an expression with something simple plus remainder, we generate a numer-
ical approximation by dropping the remainder. (e.g., Taylor series derivation of
Newton’s method).

Stopping Newton’s Method: The x,’s get close to one another if the method converges.
However, the f(x,)’s might be larger if | f'(z,)| is large, so sometimes, rather than using
|Tp — T 1| < €, people use |f(z,)| + [Zn — Tn 1| < €

We’ll save the error analysis for after fixed point iteration.

Muller’s Method We’ll only discuss the idea of this method.

e We derive a second degree polynomial (a quadratic) that fits 3 points near the root

(zo, f(0)), (1, f(21)), (%2, f(72))-

e Where this parabola crosses y = 0 is the new point.
e Then take the 3 closest points to the root and repeat.

e There are 2 points where the parabola crosses y = 0 and we take the one closest to
xo for the current iteration.

17

Fixed Point Iteration

Newton’s method is a one-point, fixed point iteration method. (Secant method and
Bisection were 2-point methods - i.e., you need two old guesses to get a new one with
those. Muller’s method is a 3-point method). Let’s discuss some ideas concerning one
point methods. They are the easiest to analyze.

A one-point, fixed point method can be written: z,,; = g(z,) for n =1,2,3,... When
does it converge to a fixed point z, such that z, = g¢(z.)?

9(x

«)
Consider f(z) = z* — 2z — 3. Obviously, the roots are z = —1, 3.
Derive g;(z) = \/ x + 3 and let zo = 4 p. 55 of Gerald and Wheatley
Derive go(z) = —=5 and let o = 4 p. 56 of Gerald and Wheatley
(

2
Derive gs3(z) = =4 p. 56 of Gerald and Wheatley

Show plctorlally What happens in these cases and what the method looks like in terms
of y = g(z) and y = z. p. 57 of Gerald and Wheatley.

should be equivalent to f(z) = 0.

Theorems:

e If g is continuous in [a, b] and g(z) € [a, b] then g has a fixed point in [a, b].
Proof by IVT. Let h(z) = x — g(x) and note h(a) < 0 and h(b) > 0.

e If, in addition, ¢’ exists on [a,b] and |¢'(xz)| < 1 and g(x) € [a,b], then g has a
unique fixed point in [a, b].
Proof: If there are 2 fixed points © = p and x = ¢ then |p — q| = |g(p) — g9(q)| =
lg'(€)]lp — ¢q| by MVT < |p — ¢| = contradiction.
Another proof: Again let h(z) = x — g(x), then h(a)h(b) < 0 and A'(z) = 1—
g'(z) > 0 on [a,b] so h(z) has exactly one root on [a, b].
Idea: If the interval is from z = a to z = b then if g(a) is greater than a and g(b) is
less than b, there must be root in the interval. If g(x) cannot go up as fast as y = x
(since |f'(z) < 1|), then once the curves cross (at the root) g(x) cannot catch up
to y = x again.

e If g(x) and ¢'(x) are continuous on an interval around a root of x = g(z) and if
lg'(x)| < 1 Vz in the interval, then z,1 = g(z,) converges to the root if z; is in
the interval.

Convergence may occur anyway but this guarantees convergence.

Proof: |z, — zn| = |g(z.) = g(zn-1)| = [¢'(E)] |2« — Tn_a| < klzs — 2| where
k < 1. This is called first-order or linear convergence with coefficient £ indicating
how fast, e.g, 1/3, 0.9 so error shrinks and |z, — z,,| < "z, — 29| = 0 s0 z,, — ..

18

Analyze for the 3 problems on previous page.

An error bound after n steps is |z, — 7,| < {7;|Z1 — 7o|. From geometric series.
We have

= lim,,, o0 ‘(xn - xn—f—l) + (-T'n—l—l - -Tn+2) + ...+ (xm—l - .me)|
S kn‘(ﬂl’o - .’L'l) + k(.’EO — 331) + k2(.’170 — .’L‘l) + ...+ km_”(xo — .’L'l)‘
< %@0 — 11|

Notice that if ¢'(z,) > k > 1, we have

|2 — Zn| = [9(24) = 9(@n-1)| = 19 (€)] |7 = Tna| = klzs — 20

so the error grows and sequence of iterates must diverge.

So, to prove convergence, we need to prove only that there is a root and |¢'(z.)| < 1.

Ex. 2,41 = w%g_l on [—1,1]. g(-1) = g(1) = 0 and ¢'(z) = 2. Thus, the iteration

scheme converges to root of 22 — 3z — 1 = 0.

Note that the closer ¢'(z) is to zero near the root, the faster the fixed point method
converges.

Error analysis of Newton’s Method:

® Tat1 = In T ﬁ((il)) = g(zn)
e Here ¢'(z,) = % -0
e The method seems linear but since k£ = 0 it’s really better than linear.

Look at |z,41 — x| = |g(xn) — g(z4)].

Since ©,, = x4 + (x, — x.) we have

g(.’En) = g(x*) + (xn - .’E*)g,(.T*) + 9 (xn x*)Q
So "
b =] = 1902+ (0 2)9') + L 0~ 0 — g(2)
- 9”2(6) (Tn — 2.)° = k(zn — 7.)°
: _ [() T)2
This becomes, = 2f’(:c*)(n— Ty)

19

e So there is second order convergence (or quadratic convergence).

e Note that if ¢”(z.) = 0, we could take one more term of the Taylor series and show
that convergence is cubic (third order).

Ifg(z.) = ¢"(z.) = ... = ¢g®Y(z,) = 0, then

Znia — 2| = [9(zn) —9(z)] = lg(z. + (20 — 2.)) — g(2.)]

= 9(2)+(@n=2.)g' (@) + - + %g@%*) 4 o ;f*)pg@) (&) — g(a.)|
= (st e

So convergence is of order p.

Note: For multiple roots, f’(z,)? = 0 (in the denominator) so ¢'(z,) is not 0.

(Work it out for f = (z — z.)PQ(x)).

Thus, convergence is reduced to linear with coefficient 1 — Il) Look at Table 1.8 p. 77.
Gerald and Wheatley

If you know the multiplicity of the root you are interested in, use

_ f(zn)
Tn41 = Tp — pf’(xn)

where p is the multiplicity of the root. To show this, let f = (z — z,)?Q(z) where
Q(z.) # 0 and plug into ¢'(z,) = 1 — p(1 — %) and take the limit as z — x,. This
shows that ¢'(z.) = 0, so the method is quadratically convergent.

If you know only that the root is a multiple root but not its multiplicity, one can perform

Newton’s method on p(z) =]{c,((?). This can be pretty messy.

Once again, consider Newton’s method on f(z) = e* —z — 1, which has a double root
at z = 0.

Initial iterate is 1.000000
i X f(x)

0 1.000000 0.718282

1 0.5819767 0.2075957

2 0.3190550 0.0567720

20

3 0.1679962 0.0149359
4 0.0863489 0.0038377
5 0.0437957 0.0009732
6 0.0220577 0.0002451
7 0.0110694 0.0000615
8 0.0055449 0.0000154
9 0.0027750 0.0000039
10 0.0013881 0.0000010
11 0.0006942 0.0000002
12 0.0003472 0.0000001
13 0.0001736 0.0000000
14 0.0000868 0.0000000
15 0.0000434 0.0000000
16 0.0000217 0.0000000
17 0.0000108 0.0000000
18 0.0000054 0.0000000
19 0.0000027 0.0000000
20 0.0000014 0.0000000
21 0.0000007 0.0000000
22 0.0000003 0.0000000
23 0.0000002 0.0000000
24 0.0000001 0.0000000
25 0.0000000 0.0000000
26 0.0000000 0.0000000
27 0.000000 0.000000

Solution is x = 0.000000 function = 0.000000 iterations = 27

Notice that convergence is linear with C = 1/2. Newton’s method on]{c,((‘;)) is better:

Initial iterate is 1.000000

X f(x)

1.000000 0.418023

-0.2342106 .1216724

.0084583 .0042351

-0.0000119 .0000059

0.0000000 0.0000000

0.000000 0.000000

Solution is x = 0.000000 function = 0.000000 iterations = 5

| |
o O

ad» W= O
|
o
|
o

21

Two roots that are near one another can get Newton’s method into an infinite loop (can
happen also with an unlucky starting guess) or have the iterates fly off to infinity. Draw
figures. There is no good way to deal with these. If you can find one of the roots (z.1),
you can try to use deflation (dividing f(z) by z — z.1).

Accelerating Convergence Idea: If we know the order of convergence, say e,+1 = Ce?,
then given 3 consecutive iterates using the method, we can “improve” the estimates,

calculating a new set of iterates using
Tp+2 — Tk Tp41 — Tk
———————— ~ Const ~ ———— and solve for z,.
(Tn41 —)P (@0 —)P
2

(‘Tn—l—l - xn)

Tnyo2 — 2$n+1 + Zn

Work it out for p =1 to get z, =z, —

This is called Aitken’s method when we use zg, x1,x2 to get To;

T1,T9,T3 to get Ty;

To, T3, T4 tO get Tosetc

It is called Steffenson’s method when using xg, 21, T2 to get Zo; then #; = g(Z) and
Ty = g(#1) to get T etc.

Consider Table on p. 143 of Epperson. Good convergence (rates) are obtained for:

e Newton’s method with z,,.1 = z, — p;c,(é’;))

e Newton’s method with u(z) =]{’((a;))

e Newton’s method with Aitken’s method

e Secant method with u(x) = Jj:'((fc))

but final result is not as good as previous non-multiple root cases. Why? Geometry of
multiple roots - computational issues with floating point arithmetic. Since the curve is
flat, f(x,) appears closer to the root than it is. p. 144 Fig. 3.11 Epperson.

For finding all roots to a polynomial, first find one root, then deflate using synthetic
division before finding the next root so you don’t keep getting same root. Round-off
errors can build up and so later roots might not be very accurate.

Another method for dealing with polynomials is called Bairstow’s method. It is used for
factoring a polynomial into quadratic pieces which can then be solved analytically using
the quadratic formula.

Hybrid methods: Use Secant method until an iterate falls outside the bracketed inter-
val. Then use Bisection, then back to Secant until is happens again. This way you can
get global convergence but speedier than bisection. (Brent’s method).

22

