MATH 611 – FINAL EXAM – DEC 15, 1997

Instructor: B. Bukiet Show all work.

Problem #1 (25 points)

- a. Find an interval [a, b] with a and b integers and b = a + 1 such that $(25)^{1/3}$ lies in the interval. Let $a_0 = a$ and $b_0 = b$.
- **b**. Use one step of the bisection method to narrow this interval. I.e., find a_1 and b_1 .
- c. Set up Newton's method such that the fixed point should be $(25)^{1/3}$ and no fractional power calculations need to be done.
- **d.** Perform one iteration of Newton's method with initial guess a_0 from part **a.**.
- e. For this problem in particular, show that Newton's method gives better than linear convergence.

Problem #2 (10 points)

- $\overline{\mathbf{a}}$. Find the Lagrange polynomial through the (x, y) points (1,2), (2,5), (4,5) and (5,2).
- **b.** From the polynomial found in part **a.**, approximate y(3).

Problem #3 (15 points)

Using the smallest step size possible, approximate $\int_2^6 \frac{1}{1+x} dx$ using the Midpoint method, the Trapezoidal rule and Simpson's Rule using only the values of f(x) at x = 2, 3, 4, 5 and 6.

Problem #4 (15 points)

Consider the ordinary differential equation $\frac{dy}{dt} = -t^2 + y^2$ with y(0) = 1. Use the Runge-Kutta method with h = 2 to approximate y(2).

Problem #5 (15 points)

Write the ODE $y'' - y' + y = t^2$ with y(2) = 2, y'(2) = 3 and h = 1 as a system of first order ODEs. Use Euler's method to approximate y(4).

Problem #6 (15 points)

Problem #7 (10 points)

Perform one step of Jacobi's method method with starting guess $\begin{pmatrix} -2\\1 \end{pmatrix}$ for the system of

Problem #8 (10 points)

Use 2 iterations of the Power Method to approximate the eigenvalue of largest magnitude for $\begin{pmatrix} 8 & 5 \\ 5 & 8 \end{pmatrix}$ with initial guess: $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Try to guess an eigenvalue and eigenvector from this?

Problem #9 (15 points)

Find the best (Least-Squares) line through the points (0,2) (0,8) (1,-1) and (3,11).

DO JUST 1 of the FOLLOWING 3 PROBLEMS - (it is worth 20 points)

Problem #10 Given $f'(x_0) = \frac{1}{h} [f(x_0 + h) - f(x_0)] - \frac{h}{2} f''(x_0) + O(h^2)$. Use the numerical derivative approximation $f'(x_0) \sim \frac{1}{h} [f(x_0 + h) - f(x_0)]$ and step size of 2h combined with the idea of Richardson extrapolation to derive a 3 point formula for $f'(x_0)$ with improved (i.e., $O(h^2)$) error.

<u>Problem #11</u> Find the condition on step size h such that the second order Taylor series method will be stable for the ODE y' = -2y.

Problem #12

Consider the multi-step method $w_{i+1} = \frac{3}{2}w_i + aw_{i-1} + bh[f(t_i, w_i) + 2f(t_{i-1}, w_{i-1})]$ where a and b are a constants. Find a and b such that the scheme is consistent. Is the scheme stable?

Useful info:

```
Euler's method: w_{i+1} = w_i + h f(t_i, w_i)

Taylor series method: w_{i+1} = w_i + h f(t_i, w_i) + \frac{h^2}{2} \frac{d}{dt} f(t_i, w_i)|_{t_i, w_i}

Runge-Kutta: w_{i+1} = w_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) where k_1 = h f(t_i, w_i); k_2 = h f(t_i + h/2, w_i + k_1/2); k_3 = h f(t_i + h/2, w_i + k_2/2); k_4 = h f(t_i + h, w_i + k_3);
```