MATH 611 - Numerical Analysis - Fall 1990 - Final Exam

Instructor: B. Bukiet

Do all problems. Show all work.

Each EXTRA CREDIT problem is worth 10 points. Do not do them until you have finished the rest of the exam

Problem 1

- (a). (5 points) Show that $f(x) = x^3 x 1$ has exactly one root on the interval [1,2].
- (b). (5 points) Show that any root of $f(x) = x^3 x 1$ is a fixed point of the iteration scheme $x_{n+1} = (1 + x_n)^{1/3}$.
- (c). (**EXTRA CREDIT**) Show the iteration scheme $x_{n+1} = (1 + x_n)^{1/3}$ converges to a solution of $x^3 x 1 = 0$ if the initial guess (x_0) is between 1 and 2.
- (d). (5 points) Set up a quadratically convergent iteration scheme to find the zero of $f(x) = x^3 x 1$ on [1,2]. Let $x_0 = 1$. Find x_1 and x_2 .
- (e). (5 points) What is Aitken's method used for (in one line or less)? Would it be more useful in part (c) or part (d) of this problem?

Problem 2

Consider the function $f(x) = \sqrt[3]{1+x}$

- (a). (5 points) Find f(-1), f(0), f(7), f'(x), f''(x).
- (b). (5 points) Find the second degree Taylor polynomial approximation to f(x) around x = 0. Use this to estimate f(1). (c). (10 points) Use the information from part (a) to find a Lagrange polynomial of degree 1 to approximate f(1). Give an upper bound to the error of this approximation.
- (d). (**EXTRA CREDIT**) Find the highest degree Hermite polynomial possible using information only at x = 0 and x = 7.

Problem 3

Given a continuous smooth function f(x) for which f(0) = 8, f(1) = 5, f(2) = 3, f(3) = 2, and f(4) = 3

- (a). (5 points) Use a 3-point centered difference scheme to approximate f''(2).
- (b). (5 points) Use Richardson extrapolation to improve this result.
- (c). (10 points) Use the (composite) Trapezoidal Rule and Simpson's Rule to approximate $\int_0^4 f(x)dx$.

Problem 4

(a). (15 points) Investigate the following multistep difference scheme for solution to differential equations of the form y' = f(t, y) for consistency, stability and convergence.

$$w_{i+1} = \frac{3}{2}w_i - \frac{1}{2}w_{i-1} + \frac{1}{2}hf(t_i, w_i)$$

- (b). (5 points) Write the third order differential equation $y''' + 2y'' y' 2y = e^t$ where $0 \le t \le 3$ and y(0) = 1, y'(0) = 2 and y''(0) = 0 as a system of first order differential equations. Find y'''(0).
- (c). (EXTRA CREDIT) Consider the modified Euler method

$$w_0 = \alpha w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))]$$

Find the inequality to use in determining the step size such that the method will be stable for the differential equation y' = -4y. You DO NOT have to solve the inequality.

Problem 5

- (a). (5 points) Set up the system of linear equations for finding a least squares line through the points (-2, -1), (-1, 0), (0, 1), and (7, 2)
- (b). (5 points) Which of the following methods may be used to solve this system (DO NOT solve the system) (i) Gaussian Elimination, (ii) LU decomposition, (iii) Choleski's Method, (iv) LDL^{T} . Consider the system of linear equations

$$\begin{array}{rcl}
9x & + & 2y & = & 7 \\
8x & + & 4y & = & 4
\end{array} \tag{1}$$

- (c). (5 points) Set up Jacobi iteration with initial guess x = 0, y = 0 and perform two steps of iteration.
- (d). (5 points) Set up Gauss-Seidel iteration with initial guess x = 0, y = 0 and perform two steps of iteration.
- (e). (EXTRA CREDIT) Determine whether Jacobi and Gauss-Seidel converge to the solution in this case and which converges faster. (Without doing more iterations or finding the exact solution).