Initial Value Problems for ODEs

Some applications of Ordinary Differential Equations (they really arise in many places):

e Chemical Reactor Dynamics

e Predator-Prey problems

e Atmospheric Fluid Dynamics

e Electrical circuits

e Advanced mass-spring systems

e Pendulum Dynamics

e Biological Dynamics e.g., glucose uptake and insulin production

e Finance

Some ODEs (actually most ODEs) cannot be solved analytically. For example, the ODE
may be nonlinear or the right hand side makes it too hard to integrate. E.g. pendulum
20

equation &z — £sinf = 0. For small § we linearize the ODE (sinz ~ z for small x),

but for larger values of we usually solve numerically.

We’ll study the first order ODE
dy
dt

(Any higher order ODE that can be solved for the highest derivative term can be written
as a system of first-order ODEs. Show how to do this with a 3rd order ODE.)

= f(y,t) with y(a) = «

We would like simply to integrate the above ODE to get y(t) = [f(y(t),t) dt. However,
we do not know the integrand since we do not yet know y(¢).

We’ll only consider problems with “reasonable” functions f. If f changes too rapidly,
the integration (numerical) method might have difficulty.

A Well Posed Initial Value Problem has a unique solution. Small changes in f or y(a) lead
to small changes in the solution (otherwise, round-off error leads to inaccurate solutions
- e.g., chaos might arise).

The idea of ALL numerical methods for solving (integrating) ODEs is to approximate an
average slope on an interval

f(y,1t)

Elementary Theory of ODE Initial Value Problems (IVPs)

A function f(y,t) satisfies a Lipschitz condition in y on a region in the (¢, y)-plane if
a constant L exists such that |f(yi,t) — f(y2,t)] < Lly1 — y2| ¥V (¢,41), (¢, y2) in the
region.
That is, f does not change very rapidly when y changes by only a little bit (for fixed).

If f(y,t) is continuous and Lipschitz on a region in the (¢,y) plane (a < t < b,
—00 < y < 00), then the IVP % = f(y,t) with y(a) = o has a unique solution, y(t)
for a <t <b. (If f, is only continuous at a < ¢ < b, there is a unique solution, but it is
not guaranteed to exist on the entire interval).

Taylor Series Method

1,1

Since y(t) = y(a) + y'(a)(t—a) + 3y"(a)(t—a)® + ... and we are given y(a) and
a recipe for % = f(y,t), we can plug in and compute y'(a). We can take the derivatives
of the original ODE

d? d
e R
3
CY — fut Fuf+ Bt 18+ 1+ Ff)

We plug in a and find 3”(a). We can continue in this manner and find more and more
terms in our Taylor series.

Disadvantages:

The method is not easy to code since we’d need some sort of automatic partial
differentiation.

The number of terms grows as we take more derivatives.

The method is only any good if convergence is fast around ¢ = a, so that we would
only need a few terms.

e The method is only any good if we are not interested in values of y(t) for ¢ far from
a.
d
Example: & = y%e* where y(0) = 1

Example: ‘fi—g = — 2t —y where y(0) = —1 (from text)

The error can be related to the first abandoned term of the Taylor Series. Suppose we keep

1d" dn+1 t — q)ntt
terms through ——y(t —a)". Then we can estimate the error as y() (t = a) :
it (n+ 1)

n! dt®
Unfortunately, we have no idea what our error is since we don’t know y, although if our
Taylor Series terms are shrinking, we can be pretty confident we are not leaving out too
much.

We expect the computed solution to be good around ¢ = a. We can piece together
solutions by computing an approximate solution for a small region around ¢ = @ and
connecting to next region. Work out a few terms for the higher order ODE IVP.
Example: vy’ = 3+ 1 — y? with y(0) =1 and y'(0) = —2.

Euler’s Method

This method is easy to understand, apply and code up. It is not used much (because
there are other easy to apply methods that have smaller error), but presents the main
ideas of alot of these methods in a simple form.

o Lett; = a + th, where h = ”’T“, dividing the interval from a to b into N pieces.

e We have %‘é = f(y,t)
e So, y(tiv1) = y(t; + h) = y(t;) + hf(yi,t;) + ... by Taylor’s Theorem.

e We ignore the higher order terms, giving us the difference equation:
Wir1 = W; =+ hf(w,,t,)

o (We've called the computed values w and will continue to do so throughout).
e Since the first term ignored has order h?, in one step, the error has order h?.
e Since going from t = a to t = b takes ”_T“ steps, the total error is th_T“ ~ h.

e It can be shown more carefully that the error

hM)
lyi — wi| < i[ehu —1]

where L is the Lipschitz constant and M is an upper bound for y”(§) where £ € [a, b].

How to arrive at this error estimate for Euler’s method

Since y(ti—H) = y(t, + h) = y(tz) + hf(yz, tz) + h;y”(ﬁ) and Wir1 = Wy + hf(wz, tz)

Yir1 — W] < yi —wi| + bl f(yi, ts) — flwi,)] + ’;—2@"(&)\-

If f is Lipschitz, with constant L, and has second derivative less than M, we have
2
Yir1 — wip] < lyi —wil + RL(ys —wi)| + %M.

This gives the dlfference equation (letting p; = \yz w;):
2
pist < (1 +hL)p; + M = piy < e (pg + B 35) — B4

e (Using e® <1+ and if ;11 < (1 + 8)a; +t, then a;41 < eV (ag +1t/s) —t/s)
e So, if the initial error is zero, p;y1 < (eihL - 1)%

Local truncation error:
Write the difference method as wy = « and w; 11 = w; + hé(w;, t;).

Let 7;(h) = 7%= — ¢(y;_1,t;—1) where the ys are the exact values. This can be written
h

Tipa(h) = v

We assume we have the exact value at the previous step.
For Euler’s method we have

ni(h) = H5E ¢(wi_1’£i_1)
i— h i—1:ti— h'_ " —Yi-
_ yimithiia ;sz(g)yl—f(yi 1 tio1)
— gy”(é‘)

So, |ri(h)] < %

and the local truncation error is O(h).

Pictorially, we are approximating the ODE be a tangent line of length A (in the ¢ direc-
tion). We then repeat the procedure from the new (computed) point, w(t;+1)-

Example: Use Euler’s method for % = —2t — y where y(0) = —1 using h = 0.1 to
approximate y(0.4).

Local truncation error for the Taylor Series Method:

Write the difference method as wy = « and w; 11 = w; + hé(w;, ;).

Let 7;(h) = ¥==% — ¢(y;_1,t;_1) where the ys are the exact values.

For the Taylor Series method including through nth derivatives (of y), we have

7i(h) = Y52 — @ (yi1,ti)

Here, ¢(yi_1,tio1) = y'(tic1) + 29" (tice) + ... + 2 n. —y™ (tio1)
) 1t L h () ’ hn+l (n+1) - i1
T,-(h) _ Yi—1+hy' (ti—1)+.+ 57y (th 1)+ i (&) — v _ ¢(yif1,t¢f1)

= ey (E)-
(n+1)!
and the local truncation error is O(h").

Runge Kutta Methods

We have seen above that if we have our method match the terms of the Taylor series
method through order n, the local truncation error (related to the global error) will be

O(h™).
2 point methods: Midpoint Method, Heun’s Method and Modified Euler

We consider methods of the form
wiy1 = w; + aky + bky where ky = hf(wy, t;) and ky = hf(w; + Bk, t; + ah)

That is, we allow for two evaluations of f, one of which is at the current point. Let’s see

how much of the Taylor series we can match up.
—i—hdy-i—th2 +h3d3 +. here all terms are evaluated at (y;,t;)
; —— 4+ —— . wher rms are evalu iy Li
Yiv1 = Yi dt 2 di2 31 dt3 Yis Ui

Yit1 —yz+hf+ (ft+fyf) (fyyf +2ffyt+f [+ fofi + fu) +

Next, expand w;q
Wir1 = W; + ak1 + bkg

= w; + ahf(y;, t;) + bhf(y; + Bhf,t; + ah).

= w; + ahf + bh(f + Bhff, + ahf,+ Gl y | 2ahbhpp o (@A pp
where f alone denotes f(y;, ;).

Now, compare y;;1 with w;,;, assuming we start at the correct value (i.e., w; = ;).
Term y w
f: = ah+bh = a+b =
fi: ’IL;Z = af’ = ab =
fy: sh*f = bBR°f = pBb =
Note that there are too many h? terms to match. (We have 3 equations in 4 unknowns

but would have to match up fy, f2, ffyts fy2f7 fyft, fu to make 8 equations in 4 unknowns
and it cannot be done — not consistent, overdetermined).

>

N[N [= =

All methods satisfying these conditions have their first truncation errors in the h?
term of the Taylor series, so the local truncation error is O(h?).

There are many choices we can make satisfying the 3 conditions.

e When we let a=0,b=1, «=1/2 and 3 = 1/2 we have the midpoint method
1 1
wiyr = w; + hf(w; + §hf(wi,ti),ti + §h)
Here, half an Euler step was performed to allow us to approximate the derivative
in the middle of the interval.

e When welet a =1, b= 3, @ =1 and § =1 we have the Modified Euler method.

h
wit1 = w; + §[f(wiati) + flw; + hf(w,t;),ti + h)]
That is, we average the slope at the beginning and the end of the interval.
e When we let a = %, b= %, a= % and = % we have Heun’s method

h 2 2
Wip1 = w; + Z[f(wiati) + 3f(w; + ghf(wi,tz’),tri‘gh)]

Error Analysis for the Midpoint Method
Here, the method is w;y1 = w; + hf(w; + %hf(wi,ti),ti + %h)
Thus, ¢(w;,t;) = f(wi + Fhf(wi,t;),t; + 3h) and
Titv1(h) = #5725 — d(wi, 1)
it (yi i)+ O(h®)—y;

_ Yt Fyiti)+% (J;lt+ffy)+ (P°)—yi (f(yz',ti) + %hft(yiati) + fy(yz,tz)%f(yz,tz) + O(h2))
where the O(h?) terms in the fractiogl are ’é—?[ftt + fu f +2fy(ft + fuf) + [(fur + fuu)]
and the O(h?) terms from ¢ are (%) fie + B2 f foy + (%) fuy-

These terms cannot possibly match up so 7;41(h) = O(h?).

General Setup of Runge-Kutta Methods

Third order Runge-Kutta methods are rarely used. It might be helpful if we set up the
pattern for second, third and fourth order Runge-Kutta methods.

e For second order
Wip1 = wi+a1k1 + 0,2]{72

where
kl = hf(wla tz)
ke = hf(w + quiki,ti +ph)

This has 4 unknowns: ai, a2, p1 and ¢q;.

e For third order
Wiy1 = wi—l—alkl + CLQk‘Q + CL3]€3

where
ki = hf(w,t;)
ke = hf(w+ quiki,ti +prh)
ks = hf(w; + guki + quks, t; + poh)

This has 8 unknowns: a;, ag, as, p1, P2, qi1, ¢21 and goo. (There arise 6 conditions
in matching up terms giving, local truncation error O(h?)).

e For fourth order

Wiy1 = wi+a1k1 + (Lgkg + CL3]€3 + CL4]€4

where
ki = hf(w,t)
k‘g = (w +Q11k1,t +p1h,)
ks = hf(w; + guki + gks, ti + p2h)

ks = hf(w; + gs1k1 + qs2ka + qs3ks, t; + psh)

This has 13 unknowns: a1, as, a3, a1, p1, P2, P3, qu1, 21, Go2, G31, g2 and gss.
(There arise 11?7 conditions in matching up terms, giving local truncation error

O(h%)).

Fourth Order Runge-Kutta

We see that by including more function evaluations, we can increase the order of Runge-
Kutta methods. For the second order RK methods, we had 2 function evaluations. In
order to get fourth order derivatives to match, we need 4 function evaluations. Again,
the method is not unique. However, there is one version that has become the standard
for 4th order Runge Kutta computations.

We let w1 = w, + %(k1+2k2+2k3+k4) where
k1l = hf(wnatn)
k3 = hf(wn+ Sko,t, + 2
k4 = hf(w, + k3, tp +h)

The local truncation error for this method is O(h*) so, although there are 4 function
evaluations per time step, the error is usually much smaller than for second order RK,
even for a larger step size.

Some notes on error:

e The error in one step of the above methods is one order better than the “local
truncation error”. E.g. One step of Euler has error O(h?) but the local truncation
error is O(h). We always lose an order (as we did in integration) when we go
“global”. Again, in a handwaving manner, there will be order % steps times the
one-step error to justify losing the order. As we saw for Euler’s method, it is really
more complicated than that, but it is good enough for us.

e Variable Step Size. One can use the ideas of adaptive integration to vary step size.
If y has flat regions and regions where it varies greatly, it might be useful to use
smaller step sizes in the regions of greater variability. One can use a numerical
method with, say, step size h over parts of the region and then recompute using
step size h/2. In those regions where the answers differ by more than a certain
amount, use a smaller step size. In this way, different parts of your computed
solutions will be obtained using different step sizes, but on each region, the error
will be roughly the same.

For example, since Runge-Kutta is fourth order accurate, if we halve the step size,
we expect one-sixteenth the error. So if the difference between the coarse and fine
results is no more than 15 times the tolerance for this time step, we can be pretty
confident that the finer Runge-Kutta value is acceptable.

Predictor-Corrector Methods — Multi-Step Methods

An m-step multistep method is a method of solving Z—?Z = f(y(t),t) with y(a) = « of
the form:
Wit1 = A 1W; + OGpoWi1 + ... + GWit1-m

+ hlbpf(Wist, tiv1) + b1 f(wit) + oo+ bof(Wis1 m, tiv1m)]-
We need m starting values. Typically, all but the first one needed comes from using one
step methods like Runge-Kutta Fourth Order.

Ezplicit m-step methods: (when b,, = 0) w;11 = F(w;, wi—1,..., Wit1-m)
Implicit m-step methods: wiy1 = F(Wip1, Wi, Wi 1, .., Wit1-m)

Idea: Use an interpolating (Lagrange) polynomial on the m known values of f (e.g. values
0,1,...,m-1) and integrate.

Example: Suppose we know 2 points on the solution, (¢;,y;) and (¢;11,%i+1). Find
(tiv2, Yira)-

e Knowing (Z;,y:) and (fir1, yi+1), gives us fi and fir1 (ie. f(yi,ti) and f(yiv1, tit1)).

e We can find the Lagrange polynomial through the points (¢;, f;) and (¢;11, fit1)-

e Since ‘fg = f(y(t),t) we have y = [f(y(t),t)dt.
e Let tg = 0, t; = h and ¢, = 2h. The Lagrange polynomial through (¢;,7;) and
(tis1, Vi) is . t L
L(t) = fo— + i

Thus, y(t2) ~ y(t) + [f(y(t), t)dt ~ y(tl) 2oty —) + fu(t — to)]dt
y(ta) ~ y(t) + 2[3fi — fo

e So, the 2 step method derived here is:
h
Wiy = w; + 5[3f(wiati) — flwi1,ti-1)]
We use local truncation error in the form: 7;,(h) = ¥#57# This becomes, for
multistep methods: 7,y (h) = Y=(@mo1wi & em_yticy ¥ - T GoWisiom)

h
—[bm f(Wig1,tiv1 + b1 f(wi,ti) + .. + bof (Wit1-m, tiv1—m)]

Thus, the local truncation error is O(h?) since the Lagrange polynomial has error
O(h?), the integral is over length h making it O(h®) and we lose a power as always when
we apply a method on an interval from a to b. The method just derived is called the
Adams-Bashforth Two Step Predictor. Notice that this is an explicit scheme.

Note: We will often use the notation f; to represent f(wj,t;).

One can now use the three known values, (¢;, f;), (tiv1, fir1) and (£, fiz2) to find a
quadratic Lagrange polynomial:
Y(tay) = i+ [2[fo U2 g HE2) g R

~y 4+ LB5f, + 8fi — fo] with local truncation error O(h?).
In our usual notation, this becomes

h
Wit1 = w; + ﬁ[5f(wi+1ati+1) + 8f(wit;) — flwi—1,ti1)]

This method is called the Adams-Moulton Two Step Corrector. Notice that this is an
implicit scheme.

Note: A simple check one can make that will catch many careless errors in deriving these
methods is that they must be able to be simplied to something like w;1 1 = w; + h*
(average slope) or w;11 = w;_x+ (k+1)h=(average slope). If more than one old value
of w is used, it is more more complicated.

Example: Consider % = —2¢ — y with y(0) = 1 and y(.1) = —0.9145 from fourth order
Runge-Kutta.

e Find y(.2) using Adams-Bashforth 2-step and then update using Adams-Moulton
2-step.

e Since this ODE is linear, we can compute Adams-Moulton without Adams-Bashforth.

Find an approximation for y(0.2) using only Adams-Moulton without Adams-
Bashforth.

If we try to apply Adams-Moulton alone for a nonlinear ODE, we often cannot solve
explicitly. (That’s why it is called an implicit method.)
For example, consider % = siny
We'll get wo = wi + $5[5siny, + 8siny; — sinyg|, which we cannot solve for y, since

the equation is nonlinear and implicit. Using the predictor together with the corrector,
gives the higher order error of Adams-Moulton.

Some Adams Formulas:

Steps Adams Bashforth Explicit One step error
2 Wpy1 = Wp + %[3fn — fn-1] %ymh?’
3 Wnp1 = Wy + &[23f, — 16fu_1 + 5fp2] 2yWp

4 Wpt+1 = Wy + %[55](71 - 59fn—1 + 37fn—2 - 9fn—3] %y(5)h5

Steps Adams Moulton Implicit One step error
2 Wpy1 = Wy + %[5fn+1 + 8fn — fal ;_419(4)}14
3 Wpy1 = Wy + %[9fn+1 +19fn = 5fn1+ fu 2] ;Tl(?y(S)hs
4 Wnt1 = Wy + ~5[251fni1 + 646 f, — 264f, 1 + 106 f,_5 — 19f, 5] 2y©hS

A variation on this is to “recorrect”, i.e., after using Adams-Moulton, use Adams-
Moulton again and again until w,1 stops changing.

Notice that all the Adams methods have w;,; = w; +.... The data at the newest
point is used along with slopes at several known points.

One can derive other methods similar to the Adams methods by starting at a point fur-
ther back and using Newton-Cotes integration formulas. Predictor methods can be based
on Newton-Cotes open formulas, while corrector methods can be based on Newton-Cotes
closed formulas. For the predictor, the points z;_(,_1),...,%i—1, 7; and their correspond-
ing f values f;_(n_1),..., fi—1, fi are used to predict y;;; based on fitting a Lagrange
polynomial through the known (z, f) values and integrating with an open Newton-Cotes
formula. Some examples are:

10

Wpy1 = Wyp—1 + 2hf,Midpoint Method
Wp41 = Wp—2 + %[fn + fn—l]
Wp+1 = Wp—3 + %[an - fnfl + 2fn72]

The corrector methods can be based on closed Newton-Cotes formulas. Some exam-
ples are:

Wpy1 = W, + hf,r1 An Adams — Moulton Zero Step Backward Euler
Wnt1 = W + %[fay1 + fu] An Adams — Moulton One Step Trapezoidal
Wnp1 = Wpo1 + %[fur1 + 4fn + fa—1] Implicit Simpson's Method
Wnt1 = Woo + §lfars + 3fa + 3fa 1 + fu o]Simpson’s 3/8 Rule

Another similar method is called Milne’s method: w; 1 = w;_3 + % [2fi—fii1+2fi_a]-
Here, using the values at ¢;_», t;_1 and ¢;, a Lagrange polynomial is fit to the values of f
and then w;,; = w;_3 + ﬁiifsl Lagrange polynomial dt. Milne’s method is often used
with the Implicit Simpson’s Method corrector above which fits a quadratic for f through
ti+1, ti and ti—l-

Another example is sometimes given Heun’s name. The predictor is the Midpoint
method w,11 = w,_1 + 2hf, and the corrector is Improved Euler w,,1 = w, +

%[fn-l—l + fn]

Another set of methods are called backward difference formulas. For the derivation,
one considers Lagrange polynomials through 1, yn...) andtakes the derivative at ¢,,
to get a method of the form

—1
Ynt1 = Zzoukyn—k + Vfnt1
These methods are used for stiff ODEs.
Another Way to Define Truncation Error — Epperson
The presentation in Epperson seems better than what I have above.
The residual of a numerical ODE method is given by
p
Ry = Yns1 — I;)akyn—k — hE(Yn+15 Yns -+ Yn—p} 15 s - fop)

i.e., it is the true y,; minus the computed value.

11

The truncation error is 7, = %Rn.
The method is consistent if limy,_,o max;, _7|t,| = 0.

Examples:

Euler’s Method: \

h
Ri = yiy1 — i + hf(yts)] = 5%{1(5)

and the truncation error is %yz’.’ (€) and the method is consistent.

Similarly for Taylor series

R i
Ri = yiy1 — i + hf(yts) + ...+ Y (ti1)] = (n+1)!

y"(€)

and the truncation error is frach™(n + 1)ly™+Y(¢) and the method is consistent (for
n>1).

Consistency, Convergence and Stability

e Consistent - The method (i.e., the difference scheme) must be reducible to the
ODE as h — 0. 7i41(h) = 57 — ¢(w;,t;) = O(hP) where the method is
wiy1 = w; + ho(w;, t;) and w; = y;. We say the method is consistent if p > 1.
Recall, another way to write 7;,1(h) is #H-51,

e Convergent — |y; — w;| — 0 as h — 0. E.g. Euler’'s method has |y; — w;| <
%(e’:(”’a) — 1) — 0 as h — 0. Usually, convergence is very hard to prove.

o Stable - Will numerical solutions grow for ODEs with solutions that don’t grow?
E.g. v = —Ay with A > 0. Will small errors in initial conditions yield small changes
in the solution for problems in which the exact solution does not grow? A stable
method depends continuously on the initial data — similar to well-posedness.

e Theorem: Convergent < Consistent (for one-step methods). E.g. Euler’s method
has 7;41(h) =~ O(h) so this method is consistent and, therefore, convergent. Modi-
fied Euler has 7;,1(h) ~ O(h?) so this method is consistent and, therefore, conver-
gent.

Stability with respect to step size

We consider the stable ODE 3y’ = —Ay with A > 0 so that solutions go to zero as t — oc.
Let us try to understand (for this ODE) what step size can be used when applying Euler’s
method.

12

wiyr = w; + hf(w,t;) = w; — Ahw; = (1 — Ah)w;. This implies that w; grows if
[1—Ah| > 1 and the method is stable for this ODE if -1 <1—-Ah<lor0<h < . Of
course, the answer might not be so accurate if h is close to %, but at least the computed
solution won’t grow.

Modified Euler for y' = —\y

w1 = wi + 2(f(wi,) + f(wi + hf(wi,t;), tig1))
Wit = w; + %(—)\wz —)\wz — /\h(—AwZ))
Wi+1 = w,(l — hA+)\2%2)

So we need —1 < 1 —h/\—l—)\z%2 <lor—2< —A\h+ h22)‘2 < 0.
The inequality on the left always holds. The one on the right is good only if 0 < h < %
So the method is stable for 0 < h < 3.

Trapezoidal (Implicit) Method for y' = —\y
Wit1 = w; + 2(f(wit;) + fwigr, ti1))
h

Wiy = w; + F(—Awip1 — Aw;)
1-h)

So, Wit = ﬁwi but

(1=%3

|(1+§)\)| < 1 Vh,A > 0.

So, the Trapezoidal rule is stable for all step sizes (where h and A are greater than 0).
Such a method is called A-stable. It turns out that the Trapezoidal method is the only
A-stable multi-step method.

Multi-Step Stability Analysis

Suppose the ODE of interest is % = f(y,t). We will assume that f = 0 in order to
perform stability analysis. We will analyze whether the numerical scheme will cause

small (round-off or truncation) errors to build up, decrease or remain the same.
We assume that the solver (difference equation) has solutions w, = A™.

Example: Adams-Bashforth Four Step:
Wits = Wips + 2[55fits — 59fiva +37fiz1 — 9fi] = A = A3 + L0,
The roots are A = 1,0,0,0.
e If all the |Als < 1 except for one and that one is A = 1, the method is STRONGLY
STABLE.

13

e If all the |[A|s < 1 and more than one value of A has |A| = 1 but these As with
magnitude 1 are distinct, the method is WEAKLY STABLE.

e All other cases give a method that is UNSTABLE

Notice that any method that attempts to solve the ODE should give a decent answer for

% = 0 so it must have A =1 (i.e., solution is constant).

Since for the Adams-Bashforth Four Step method analyzed above, the polynomial has
roots A = 1,0,0,0, this method is Strongly Stable.

Example: Milne’s Method:
Wira = wi + P2fis— fipa +2fia] = A = 1 + 0.
The roots are A = 1,—1,7,—i. So Milne’s method is Weakly Stable.

Example: Implicit Trapezoidal method:

Wir1 = wW; + g(fz+fz+1)=>)\ =1+ %0

This gives A — 1 = 0 = A = 1 = method is Strongly Stable. The trapezoidal
method is stable but not very accurate for large step sizes. The local truncation error is
7(h) = O(h?).

Theorem: If a multi-step method is consistent (reduces to the ODE as h — 0), then the
method is stable if and only if it is convergent.

Consider Adams-Bashforth four-step again. The method reduces to w,+1 = w, + hf, + ...

or Z—% = f(y,t) as h — 0, so the method is consistent. It is also (strongly) stable since

A = 1,0,0,0. Thus, according to our theorem, the method is convergent.

Analyzing the local truncation error of a multi-step method:
To analyze the local truncation error of the method

Wiy = dwiy — 3w — 2hf(wi, ;)
— Yit+2—Wi42
Tivo(h) = (EELEEE , .
2h 2h 2 3
yi+2hy§+%yg’-l—%y;”—f—...—él[yﬁ—hyﬁ’3—,y§’+’§—!y§”+...]+3yi+2hfi
2h
4h3y/_ll . 9
co- t-.. = 0O(h?)

A-Stability and Stability Regions

We consider the ODE y' = Ay with y(0) = 1. We let £ = Ah and plot on the real
and imaginary axis (in Ah) where the method is stable using difference equations and
roots of the relevant polynomial.

The stability region is the part of the complex plane where the method is absolutely
stable. [r| < 1. In general as the accuracy of the method increases, the size of the

14

stability region decreases. (See pp. 361-2, Epperson)
A method is called A-stable if its stability region includes the left half plane, i.e. A < 0.

Ex. Trapezoidal method for this ODE becomes: y,.1 = vy, + %h[)\yn + Y1l
S0, (1= 5)Yns1 = (L4 56)yn

1+ 3¢
1— 3¢

+ 3¢
1— 3¢

And then, y,11 = Yn- Since | | <1 VX where Re(\) <0, the Trapezoidal

method is A-stable.
Systems of ODEs

All the methods we have used can be applied to systems of ODEs in a straightforward
manner. We must solve for all the values at a particular time before moving onto the
next time.

For example, in order to use Runge-Kutta for a system, you need to compute all
the ks before starting on the kys since the kos can depend on the kis from the other
equations.

Example: Consider

y' — 2y + 2y = e*sint on 0<t<1

with y(0) = —0.4 and ¢'(0) = —0.6

e Letu; = yand up = ¢/

e Then, (U)
Ug

e Use Improved Euler (an RK-2 method) to demonstrate working through one time
step.

U2
2uy — 2uy + e*tsint

A Lipschitz condition similar to that for the case of a single first order ODE applies
to systems and guarantees a unique solution exists for a system of n ODEs if we have

‘f(yla Y2, ---, ynat) - f(zla 22y Znat)| S LZ?:I |yZ - Zz‘
The error analysis for systems is similar to that for a single ODE.
Gragg Extrapolation for ODEs

This is the same as Richardson Extrapolation (for numerical differentiation) and
Romberg Integration (for numerical integration) but when it is used for ODEs it is

15

called Gragg Extrapolation. For example, the Midpoint method has error of the form
kih? + kyh* + ... We can eliminate these terms using different step sizes of h, to
improve the results. Of course, we can only improve the results at grid points common
to all the step sizes.

Stiff ODEs

ODEs with rapidly decaying transients or with varying time scales can cause problems
for many methods. Usually, we are interested only in the steady or near-steady aspects
of the solution. One can use VERY small time steps or use an implicit method.

Such problems arise in springs, control systems and chemical kinetics problems.

Example (B&F § 5.11):

uf = 9u; + 24uy + Hcost — gsint w(0) = 3
ul = —24u; — 5luy — 9cost + zsint ux(0) = 3
Exact Solution

uy (t) = 273 — 3% 4 lcost

s (t) = —e ¥ + 2¢7%" — Lcost

Obviously, the e™3% terms — 0 very quickly. However, they also have very large
derivatives so a step size that is too large can cause the ODE solver to overshoot 0 and
go very negative and the next step might give a very large negative or, positive but
unrealistic, slope and the solution can get worse and worse.

For the above system, one obtains good results with Runge-Kutta (4th order) for step
size 0.05 but extremely poor results for A = 1.

Generally, one uses implicit multi-step methods for stiff linear ODEs, since they tend
to have good stability properties.

Consider % = — ay using the Backward Euler (aka Implicit Euler).

Yisr = Yi + hf(Yis1, tiv1) = ¥ — ahyiy

which yields
i 1 + ah
Solving a stiff nonlinear ODE: Implicit methods may be combined with Newton’s
method or Secant method (with w; as a starting guess, or using a one-step method

as a starting guess) for nonlinear ODEs. E.g., consider the Trapezoidal method.

16

e Wi, = w; + %[f(wi+1,ti+1) + f(w;, t;)] but w;1 appears on both sides and is
unknown.

e Start with an initial guess and then solve:
F(wjy) = wjp — wj — 2[f(wjg1,tj11) + f(wj, ;)] = 0 for wjy; using Newton’s
method.

e This becomes,

k) _ (k1) Fwiy1)
Wirt = Wil 7 Fwig)
_ k—
w® = e wih V- w, _h%[f(w§+11);ti+1)+f(wi,ti)]
i+1 1 1=3 fy(wjt1,tj+1)

where the superscript indicates the Newton method iteration step and the subscript
indicates the space and time location, as usual.

In some sense, the multi-step methods are more efficient than one-step methods in
that for Runge-Kutta, functions are evaluated once and never again used, whereas multi-
step methods use the values of the function and its derivative several times.

Some nice problems on multistep methods - from Burden and Faires

1. Given the multistep method

3 1
Wit1 = = Wi + 3w;—1 — o Wi + 3hf(w;,t;)
for 2 = 2,..., N — 1 with starting values wy, w; and ws. Find the local truncation

error. Comment on consistency, stability and convergence. (Assume all previous
values are exact and write out Taylor series, match up terms and consider whether
Yetlo ikl is O(hP) where p > 1).

2. Obtain an approximate solution to the differential equation ¥’ = y on 0 < ¢ < 10
where y(0) = 1 using Milne’s method with A = 0.1 and h = 0.01, with exact
starting values wy = 1 and w; = e~". How does the step size influence the number
of correct digits in the computed solutions at ¢ =1 and t = 107

3. Investigate the stability of the difference method:
W41 = —41,01' + 5’LUZ'_1 + 2h[f(wz,tl) + 2hf(wi_1,ti_1)].

4. Consider the problem y' = 0 for 0 < ¢ < 10 with y(0) = 0, which has solution
y = 0. Consider the propagation of error for 6 steps for the difference scheme
wiy1 = 4w; — dw;_1 where wy =0 and w; = e.

17

Boundary Value Problems (BVPs) for ODEs

An application: Heat flow in a rod
Linear

Tpe + W(T, — T) = 0 where T(0) = T, and T(L) = Ty

Nonlinear
Toe + (T, — T)* = 0 where T(0) = T} and T(L) = T

Many other applications arise by performing a technique known as Separation of Variables
on PDEs.

Here we are given information about the solution to the ODE at the endpoints y(0)
and y(L), for instance, for a second order ODE, but not the derivative at x = 0.

Linear Shooting Method
Consider y" = f(z,y,y’) on a <z < b where y(a) = « and y(b) = 3.

Theorem: If f is continuous on the region {(z,y,y')|a <z < b,—00o <y < 00,—00 <y <
oo} andf, and f, are also continuous on the region and f, > 0 while f,, < M V(z,y,y')
in the region, then the Boundary Value Problem has a unique solution.

Example: y" + e + siny’ = 0on 1 <z <2 with y(1) =y(2) =0.

For the general linear second order ODE, ¢ = p(z)y" + q(z)y + r(z), with y(a) = vy,
and y(b) = yg, where p,q and r are continuous on [a,b] and ¢(z) > 0 on [a, b], the
above theorem implies that the ODE BVP has a unique solution.

To investigate how to solve such a problem, consider the ODEs:
y! = plx)y; + q(x)y1 + r(x) on [a,b] with y(a) = a and y'(a) = 0 and
ys = p(z)y; + ¢(z)ye on [a,b] with y(a) = 0 and y'(a) = 1

We can solve these ODE (IVPs) using, for example, Runge-Kutta for systems.

Notice that letting Y = y; + coys gives us Y(a) = o and Y'(a) = c,.

Notice also that Y is a solution of the original ODE. (Just consider Y" = y{ + coyf
and plug in).

We would like Y(b) = £, i.e., require y1(b) + coy2(b) = B = ¢ = ﬂy%(lb()b)

Thus, 0
B —y1(b
V() = wla) + ()

18

Nonlinear Shooting Method

Superposition does not hold for solutions to nonlinear ODEs so we cannot use the
Linear Shooting Method. Now, we will solve the ODE (by our favorite numerical method,
e.g. Runge-Kutta) with y(a) = « but with two guesses for y'(a), say, y'(a) = t, and
y'(a) = t;. We will try to obtain a sequence of ty,t1,... such that limg_,o[y(b, tx) —
B] = 0, where y(b,t) is the computed value of y at z = b using y'(a) = .

We apply the Secant method or Regula Falsi on F(t) = y(b,t) — 3 to obtain t,, then
on t; and ty (or ¢y and t, if this brackets the root) to obtain ¢3, etc. Here are the details:

We solve for the line through y(b,t) = yo and y(b,t1) = y1.

This line has equation:
Yy — yo = m(t2 — to)
y—yo= 1= (t2 — to)

Letting y = 3, we find t, = t; + %_

: _ (th—1—th—2)(B—yr—2) _ (tr—1—tr—2)(B—Yk—1)
So, in general, ¢ty = tx_o + 1yk_17yk_2 or ty, = tp_1 + T .

A variant of this method using Newton’s method also can be derived, but another
derivative (or an approximation to it) is needed (%|,;) and must be approximated, so it
is more complicated and Secant method is often applied. The Newton’s method is

Yr—1— 0
e = tp—1 — dy

dt

batk—l

Finite Difference Methods for BVPs

The idea here is to apply the difference methods we learned earlier to approximate
derivatives in order to solve an ODE-BVP by turning the problem into a system of linear
(or nonlinear) equations.

Recall that y"(z;) = y(w”l)*?ylggi)”(‘”*l) and y'(z;) = —y(”“)?;y(w"*l).

The Linear Problem

We discretize the ODE on the interval: e.g. 4" = p(z)y’ + q¢(x)y + r(z) with
y(a) = aand y(b) = B. Now, y(zo) = y(a) = a and y(z,) = y(b) = [are known.

19

Write the ODE as

y(Tiy1) —2y}§;ci) +y(zi-1) p(xi)y(xz‘+1)2—hy($i—1) —q@)y(z) = r(z)

The equations become (for z;, z; and z, | where i =2,3,4,...,n—2):

2 1 p(x1)

(et o)+ (5~ o) ylan) = rlo) — 13 —plor) oy

(i + 25 wtonn) = (5 +) e + (s = P50) lin) = 7o

(i + pmn_l)) y(wi—g) — (% + Q(wn—1)> Y(@n1) = r(@na1) — 75 T P(@n-1) o7

This is just a linear system of equations. It is tridiagonal and, thus, extremely efficient
to solve using Gaussian elimination. The solution will exist and be unique if h < %, where
L = mazq<z<p|p(x)| and g(z) > 0 (By Gershgorin’s theorem). The truncation errors in
these approximations for 3’ and y" are O(h?) so the method is order h2. So, in this sense,
it is not as good as Runge-Kutta.

We can obtain better approximations by adding more points. Another option is to
use higher order discretizations, but this leads to wider bands in the matrix and means
something special must be done for more of the points near the endpoints — one-sided
derivatives and special cases, which make coding more complicated. It is easier to reduce
the step size and perform Richardson extrapolation since we know the order is h2.

20

