Other topics in brief:

Finite Difference Methods for Nonlinear BVPs

e Consider y" = f(z,y,9’) on [a,b] with y(a) = « and y(b) = .

e Then y(wi+1)*2y}(;§¢)+y(wwl) ~ f(ﬂJi,y(sz'), y(w¢+1)271y(w¢71))

e Guess a solution: y(xg),...,y(z,) at all points.

e Bring all terms to the left and you get a system of nonlinear equations. It can be
solved using Newton’s Method for systems.

e The Jacobian is tridiagonal and there is a unique solution for h < where

L = mazg . |fy(z,y,y)l.
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Eigenvalue Problems — from ODEs

These problems arise in coupled mass-spring systems and in beam deflection problems
as well as in other applications, especially from using separation of variables on partial
differential equations.

For example, consider 3" + p’*y = 0 with y(0) = y(L) = 0.

This ODE, of course, has the trivial solution y = 0, but we would like to know when
there are other solutions. Physically, that may correspond to buckling of the beam.

We can write the system using finite differences. There will only be non-trivial so-
lutions of the linear system of equations that arises if the determinant of the matrix is
0. The eigenvalues depend on p. We can find the values of p for the system in which
there is 1 equation in 1 unknown, then change the step size to make it 2 equations in 2
unknowns, etc. As h decreases and the size of the system increases, our approximations
to the eigenvalues gets better and better. The true eigenvalues p? of the original ODE
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are (%) for n =1,2,.... There are an infinite number of eigenvalues.



Approximating Eigenvalues

Gershgorin’s Theorem - Every eigenvalue of a matrix A is in at least one of the circles

Ci,Cy, ..., C, where C; has its center at the diagonal entry a; and its radiusr; = ) |ayj]
{3

is the sum of the absolute values along the rest of the row. This fact can b]: used

to estimate some of the eigenvalues and make statements about their magnitude. For

example, the proof of why Jacobi’s method always converges for diagonally dominant

matrices becomes simple using Gershgorin’s Theorem.

Power Method (see part 2 of notes) and Inverse Power Method - to find the eigenvalue
closest to a given value. The Inverse Power Method finds the smallest eigenvalue (in
magnitude). Rather than making a guess xo and computing x; = Axq/||Axo||e and so
forth, we guess x¢ and solve Ax; = Xg for x; and then scale x; by its entry of largest
magnitude. Convergence is linear (with coefficient 22~ and we can speed it up using

An—l
Aitken’s Method).

The Inverse Power Method may also be used to find the eigenvalue closest to a given
value. This simply involves applying the Inverse Power Method on the matrix A —rI to
find the eigenvalue closest to r.

Annihilation - Once \; is known, applying the Power Method with A — A;I can be
used to find an eigenvalue.
X = vy + oy + ...+ v,
AX(O) = CM1)\1’U1 + 0[2)\2’1)2 4+ ...+ an)\nvn
(A - )\11)){(0) = OZQ/\Q’UQ 4+ ...+ an)\n’un
This will give a new eigenvalue, call it py of (A — A I). Then, there is an eigenvalue
A2 = 2 + Ai. Another eigenvalue can then be found by applying the Power Method
with (A — A I)(A — Ay1) and so on. The round-off errors may build up and cause the
method to become unstable.

Deflation - The idea of deflation is that once one eigenvalue and eigenvector are
known, this information can be used to find another eigenvector.

e Hotelling’s method for symmetric matrices. If \; is the largest eigenvalue of A and
v, is the corresponding unit eigenvector, then B = A — \;v;v;” has eigenvalues
0, Ag, ..., A\, with the same eigenvectors as A. Here, round-off error again can build
up so only a few eigenvalues can be expected to be found accurately.

o Wielandt deflation. Let B = A — M\;vix! where x is related to A and ).
Householder’s method- Using orthogonal matrices, the original matrix is transformed
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to turn symmetric matrices into tridiagonal matrices and to turn non-symmetric matri-
ces into Upper Hessenberg (upper triangular but with just one subdiagonal) matrices,
without changing the eigenvalues.

QR algorithm- Using rotations on symmetric tridiagonal matrices, the QR algorithm
eliminates the off diagonal elements and yields the eigenvalues. The QR algortihm turns
Upper Hessenberg matrices into upper triangular.

Continuous Function Approximation

Suppose we want to approximate the function f(z) by a polynomial. We can apply the
Least Squares idea in order to minimize [’[f(z) — P, (x)]?dz. If we have reason to believe
f(z) can be well approximated by a polynomial function of a certain form, we might
have success using this approach.

Just as with polynomial interpolation, the computation gets messy and unstable. The
Hilbert matrix arises. In addition, (as in polynomial interpolation) the degree k results
don’t help us compute the degree k + 1 results. Orthogonal polynomials can be used
instead of fitting an arbitrary polynomial. The best type to use may depend on the
problem at hand. Some examples of orthogonal polynomials are Legendre polynomials,
Chebyshev polynomials, and Laguerre polynomials. (Some of these have weight func-
tions). Fourier Series, Pade approximants and Fast Fourier Transforms are other related
topics.

Optimization

Mostly from Chapra
Applications:

e Designing aircraft for minimum weight or maximum strength

Space vehicle trajectory

Minimum cost for building

Analyzing structural behavior through minimizing potential energy

Finding the shortest sales route



Methods for One Variable Problems

e Our purpose is to find the minimum or maximum of a continuous curve. At this
point, if the curve is smooth, the first derivative is 0. If we can take the derivative
of the function, we can apply the root-finding methods we’ve discussed earlier.

e Golden Section Search This method can be applied when we know that the de-

sired maximum or minimum lies between two points z, and x, where [y = z, — z,.
— We choose a point in between, x., such that % = ﬁ—f where [, = z. — x,
and ls = z, — z,.

— Since Iy = 11 + Iy, we find % = @ = 0.61803... or the golden ratio.

— We do the same thing from the other end of the interval to find a fourth point,
Zy-

— Now, 2, < 24 < T. < Tp.

— From the function values at these points, we can tell whether the maximum
or minimum must lie on the interval [z,, x| or [z, ).

— We use this new interval and repeat the process.

— The advantage is that one of the discarded points (z. or z,) is used in the
next step since it will work out to be a distance /; from the end of the new
interval.

e Quadratic Interpolation If we know the maximum or minimum is bracketed, we
can choose a point in the middle and fit a quadratic through the 3 points. We can
find the maximum or minimum of the quadratic to use as our new guess, eliminating
one of the previous endpoints. We repeat the procedure and note that convergence
may be slow and one sided for certain functions, in a similar way to the one sided
convergence that sometimes occurs with Regula Falsi.

e Newton’s method on f'(z). As noted in the introduction to this section, this
is an obvious choice. Note that in order to apply this idea, f'(x) should be easy
to compute. The method may diverge. It should be most useful if you are already
close to the root.

Multi-Variable Problems

e Random Search - This brute force method should get you close to the maximum or
minimum on the region. It should even work for functions that are discontinuous.



However, the convergence is very slow. Simply divide each dimension into, say, n
pieces and evaluate the function at each of the n? grid values, for a function of p
variables.

Univariate search - Vary one variable at a time to find a maximum or minimum,
while holding the other variables fixed. This turns the problem into a sequence
of one-dimensional searches. Viewing the progress with contour plots adds insight
into the method. It is better to find more appropriate directions, pattern directions,
in which to search, rather than going in the x direction, then the y direction, then
the z direction, then the x again etc. One way to do this is called Powell’s Method.
Here, by choosing several directions and searching along them, one can choose better
new directions in which to search. It is an efficient method which is quadratically
convergent and requires no derivatives to be taken.

Gradient Search / Steepest Descent - Search in the direction of V f since this is the
direction of maximum increase. (The negative of this direction is the direction of
maximum decrease). Determine how far to go in the desired direction by considering
f(xo + fzh,yo + fyh) and finding h using one dimensional methods. Then repeat
in a new direction using the value of V f at the new point. This method converges
quickly since the directions of greatest decrease are considered first. Conjugate
Gradient is a variant of Gradient search in which each new direction should be
orthogonal to each previous direction.

Newton’s Method for Multiple Variables- Writing out a Taylor series through second
order for functions of more than one variable gives

f@) ~ @) + V@) —) + 5 -2 e — )

where H; is the Hessian matrix (of second partial derivatives of f). At the minimum,

T, %’”]) = 0for j=1,2,..,n. Thus,
Vi@, = Vf(z;) + Hi(z. —x;) = 0
and if H; is nonsingular, we find x4, = x; — H; 'V f(x;)

Marquardt’s Method combines Steepest Descent and Newton’s Method.

Quasi-Newton Methods use approximate Hessians, H, without using second deriva-
tives. Quadratic convergence is lost, but convergence is still superlinear. One
example is Broyden’s Method, another is BFGS.



Linear Programming

For linear optimization problems, the maximum must occur at a corner of the feasible
region.

e Graphical method - Plot the constraints. Find the corners. Plug into the objective

function. Take the maximum or minimum value as desired.

e Simplex Method - Move from corner to corner in an intelligent way while staying
feasible.

Partial Differential Equations

Elliptic PDEs

Applications:
e Temperature distribution in a heated plate

e Electric field

Poisson’s Equation: 2-D steady state problems:
Uz + Uy = 0 with u(z,y) = g¢(x,y) ontheboundary

e Set up grid lines (for a rectangular region) and use finite differences.

e We obtain a band matrix with width ~ n and n? points (for a region with n grid
points in each direction, an n x n grid).

e Gauss-Seidel or SOR are often used in solving the linear system of equations.

e [t is more difficult for irregular shaped regions or complicated boundary conditions,
such as having part of the rod insulated and part not insulated.

e Another numerical method for solving such problems is called Control Volumes.
The method is similar to finite differences. Around each grid point a rectangle is
drawn and the flux through each boundary is considered. This leads again to a
system of linear equations. One can discretize non-uniformly for irregular regions
but it still can get messy. One can also refine the grid near complicated boundaries.



Parabolic PDEs

Application: Heat equation u; = kug,

Explicit approach: Discretize the PDE to obtain the scheme

| kAL o
ot =T + M[Tijﬂ - 2T) + T/ ]

where the subscripts denote the spatial step and the superscripts denote the time step.

e For stability, we need At < (A;f.

e To avoid oscillatory behavior, we need At < %.

e Halving Az requires reducing the time step by a factor of 4. So the amount of work
goes up very quickly when reducing the mesh spacing. (Work increases by a factor
of 8 to get to the same end time when the mesh spacing is halved).

e For 2 dimensions, the explicit approach requires At < <-[(Az)? + (Ay)?] for
stability.

Implicit approach: In order to avoid the stability issues of the explicit approach, implicit
approaches are considered. Once again, we discretize the PDE, this time obtaining the

scheme
kAt

(Az)?

T =T+ [T = 2™ + T/

e This leads to a tridiagonal system of linear equations.
e The method is stable and convergent.

e The time discretization is only first order, At, while the step discretization has
second order error (Az)?.

e This method can also be used for finding steady-state behavior since the interme-
diate time values are not needed.

e To achieve second order error in both space and time, we average the explicit and
implicit approaches to obtain the Crank-Nicolson method.

kAt

Tt — i
i RESTINE

[Ti];l—l - 2Tij + Tij_l + ’_]"Z?rll — 2Tij+1 + Tij_+11]




e For the 2 dimensional heat equation, we can apply the ADI or Alternating Direction
Implicit method, we break the PDE into two steps (each with time step 5 A1) to turn
it into 2 one-dimensional problems

I+1/2 I+1/2 I+1/2 1+1/2
T = T 4 GEALTL - Tl + T )+ ALY — o T
Tz‘l,j — 217;1/2 ]cAt ,‘Z—;l:ll] _2Tl+1+T%lj—11,j] k;At ,_Z—;l-]l—Jlr/IQ_2Tl+l/2+Tl+1/2]

These are equivalent to solving (by discretizing), the one dimensional PDEs

T, = k(TJ, + T}/') For the first half of the time step
T, = k(T + Tj,)  For the second half of the time step

The result is 2 tridaigonal systems.

Finite Elements

Finite difference methods are difficult for irregular geometry. The Finite Element
method uses simple functions (often piecewise linear or bilinear) as basis functions and
solves the PDEs using a variational formulation to find the sum of the basis functions
that best approximates the solution to the PDE.



