Interpolation

Examples of Applications: Interpolation problems can arise
e in heat transfer estimation

e in approximating of function values (e.g., temperature) at points where there is no
data reading

e when finding derivatives from experimental data values.

Read text pp. 221-3 Gerald and Wheatley or p. 150 Epperson.

If the data is precise, our interpolation methods should work well in many cases, but if
the data is not precise, problems are likely to arise. If the data is expected to have errors,
we can fit curves with few parameters that go near the true points in some “best” sense.
Minimizing the error in a particular sense leads to the Least Squares fitting technique.

Interpolating can turn complicated functions into much simpler ones (like polynomials
or trigonometric functions) that are easier to evaluate. This can improve efficiency if the
function is to be called many times.

Straight lines - These are okay for connecting points but they do not have continuous
derivatives. The derivative does not exist at a corner. Piecewise linear curves are not
smooth, like most data ought to be.

If we know a function’s value and its derivatives at a particular point, then we could use
Taylor series:

P@) = f(o) + f@)z-a) + 3l @@= + - + fOa)@—a)

with error term
(z — a)"* fFD(E)
(n+1)!

This works well if we have lots of the derivatives at ¢ and if we want to know the function
value near a. Sometimes the radius of convergence can be small and thus the Taylor series
can be inaccurate far from a.




We want to use polynomials for interpolation computations, since they are easy to eval-
uate. However, high degree polynomials oscillate wildly so we don’t use high degree
polynomials. (See fig 3.1 p. 239 Gerald and Wheatley or Fig. 4.3 p. 155 of Epperson)

Example: fit the data points (3.2,22.0)(2.7,17.8)(1.0,14.2)(4.8,38.3) such that they all lie
on a polynomial curve.

We can do this by brute force, noting that an n-th degree polynomial can fit n+1 points.
Let P(z) = ay + a1z + as2® + azz®. We get:

1 32 (3.2)2 (3.2)3 ag 22.0
1 2.7 (27)2 (27)3 ap | | 178
1 1.0 (1.0)2 (1.0)3 ay | | 14.2
1 4.8 (4.8)2 (4.8)3 as 38.3

Drawbacks:

e With lots of points, the matrix becomes big and has high condition number. It is
ill-conditioned. So the computation is sensitive to small errors in the experimental
data (or numerical error/rounding error).

e This method would give us a polynomial that passes through all the points, but
adding a new data point would mean we need to start all over. We cannot use
anything from the previous result.

e High degree polynomials tend to have wild oscillations and are often not appropriate
for modeling smooth curves, especially those arising in physical situations.

This matrix arising from fitting polynomials through data points has a name the Van-
dermonde matrix

1 =z (mg)? (o)™
1z (m1)? (z1)"
1oz (@) . (2a)"

To add the point (5.6,51.7) to the above list of points we have to start over, obtaining:

1 32 (3.2)2 (3.2)* (3.2)* ao 22.0
1 27 (272 (27)?% (2.7)* a 17.8
1 1.0 (1.0)2 (1.0)® (1.0)* a; | =1 14.2
1 4.8 (4.8)2 (4.8)° (4.8)* a3 38.3
1 56 (5.6)2 (5.6)® (5.6)* ay 51.7



Since the n-th degree polynomial through n + 1 points is unique, any other method of
finding it must give the same answer (i.e., the same polynomial).

Lagrange Polynomials

We write polynomials that have value 0 at all grid (z) values except for one and that
have value 1 at the grid point of interest. If we write all n+ 1 of these and multiply each
one by the value at the relevant grid point, we will have the correct polynomial (same as
found above) but easier to set up.

Example: for 4 points (o, fo) (1, f1) (z2, f2) (3, f3), we have:

P(x) - (zo— zll)(wo z22) (zo 3963 fo + (z1— moo)(zl ;2 )(z1 iS)fl

( ) )( ) )
+ (w: ;oo)(f? 169611 (5;2953%)]0 + :vsw ;00)(:?3 5111 fvswivz)f?’

Again, if we add a new point, we have to start all over.

An error term can be derived (based on a Taylor series-like error derivation) and it yields:

E(z) = (z — 330)(33(; f—li)' (2 — ) FOr ()

for x and £ in the interval containing all the z;s.

It is difficult to apply this formula since we usually don’t know the function f(z), just
its values at a bunch of points. If we know the function, we estimate the error by using
the largest possible value of f("+1(£) on the interval.

Divided Differences

Here’s another way to compute the same polynomial. The advantage here is that if we
add a new point, we can still use all the old information. We write the solution in the

case of four points (xg, fo) (21, f1) (%2, fo) and (z3, f3):

Pu(z) = fo + (z—=0)flzo,21] + (z—z0)(x — 21) flm0, 71, T9]
+ (x —z0)(x — 21)(x — 22) f[x0, T1, T2, X3]

where f[zo, 21, ..., Ty) = f[ml’@""’x”]x_ .i[anxl,---,.fn_l]
n — 40

and f[zo,z1] = T1 — g



We can start anywhere in the table, with certain rules, but we usually use the top or
bottom value of each column. Here’s an example for the data above:

Z; fi flwe, wia] flos, ipr, Tigo] flmi, . Tigs] i, -, Tiga]

3.2 22.0 8.400 2.856 —0.528 0.256
2.7 17.8 2.118 2.012 0.087

1.0 14.2 6.342 2.263

4.8 38.3 16.750

5.6 H1.7

Then, the polynomial through the first 4 points is:

22.0 + 8.4(z — 3.2) + 2.856(z — 3.2)(z — 2.7) — 0.528(z — 3.2)(z — 2.7)(z — 1.0)

The polynomial through the last four points is:

51.7 + 16.75(x — 5.6) + 2.263(z — 5.6)(z — 4.8) + 0.087(x — 5.6)(x — 4.8)(x — 1.0)

The polynomial through all five points can be written: (from the top on down)

22.0 + 8.4(z — 3.2) 4+ 2.856(x — 3.2)(x — 2.7) — 0.528(z — 3.2)(z — 2.7)(z — 1.0)
+0.256(z — 3.2)(x — 2.7)(z — 1.0)(x — 4.8)

or (from the bottom up)

51.7 + 16.75(x — 5.6) + 2.263(z — 5.6)(z — 4.8) + 0.087(xz — 5.6)(x — 4.8)(x — 1.0)
+0.256(z — 5.6)(z — 4.8)(z — 1.0)(z — 2.7)

Interpolation with equispaced points:

A" fo
nlh®
A denotes forward differences Afo = f(z1) — f(z0), A%fo = f(z2) — 2f(z1) + f(z0), ete.

For equispaced points with z;,1 —x; = h, we note that f|zg,z1,...,2,] = where

The Newton-Gregory formula for equispaced interpolation is:

Po(@) = flwo) + 5Pz — ) + 58 (x — mo) (@ —z1) + ..
+ ﬁ!h]:? (x—x0)(x—21) ... (T — 1) + Ru(x)
e F (E()
R,(z) = (1 1) " a(a—1)...(a —n) and a = ; 0

Cubic Splines

High degree polynomials oscillate alot so it’s not so good to approximate using them.
(BE.g. f(z) = 5z with 11 equidistant points on [-1,1], see Dahlquist p. 101).

To avoid these oscillations, it is common to divide the interval into subintervals and
approximate the function using low degree polynomials on each subinterval.
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Linear Splines
Piecewise linear is easy. We have a continuous approximation, but we have discontinuous
derivatives.

Quadratic Splines

Quadratic splines are piecewise quadratic. We need 3 pieces of information for each
quadratic piece. We can match the function values at the endpoints of each subinter-
val. This gives two conditions. We can also have the first derivative match where two
quadratics join. (This is basically half a condition at each end of the quadratic). How-
ever, then we can only have one derivative boundary condition (i.e., at only one end of
the curve) but not at both ends. Often f”(xp:) = 0 is used.

Cubic Splines
Cubic splines allow for continuous first and second derivatives, while matching the func-
tion values.

Definition of a cubic spline:
Given a function f on [a,b] and nodes a = xy < 1 < ... < z, = b, a cubic spline
interpolant S satisfies the following conditions:

1. S is a cubic polynomial on each subinterval [z, z;1]

2. S(z;) = f(z;) for j =0,1,2,...,n (The spline matches function values)
3. Sjti(xjy1) = Sj(xjq1) for j =0,1,...,n — 2 (The spline is continuous)
4. 87, (xj11) = Sj(xj41) for j =0,1,...,n — 2 (The spline € C").

(

5. 87,1 (zj11) = Sj(xj41) for j =0,1,...,n — 2 (The spline € C?).

6. 2 Boundary conditions — examples include free boundary S”(z¢) = S"(x,) = 0, or
clamped boundary S'(zo) = f'(xy) and S'(z,,) = f'(z,).

We need 4 conditions to determine a cubic. Matching function values at 2 points gives
2; matching the first derivative on the left and right sides of the spline piece is 1/2 each
and doing the same for the 2nd derivative on left and right is 1/2 each. Because on the
left and right boundaries, we cannot match 1st and 2nd derivatives with the next spline,
we have one boundary condition available for each end.

Derivation of the equations for fitting a cubic spline through 4 points: (Gerald and Wheatley)

Let yo = f(20), y1 = f(21), yo = f(22), and y3 = f(z3),
with boundary conditions f'(xy) = zo and f'(z3) = 23
Let So(z) = ao + bo(x — x0) + co(z — 20)* + do(z — 2)?
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Oth spline: Match left point: Sy(xo) = ag = Yo
Oth spline: Match right point: Sy(z1) = ag+ bo(x1 — x0) + co(x1 — T0)? + do (21 — T0)® = W01
1st spline: Match left point: Si(z1) =a; =y
1st spline: Match right point: Si(z2) = a3 + by (T —71) +c1 (72 — 21)? + dy (T2 — 71)% = 3
2nd spline: Match left point: Sy(z2) = as = yo
2nd spline: Match right point: Ss(23) = as+be (13— x9) 4+ c2(23 — 2)* +da(x3 —22)* = y3
Match left BC: S§(xo) = by = 2o
Match right BC: Sh(x3) = ba + 2co(x3 — Z2) + 3da(x3 — 12)* = 23
Match first derivatives where splines meet: Sj(x1) = Si(x1) and Si(x2) = Sh(z2) =
b() + 200(1’1 - l'()) + 3d0(l’1 — .’l?())2 = b1 and b1 + 201($2 - 1'1) -+ 3d1(l‘2 — l‘1)2 = bz
Match second derivatives where splines meet: S{(z1) = SY(z1) and S} (z2) = S§(xq) =
2¢q + 6do(x1 — o) = 2¢1 and 2¢; + 6dq (22 — 1) = 2¢o

This gives 12 equations in 12 unknowns, 4 are trivial (for ag , a1, as and by). In general,
there are 4n equations (for n+ 1 points zg, . .., z, there are n splines) minus n+ 1 trivial
ones (matching n left endpoints of splines plus the left boundary condition).

Derivation of the equations for fitting a cubic spline in general:
We work out how we can reduce the number of equations to just n for the case of
equidistant points, z;41 — x; = h.

Let S;(z) = aj+bj(z —zj) + ¢j(z — 2j)* + dj(z — z;)3
Left endpoint of each spline:

Sjz;) = a; = f(z;)
So all the as are known.
Match function at the right end of each spline:

Sj+1(2j41) = Sj(wj1) = f(@j11) = aj + bjh + ¢h* + d;h* = a4 (1)
Match first derivatives on right:

Si1(@jr1) = Sj(@j41) = bj1 = bj + ¢;h + 3d;h (2)

Match second derivatives on right:

Sin (@) = 85 (zj41) = 2¢j41 = 2¢;h + 6d;h (3)
Solve (3) for dj = dj = %[C]’_H — Cj]

Eliminate dj in (1) = Qjt1 = Q5 + b]h + thZ + %[Cﬂ_l — Cj]h3 or

h2
ajr1 = aj +bih+ e + 2] (4)



.. . s bj+1 = bj + Qth + 3%[0_7.}.1 — Cj]h2
Eliminating d; in (2) = — b+ 20k hejr — he.

SO, bj_|_1 = bj + h(Cj -+ Cj_|_1) or reducing the index bj = bj_1h + h(Cj_l + Cj) (5)
Solve (4) for b;, giving

vi—a; h —a;_1 h
bj = %Lhaj - g[Cj+1 + ZCj] or reducing index bj—l = % - g[Cj + 2Cj_1] (6)

Using (6) in (5) gives

djt+1 — %

h

a; — Gj—1

h
o gle + 2¢-a] + hlej-1 + ¢5)

- g[cj“ +2¢;] =

Bringing the cs together gives:

hej—1 + 4hc; + hejpr = %(ajH —2a;+aj_1) =
3

h2
We use a pretend S,, and the right endpoint boundary condition to deal with it.

Cj—1 + 40_7' + Ci+1 = (U,j+1 — 2(I,j + U,jfl) where _] = 1, 2, ey, = 1

Thus we have a linear system for the cs (since the as are known. After finding the cs,
we can plug into (3) or the simpler equation just after it to compute the ds and into (6)
to get the bs. Thus, we have derived the following tridiagonal system for the cs.

co +der + o = %(GQ — 2a1 + ap)
a1t +c = ?(G/g — 2ay + ay)

Co +403 “+cCyq = h—2(a4 - 2&3 + 61,2)

Cn3 F4cp o2 + Cp1 = %(anfl — 202+ an73)

Cp—2 —+ 4cn71 + ¢, = %(an - 20%71 + aan)

This is n — 1 equations for the n unknowns ¢y — ¢,_1 plus ¢, which is fake. We use the
boundary conditions to deal with ¢y and c,.

Free boundaries:
S(I),(J?()) =0=2c=0= ¢y =0.
Similarly, S)/(z,) =0 = 2¢, =0 = ¢, = 0.



Clamped boundaries:
Left boundary: Sjy(zo) = 2o and S (z,) = 2.

Thus, by = 2o, which, using (6) becomes z, = “7% — %[cl + 2¢q] or
2c0 + ¢ = % [% - zo], and we can eliminate cg.

Right boundary: We have b, = 2, = b,_1 + (¢s—1 + ¢,)h from (5) and using (6) we get
zy = ==t — B, 4 20, 0] + (Co1 + o)

Bringing the cs to one side gives: ¢,—1 +2¢, = 3 [zn -
Cn-

%], and we can eliminate

For non-uniform grid spacing we use the general equation:

hi_lS,-_l + (th_l + 2hZ)Sz + hz’SH—l = 6(yl+’;—yl — ylh_;izl_l)

Linearity (free) end conditions (y"(zo) = ¥"(x,) = 0) = ¢y = ¢, = 0.

Clamped boundary conditions f'(z9) = A and f'(z,) = B give

2hgcy + hoci = M —3A and h,_1 + c h,1 = 3[3”{7?’;‘1] — 3B and we can
eliminate ¢y and c,. ’ "

Another Spline Derivation (Epperson)
Consider the function

0 z < -2
(x+2)3 —2<z< -1
1+3z+1)+3(z+1)2=-3(z+1)>® —-1<z<0

B@) = 4 {3i—g)+301-2)2-301-2)? O0<z<1
(2—1z)? 1<z<2
0 T >2
Check that B(x) is a cubic spline.
B(0) =4  B(x1) =1 B(#£2) = 0
Notice that: B'(0) = 0 B'(£l) = ¥3 B'(x2) =0
B"(0) = 12 B"(£l) = 6 B"(£2) = 0

B(x;) is a spline with non-zero grid values only at z; and z;11, with

B'(z;) =0 B'(ziz1) = F5  B(Tiz) = 0
B”(.’L‘i) = % B”(-Tizl:l) = h% B”(ﬂ?iiz) = 0

Now, we just want to combine

n+1
> ¢Bi(z) forn = 0,1,2,...,n

i=—1



such that this sum of the Bs passes through all the (z;,v;), i.e.,
f(wo) = c_1B_1(wo) + coBo(wo) + c1Bi(xo)

c_1 +dcy +
co +4c1 + ¢
c; +4cy + c3
Ccy +4c3 +cy

We need 2 end conditions:
Free boundaries (or Natural Spline):
f”(-TO) —
Similarly, f"(z,) =
The linear system becomes:

660
co +4c; + ¢
¢ +4cy + c3
Ccy +4c3 ey

Cn—3 +4Cn72

Clamped boundaries:

Cn—3 +4Cn—2 + Cpa1
+4Cn—1
Cp—1

Cn—2

12

0= %0_1 — 52Co + %01 =0=c_1=2¢ —c1.
6 12 6

= 0= 72Cn—1 — 33Cn + 2Cnt1 = 0= Cpt1 = ch — Cp—1-

+ Cn—1

Cp2 + 4Cn71

+ ¢
+ 4c,

+e =

6c, =

Left boundary: f'(zq) = 2o and f'(x,) = zy.

Taking the derivative of c_1B_1(xq) + coBo(xo) + ¢1B1(xo) gives —c_1% + Ocy + %cl
2, and

h

20 = C_1 =C — 3

+ Cn+1

. 3 3 h
zg. Similarly, —c, 13 +0cp + 3Cng1 = 20 = Coy1 = Cpo1 — 3



The linear system becomes:

decy +2¢4 = f(zo) + 2z
c +4c1 + = f(z1)
c1 +4ce + c3 = f(z2)

co +dc3 +cy = f(zs)

Cn3 tdcn 2 + ¢ = f(xan)

Cno +4cp 1 +oeo = f(xnfl)

2071—1 +4cn = f(xn) - %Zn

Set up the (tridiagonal) system for f(x) = sinmz using 4 intervals on [0,1] with natural
boundaries. We get,

600 = 0
Co +4Cl + ¢ = g
(&1 +4CQ + c3 = 0

— V2

Cy Fde3  Fea= %

0

+604 =

Error in Spline Approximation: If f € C* then the error is < ;2. h*M where M is the
maximum of f*). There are other types of splines: Bezier splines and B-splines are two
of them. These fit cubics, but they do not pass through every data point.

Inverse Interpolation Suppose we have a set of points or a function that is nonlinear in x
and we want to know for what value of x the function will be 0. We can perform inverse
interpolation. That is, we swap the meanings of x and y, perform interpolation on these
values and let the value of y be 0.

T

Example: Find a root of y = f(z) = z —e*.
e List several values of z; and y; bracketing the root (0 and 1 bracket the root). E.g.,
(0, _1)a (%7 % - ﬁ)’ (11 1- %)

o Let X;=y; =z, —e ™ and Y; = z;. E.g., (-1,0), (53— Jz.3) (1- 5 1)

e Perform interpolation (e.g., cubic spline or Lagrange polynomial) to obtain an
approximating function for Y (X).

e Let X = 0. Then Y(0) is an approximation to the desired root.
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Least Squares Approximation

Sometimes we have data, that theoretically should fit on a line but does not fit exactly.
(For example, if there are small measurement errors or if the model does not represent
the physics exactly). The equations are overdetermined if we have more than 2 points.
We want to answer the question: What is the “best” line to fit through the points?
One answer could be to minimize the sum of the absolute values of the perpendicular
distances between the line and the given points, but perpendicular distances are more
complicated than we desire. We can consider vertical differences between the line and the
given points Y |y — y;| but this is hard to minimize since it does not have a continuous
derivative. Instead we minimize the sum of the squares of vertical differences.

N
minimize »_ (y; — (a + bz;))’
i=1

Taking partial derivatives with respect to ¢ and b gives the equations:

a.l +byz = > Vi
ayYx, + byxi = Yy

Example: Find the "best” line through (2,2) (4,11) (6,28) (8,40). Our method gives:

4a + 200 = 81
20+ 1206 = 536
So the "best” lineisy = —12.5 + 6.55x.

We can also match a polynomial of a different degree, e.g. cubic asz® + a22% + a2 + aq.

Here,
N

minimize Y (y; — (a3% + apx] + a17; + ag))”
i=1

We find (after taking partial derivatives with respect to the as and setting to zero)

Y1 Yo Yl Yad ao > i
S Yal Yl Yal a | | Ty
Ya? Yal Y Yad a | | T2ty
Yad Yl Yad Yab as > xly;

Some other functional forms can also be put into a least squares format. E.g., y = be®
and y = bx®. Take logs of both sides and fite.g.,Iny = Inb+azorlny = Inb+ alnz.
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The results are often good, but these are not exactly the same as minimizing the squares of
the vertical errors of the original function. To do that would be too difficult as nonlinear
equations would arise.

Another functional form:
Suppose we have reason to believe that the points should fit on a curve of the form

Yy = 355 Note that i = b:—w‘” = 2(%) + é We can then apply least squares with

YziandX:%. NoszA—i—BthereA:%andB:g.

Multiple Linear Regression:
Suppose our data comes as a set of numbers z1, xs, ..., 2, leading to an output value y
and that we expect y to be linear in the values of the zs. l.e.,

Yy = ay + a1x1 + ATy + ... + ApTp

Suppose we have m data points — experimental readings, for example — with m > n. We
would like to have:

Iz Zi2 ... am Y1
1 mo1 x92 ... a2 ap Y2
a;
Aa = Y, A= , a= a9 Y =
a/n
1 Imi Tm2 --- Qmn Ym

Since this system is overdetermined, (there are more rows than columns) there is typically
no exact solution. Performing the analysis for least squares (partial derivatives set to
zero) leads to the result that we need only solve ATAa = A”y. Notice that ATA is a
square matrix (m x m) and we can use Gaussian elimination.

Least squares for simple periodic data on one period:
Suppose y = ag + ay cos(wot) + by sin(wet). Least squares yields (with N data points):

N > cos(wot) > sin(wot) ag >y
S cos(wot) Y cos?(wot) > cos(wpt) sin(wot) as = | > ycos(wpt)
Ssin(wpt) Y cos(wot) sin(wot) 3 sin®(wpt) by > ysin(wot)

Using the identities for sums of sines and cosines over one period:

Z(:os](i,[uot) _ Zsingi[uot) _ Zcos(cuoti\?in(cuot) _ 0
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N N 2
we have
N 0 0 aop >y
0% 0 a = | X ycos(wot)
0 0 % by > ysin(wot)
2 t 2 i t
yielding ay = %, a; = Zy+s(wo)’ and b; = ZysTln(wo) forj=1,2,...,m.
This result can be generalized for
f(t) = ap + ajcos(wot) + bysin(wet) + ... + amycos(mwot) + by, sin(mwot)
2 jwot 2 in(jwot
vielding ap = %’ 0 = Eycjcif(jwo )’ and b; = EySJI\III(on )

Nonlinear Regression:

Suppose we expect the data to lie on (or near) a messy function that we cannot transform
into a linear form that we can use one of the previous least squares techniques on. For
example, suppose y = f(x,a9,a1) = ao(l — e~ ") where the as are unknown. The
method presented here is called the Gauss-Newton method.

If we guess values of ay and a;, then we can approximate f(z;) for nearby values of
ap and ay by f(z;);+1 where j + 1 indicates the j + 1 iterate of ag and a;.

of (x:); Adg + of (x:);
0

8a0 a1

f(@i)j =~ fzi); + Aay

This leads to the system of linear equations (noting that we would like f(z;);4+1 to be
equal to y;.

Of(z1);  Of(z1);

6f8(a0)‘ afa(al). y1 — f(w1, Qg,; aalaj)
325] azfj ACL() yQ_f(:r?aa'O:jaalaj)
. Aa/l - 0
‘9{;23)7' af(ng)f Yn — f(@n, G0yj41 5 Q1yj41 )
Of(x;); - of(x;); . .
where M = 1—e "% and M = —aop ze” 7" for the example function
80,0 aa'l ’
above.

Perform least squares (ATAz = ATy) to find Aag and Aa;. Then ag,j+1 = ag,; +Aag
and a1,j41 = a1,; +Aa; and repeat until the sequence of ags and a;s converge.

Some issues to note concerning the Gauss-Newton method.
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e If the partial derivatives are difficult to compute, numerical derivatives may be
used.

e The Gauss-Newton method may converge slowly, oscillate wildly or may not con-
verge at all.

e Another option is to guess ay and a; and use optimization techniques, such as
steepest descent or conjugate gradient, on Z(f(:r,) — )2
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