MATH 611 – FINAL EXAM – December 18, 2000

Instructor: B. Bukiet Show all work.

Problem #1 (15 points) Show x = 4 is a fixed point of the following iteration schemes:

$$\overline{\mathbf{a}. \ x_{n+1} = \frac{1}{4}(8x_n - x_n^2)} \qquad \mathbf{b}. \ x_{n+1} = \frac{1}{3}(x_n^2 - 4) \qquad \mathbf{c}. \ x_{n+1} = \sqrt{3x_n + 4} \ .$$

b.
$$x_{n+1} = \frac{1}{3}(x_n^2 - 4)$$

c.
$$x_{n+1} = \sqrt{3x_n + 4}$$

Analyze theoretically (don't calculate iterates) to determine which of these methods should converge to the root at x = 4 given a starting guess close enough. Which method should converge fastest?

Problem #2 (10 points)

Find the LU decomposition of $\begin{pmatrix} 1 & 3 \\ 4 & -1 \end{pmatrix}$ and use it to solve $\begin{pmatrix} x + 3y = 9 \\ 4x - y = 10 \end{pmatrix}$

Problem #3 (10 points)

Perform one step of Newton's Method for systems with initial guess (-1,2) on: $x^2 + xy - y^2 = 5$ $x^3 + y = 9$

Problem #4 (10 points)

- a. Find the Lagrange Polynomial through the points.
- 112 f(x)-4
- **b.** Use the result of part **a** to approximate f(1).

Problem #5 (10 points) Set up the system of equations for the cubic spline through the points in the previous problem given $S_0 = g''(0) = -6$ and $S_3 = g''(6) = 30$. DO NOT SOLVE.

Problem #6 (10 points)

The data points $(0, e^{0.1}), (1, e^2)$ and $(3, e^3)$ should lie approximately on a curve of the form $y = ae^{bx}$. Set up a system of linear "least squares" equations that would be useful for finding a and b. DO NOT SOLVE.

Problem #7 (10 points)

What does the difference scheme approximate and give error order? $\frac{1}{2h} [f(x+3h) - f(x-h) - 2f(x)].$

Problem #8 (24 points) Consider the point

ts	\boldsymbol{x}	1	2	3	4	5
	f(x)	0.01	0.69	1.10	1.39	1.61

- **a.** Approximate f'(3) using centered difference with h=2.
- **b.** Approximate f'(3) using centered difference with h=1.
- **c.** Use Richardson extrapolation to improve the results in parts a and b.
- **d.** Approximate f''(3) using centered difference with h = 1.
- **e.** Set up the finest possible Trapezoidal rule approximation of $\int_1^5 f(x) \ dx$. DON'T ADD UP.
- **f.** Set up the coarsest possible Trapezoidal rule approximation of $\int_1^5 f(x) dx$. DON'T ADD UP.
- g. Set up the finest possible Simpson's rule approximation of $\int_1^5 f(x) dx$. DON'T ADD UP.
- **h.** Set up the coarsest possible Simpson's rule approximation of $\int_1^5 f(x) dx$. DON'T ADD UP.

Problem #9 (15 points)

Consider the ordinary differential equation $\frac{dy}{dx} = ty - 1$ with y(0) = 3.

- **a.** Use Euler's method with h = 2 to approximate y(2).
- **b.** Use Modified Euler's method with h=2 to approximate y(2).
- **c.** Use Fourth Order Runge Kutta method with h=2 to approximate y(2).
- **d.** Use Taylor Series Method up to the x^3 term to approximate y(2).
- **e.** Use the result of part b along with the predictor-corrector method to approximate y(4).

Problem #10 (6 points)

Is the multi-step scheme $y_{i+1} = \frac{1}{3}(2y_i + y_{i-1}) + \frac{4h}{3}f(t_i, y_i)$ for y' = f(t, y) stable?