Homework problems

Basics, Error

1. Consider the function f(z) = sinz near z = 0.

(a) Write the Taylor polynomials P (z), Ps3(z) and Ps(z).
(b) Graph P (z), Ps(z) and Ps(z) as well as f(x) over [0, 27].

(¢) Compute P;(0.1), P3(0.1) and P5(0.1) and find the absolute and rel-
ative error.

(d) Compute P;(0.5), P;(0.5) and P5(0.5) and find the absolute and rel-
ative error.

(e) Compute P;(1), P3(1) and Ps(1) and find the absolute and relative
error.

2. Consider the function f(z) = In(1+ z) near x = 0.

(a) Write the Taylor polynomials P (z), Pa(z) and Ps(z).
(b) Graph Pi(z), P2(z) and P3(x) as well as f(z) over [0,2].

(¢) Compute P;(0.1), P»(0.1) and P3(0.1) and find the absolute and rel-
ative error.

(d) Compute P;(0.5), P»(0.5) and P5(0.5) and find the absolute and rel-
ative error.

(e) Compute Pi(1), P»(1) and P;(1) and find the absolute and relative
error.

3. Construct a Taylor polynomial approximation to f(z) = e~ with zg =0
that is accurate to within 1072 on the interval [0,1]. Find a value M such
that | f(z1) — f(z2)| < M|z1 — 2| for all 21, z5 on the interval. (Use the
Mean Value Theorem).

4. Find the Taylor polynomials of order 2 and order 3 around zy = 1 for
fl@) = 2% + =.

5. Find intervals containing solutions to the following equations:
(a)z — 3% =0
(b) 422 — e = 0

6. Perform the following calculations using 3 digit rounding, 3 digit chopping
and exactly:
(a) 12.340.0234
(b) —0.0321 + 0.000136
(c) 12.3 —0.0234



10.

11.

12.

(d) —321+32.1

(e) 132%0.987
Evaluate the following polynomial for x = 1.07 using three-digit chopping
after each operation: 2.752° — 2.9522 + 3.16z — 4.67. Find the absolute
and relative errors of your results. Count the number of additions and
multiplications needed.

(a) Proceeding from left to right

(b) Proceeding from right to left

(c) Evaluting the polynomial in nested form ((2.75z — 2.95)z + 3.16)z — 4.67

Write the polynomial p(z) = 52° 4+ 2% + 32* + 32° — 22 + 1 in nested
form.

Suppose p* must approximate p with relative error at most 10~3. Find
the largest interval in which p* must lie for each value of p.

a. 150; b. 1500;

Use 3-digit chopping (after each addition) for
>
i=1 L
(a) Find N such that N is the smallest integer for which your sum is not
the exact solution (chopped to 3 digits).

(b) What is the absolute error for this value of N?
(c) What is the relative error for this value of N?

The number e can be calculated as

Use three-digit chopping arithmetic to compute the following approxima-
tions to e. Also compute the relative and absolute errors. For the ’exact’
value of e, use e = 2.7182818.

@) Si=Y0 o4
(b) S2= oo Ty

The first three terms of the Maclaurin series for the arctangent function
are given by P(z) = z — 12° + Llz°. Compute the absolute and
relative error in the following approximations of 7 using P(z) in place of

the arctangent:

1 1 1 1
a. 4 arctan(i) + arcta.n(g) b. 16arctan(g) — 4arctan(2—39)



13.

14.

15.

16.

17.

18.

19.

20.

Why will a naive construction be susceptible to significant rounding errors
for certain values of x and explain how to avoid this error for:

(a) (&) = (Vo +9-3)/e
(b) f(z) = (1—cosa)/a

Consider the difference schemes: ppy1 = +pn and ppi2 = Zppi1— Spn.

(a) For each scheme, solve analytically given pg = 1 and p; = 0.25001.

(b) Find the first 15 iterates of each method using single precision and
explain why the answers differ.

Use 4 digit chopping to approximate f'(1) where f(z) = €® using
Hath) /@) with b =1, 0.1, 0.05, 0.02, 0.01, 0.005, 0.001, 0.0001.

Suppose two points (zg,yo) and (x1,y;1) lie on a straight line with y; # yo-
Two formulas for the x-intercept are given by:

r = Sor” ko 4 L — zo — (z1 — %o)yo

Y1 — Y% Y1 — Yo
(a) Show that both formulas are analytically correct.

(b) Use the data (zo,y0) = (1.31,3.24) and (z1,y1) = (1.93,4.76)
and 3 digit rounding to compute the x-intercept both ways. Which
method is better and why?

Find the rates of convergence of the following sequences as n — oo.

oo 1 o1 )
a. nh—%o sm(ﬁ) b. nh_}rréo sm(m) c. nh_{r(go[ln(n—{—l) — In(n)]

Find the rates of convergence of the following sequences as h — 0.

. sinh — hcosh R
a. lim ———— b, lim
h—0 h h—0

How many multiplications and additions are required to determine a sum

of the form .
Z Z a; bj

i=1 j=1

Modify the above expression to an equivalent form that reduces the num-
ber of computations.

Using Taylor polynomials, we can compute e~ * as
z?2 1z
-+ ———+...
2 6



or
1

2 3
l+z+ %5+ % +..

Which of these should be more accurate and less susceptible to rounding
error?

21. Construct a linear interpolating polynomial to the function f(z) = 1/z
using zo = 1/2 and z; = 1. Find an upper bound for the error of this
approximation on this interval using the relevant theorem.

22. Using the Trapezoidal rule to compute fol 23dz with h = } gives a com-
puted value of §+. (Check this). How small should k be taken such that
the error in the computation is less than 10737 10-6?

Roots of Nonlinear equations

1. TEST

(a) Find an interval [a, b] with a and b integers and b = a + 1 such
that (25)'/3 lies in the interval. Let ag = a and by = b.

(b) Use one step of the bisection method to narrow this interval. Ie.,
find a; and b;.

(¢) Set up Newton’s method such that the fixed point should be (25)'/3
and no fractional power calculations need to be done.

(d) Perform one iteration of Newton’s method with initial guess ag from
part (a).

(e) For this problem in particular, show that Newton’s method gives
better than linear convergence.

2. TEST Consider the function f(xz) = 4z — 1 — sinx on the interval 0 <
z < 2.

(a) Perform 3 iterations of the Bisection Method on f(z) using the end-
points of the interval as initial data. Show the new estimate z,, and
f(zy) at each step.

(b) Perform 2 iterations of Newton’s Method on f(z) with the initial
guess zo = 1. Show z,, and f(z,) at each step.

(¢) What is the absolute difference between the final estimates of the
root of f(z) in parts (a) and (b)? If this is the error of the bisection
method, how many more iterations of bisection are needed to find
the root of f(z) to within an accuracy of 10-4?

3. TEST Consider the function f(z) = e® —x — 2 on the interval 0 < z < 2.



(a) Perform 3 iterations of the Bisection Method on f(z) using the end-
points of the interval as initial data. Show the new estimate z,, and
f(zy) at each step.

(b) Perform 2 iterations of Newton’s Method on f(z) with the initial
guess zo = 1. Show z,, and f(z,) at each step.

(c) What is the absolute difference between the final estimates of the
root of f(z) in parts (a) and (b)? If this is the error of the bisection
method, how many more iterations of bisection are needed to find
the root of f(z) to within an accuracy of 10747

4. Approximate /29 by letting f(x) = 3/x and linearizing around = = 27.
Then use one step of Newton’s method on the relevant polynomial with
corresponding initial guess. Compare your results in the two computations
and think about how they are related.

5. TEST Consider the function f(z) = 22 — cosz on the interval 1/2 <
z < 3/2.

(a) Perform 3 iterations of the Bisection Method on f(z) using the end-
points of the interval as initial data. Show the new estimate x, and
f(zy,) at each step.

(b) Perform 3 iterations of Secant Method on f(z) using the endpoints
of the interval as initial data. Show z,, and f(x,) at each step.

(¢) Perform 2 iterations of Newton’s Method on f(x) with the initial
guess xg = 1. Show z,, and f(z,) at each step.

(d) How many iterations of bisection are needed to find the root of
f(z) = 2? — cosz with initial data z; = O and zp = =
to within an accuracy of 10757

6. Let f(z) = (z—1)'° with root 2* = 1 and z, = 1+ 1. Show that
|f(z,)| < 1072 whenever n > 1 but that |z* — z,| < 1073 requires that
n > 1000.

7. TEST To approximate v/2, we solve f(z) = x> — 2 for the positive
root.
(a) Show that there must be a root on [1,2].

(b) Use the interval [1,2] and two steps of Bisection to approximate the
root. Give an upper bound for the error after these two steps.

(c) Usexop = 1and z; = 2 and perform one step of Secant method to
find 5.
(d) Use 2z = 1 and perform one step of Newton’s method.

8. TEST Let f(z) = 2®> — cosz

(a) Using only the terms x? and cosz, find 3 fixed point representations
that can be used to find the roots of f(z).



(b) Which of these representations will converge to the positive root if
the initial guess is g = 1?7 Justify your answers without performing
any iterations.

9. TEST Prove that Newton’s method performed on f(z) will converge
quadratically to its root z = r for f'(r) # 0.

10. Let A be a given positive constant and g(z) = 2z — Az?

(a) Show that if fixed-point iteration converges to a nonzero limit, then
the limit is z* = %, so the reciprocal of a number can be found using
only multiplications and subtractions.

(b) Find the largest interval around % where this fixed-point iteration
scheme is guaranteed to converge, (by theorems we have learned)
provided zg is in that interval.

11. TEST

(a) Show that 2° — 36 = 0 has exactly one root on the interval [3,4].
Call this root p.

(b) How many iterations of bisection would it take to find this root with
error < 0.05? Explain. Let 2, = 3, zgr =4 and z¢ = 7/2.

3
(c) Is p a fixed point of the iteration scheme z,4; = 2%? Show
reasoning.
(d) If o = 3, does x,, converge to p if z,11 = 2—2? Find 2, and .
3
(e) If zp = 3, does =z, converge to p if 41 = Z"TE%? Find z; and
Io.

(f) Set up a quadratically convergent iteration scheme to find p. Let
2o = 3. Find x; and x».

(g) Which of the above schemes would benefit most from using Aitken’s
method in conjunction with it? Use one step of Aitken’s method on
this scheme using xg z; and x5 found earlier.

12. TEST

(a) Show that f(z) = 2® — x — 1 has exactly one root on the interval
[1,2].

(b) Show that any root of f(z) = z® — z — 1is a fixed point of the
iteration scheme z,11 = (1 + z,)'/3.

(c) Show the iteration scheme z,y1 = (1 + z,)'/3 converges to a
solution of 23 — z — 1 = 0 if the initial guess (zo) is between 1
and 2.

(d) Set up a quadratically convergent iteration scheme to find the zero
of f(x) = #® — z — 1on[1,2]. Let 7y = 1. Find z; and zs.
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14.

15.

16.

17.

(e) What is Aitken’s method used for (in one line or less)? Would it be
more useful in part (c) or part (d) of this problem?

TEST Show z = 4 is a fixed point of the following iteration schemes:

(@) Tpy1 = 7(8zn — %)

(b) Tny1 = 3(z3 — 4)

(€) Tpy1 = 3z, + 4

Compute a few iterates for each scheme (choose you own starting values,
zo). Then analyze theoretically (don’t calculate iterates) to determine
which of these methods should converge to the root at z = 4 given a
starting guess close enough. Which method should converge fastest?

SIS

TEST Consider the Fixed Point Iteration Method with g(z) = 4%.

(a) Show that the method has a unique fixed point z* on the interval
1<z <2,

(b) Perform 3 iterations of the method starting with o = 1.5 and give
an approximation to the value of z*.

(c) Write down an equation which the fixed point z* satisfies. Solve it
exactly for z* and compare the result with that of part (b).

If you borrow L dollars at an annual interest rate r for a period of m years,
12M
then the monthly payment M isgivenby L = —— (1 -1+ L)_mm)).
r

12
If the amount borrowed is $150,000 and the payment you can afford is $600

per month, find the maximum interest rate you can be afford for this 30
year mortgage. Use bisection.

Draw the graph of a single function f that satisfies all of the following:

(a) f is defined and differentiable for all z.

(b) There is a unique root at z = a > 0.

(¢c) Newton’s method will converge for any z¢ > a.
(d) Newton’s method will diverge for any zq < 0.

TEST Find a single polynomial whose roots are fixed points of the fol-
lowing iteration schemes:

223 + 222 4 2

3z3 4+ 522 + 2z, 4 2
3z2 + 4z, — 1 .

422 + Tzp, + 1

A. Tntl = B. Tnt+l =

Which scheme is better for finding the root at x = 17
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20.

21.

22.

23.

Suppose p is a zero of multiplicity m of f, where f" is continuous on an
open interval containing p. Show that the folloiwng fixed-point method
has ¢'(p) = 0:

mf(z)

9@ == )

Consider the function
fl@)=(x—-2)>—Inx
on the interval 1 < z < 2.

(a) Prove there is exactly root of this equation in the interval.

(b) Use the secant method to approximate a root of to 6 digits accuracy
using the endpoints of the interval as initial data. Tabulate your data
to show z;, and f(z;) at each step.

(c) Use Newton’s method with the initial guess xo = 1.5 to find a root
of f(x) =0 to 6 significant digits.

(d) How many iterates of the Bisection Method are needed to find an
approximation to the root of f(z) = 0 in the interval to within an
accuracy of 1074?

TEST Set up Newton’s method for solving for the roots of
flz) = 2* =32°4+ 322 —2 = z(z—1)> = 0

DO NOT PERFORM ANY ITERATIONS.

Show why convergence to one root is super-linear (quadratic) while con-
vergence to the other root is linear. Would convergence to the “linear”
root be better or worse than bisection? Explain you answer.

TEST Consider the iteration scheme: z,41 = z3 — 1222 + 54z, — 105 + %

(a) Perform 2 iterations of this scheme with o = 4. (Find z; and z5).

(b) Use the result of part(a) to guess the true solution (Hint: it’s an
integer) and verify you’re correct.

(c) Use zg, z1, and zo to find the order of error. (A whole number -
round to it).

(d) Use your understanding of analysis of error to show why this scheme
should have a root of the order found in part (c) at the appropriate
point.

If f is such that |f"(z)| < 4 for all z and |f'(z)| > 2 for all z and if the

initial error in Newton’s method is less than %, what is an upper bound

37
on the error at each of the first 3 steps?

TEST Consider the iteration scheme z,11 = 2z, — 22



(a) Find the fixed point(s).

(b) Analyze theoretically whether the method should converge to each
point found in part(a) for a starting guess close enough. If it con-
verges to the fixed point, find the order of convergence and the inter-
val of starting values for which it will converge to this fixed point.

(c) Perform 2 steps of the method with initial guess zg = 1.5.
24. TEST We desire to compute +/17.
(a) Find a simple polynomial equation with integer coefficients that has

a solution ++/17.

(b) Find an interval of length 1 that brackets the root where z;, and zg
are integers and show why it brackets a root.

(¢) Perform 2 steps of bisection using this interval to reduce the interval
length.

(d) How many steps of bisection are needed to guarantee your error is
less than 0.00017

(e) Use one step of secant method on the original interval (zr,,zg) to get
an update.

(f) Set up Newton’s method for this problem. Use zg = =z (of part
(b)) above to find ;.

25. Consider the fixed point iteration scheme: z,41 = 1 + e *~. Show that
this scheme converges for any z¢ € [1,2]. How many iterations does the
theory predict it will take to achieve 10~° accuracy?

26. TEST

(a) Find a ”simple” polynomial with integer coefficients such that (31)/4
is a solution (a root) of the polynomial.

(b) Find an interval [a, b] with @ and b integers and b = a + 1 such
that (31)/4 lies in the interval.

27. TEST Consider
22 + 22 —4 =0

(a) Show that 2> + 2z — 4 = 0 has exactly one root on the interval
[1,3].

(b) Use one step of secant method on the interval [1,3] to find an update
for an approxiamtion of the root.

(¢) Use one step of Newton’s method for this problem. Use g = 2.
28. TEST Show that there is exactly one solution to 22> + 22 + 5z — 4 = 0

on [0,1]. Then, use g = 0 and 2, = 1 and one step of the secant method
to compute za.



29. TEST Suppose an iteration method for a root (with true solution z* = 2)
has the following iterates: zg = 3, z1 = 2.5 and zo = 2.0625. Find
the order of convergence.

30. TEST

(a) Find the positive root of z2 — z = 0.

(b) Rank the iteration schemes that follow in order of which should con-
verge best to this root (starting close enough to the root) to which
method is worst. Do NOT perform any iterations!!

i. Tn+l = /Tn
2
. x
. Ty = 557
fii. Zppq = 22

(c) Use six steps of method (i.) along with Aitken’s method to improve
the approximations of the root, with initial guess zg = 2.

31. TEST Consider the equation 272 = 3z + 1 (x).
(a) Show there is at least one solution to the equation on the interval
[1,2].
1

(b) Show that any fixed point of the iteration scheme z,11 = 3 + Too
is a solution of (*).

(c) Prove that the iteration scheme in part b has exactly one fixed point
in the interval [1,2] and that the scheme will converge to that root
for any starting guess in [1, 2].

(d) Use zp = 1 and perform two iterations of the scheme in part (b).

(e) Use Aitken’s method to improve the last value computed in part d.

~~
-
N

Set up Newton’s method for (*) and perform one iteration with
o = 1.

32. The function f(z) = e 2 + 42® — 5 has a root on the interval [1,2].
Use bisection, secant, regula falsi and Newton’s method (the latter with
zo = 1.5) to approximate the root with error less than 1076.

33. TEST

(a) Use 2 steps of the bisection method for finding a root of f(z) = z3—3
on the interval [0,4]. (ap = 0 and by = 4). What is the appropriate
guess for the root after these two steps?

(b) How many iterations of bisection would be needed to such that the
error is less than 10747

(c) Set up Newton’s method for the function of part (a) and perform 2
steps of Newton’s method. Use by of part (a) as your initial guess to
find bl and b2.

10



34.

35.

36.

37.

38.

(d) Find the absolute and relative error of your value of by in part (c).

The function f(z) = e* ! — 52 + 5 has a root near x = 1. Using
Newton’s method to approximate this root, does the number of “correct”
digits double with each iteration?

The quadratic f(z) = (z —0.4)(z — 0.6) = z? — 2 + 0.24 has zeroes at
z =04 and at z = 0.6. Why are the endpoints [0, 1] not satisfactory to
begin bisection?

Consider fixed point iteration with g(z) =1+ £.
(a) Show that the method has a unique fixed point z* on the interval
1<z<2.

(b) Use the method starting with zo = 1.5 and give an approximation to
the value of z*.

(c) Write down an equation which the fixed point z* satisfies. Solve it
exactly for z* and compare the result with that of part (b).
TEST Consider the iteration scheme
10

Tpy1 = — + 3
n+ Tn

Show z, = 5 is a fixed point.
Show there is exactly one root on the interval [4,6].
Let o = 4 and find z1 and x».

Why should Aitken’s method be able to improve the value of 22?7 Use
Aitken’s method to improve zs.

T = x ($n+1 _ mn)2
n —
Tny2 — 2Tpy1 + T

(e) On what interval, i.e., for what values of g, should the iteration
scheme converge to z, = 57

(f) Find the other fixed point of the iteration scheme and explain why
the scheme will not converge to that root for a guess close to it.

(g) The iteration scheme

22 + 3z — 10
Intt = T

has the exact same roots as the original scheme. Show that this
scheme will converge to the second fixed point, but not to the one at
Ty = O.

Plot f(z) = 2® — cosz — = on [0,2] and find a root on this interval
using Bisection, Regula Falsi and Newton’s Method (with starting guess
z=1).

11



39. Find aroot of tanz — ¢=0forc = 5 and ¢ = 10 with initial guess
9 = 1.3 and g = 1.4 using Newton’s method. Explain the results.

40. The function f(z) = e® — 3z? has 3 real roots. One rearrangement is

e.’E
= 44/
v V3

(a) Show that convergence is to the root near -0.5 if we begin with 2o = 0
and use the negative value.

(b) Show that convergence is to the root near 1.0 if we begin with zo =0
and use the positive value.

(c) Show that this form does not converge to the third root, near z = 4,
even though a starting value very close to this root is used.

(d) Find a different rearrangement that will give convergence to the root
near x = 4.

41. Use different fixed point iteration schemes to find the root near x = 1
for z10 = e®.

42. Consider the polynomial

z? z? zt "
=1 - — —
Pe) ey e tap Tty
Find the smallest positive root for members of the sequence of polynomials:
2
pm=1—-z,p =1—-—2z+ (;ﬁ, .... Do they appear to be converging?

43. Consider the polynomial
p(x) = (x -1z —-3)% = 2% — 112" + 462> — 902 + 81z — 27

(a) Can all the roots be obtained by bisection? Why or why not?

(b) Use Newton’s method with initial guess z = 2. Does the method
converge?

(¢) Use Newton’s method with initial guess z = 2.9. Discuss the order
and rate of convergence?

(d) Use Newton’s method on 5'((?) which has no multiple roots to obtain

quadratic convergence.

P(Tn)
p'(zn)

(e) Use Newton’s method on p(x) but using 2,11 = Z, —m to

obtain second order convergence.
44. Use the modified Newton’s method z, 11 = =, —k ]{,((”;")) to find the root
a = 1 for the function f(z) = 1— ze!=®. Is the quadratic convergence
recovered?

12



45. Consider f(z) = e®sin®z — 22, which has one root at # = 0 and another
root near x = 2.3. Use Newton’s method to approximate these roots. Use
starting values of g = 1 and zg = 2. Determine the order of convergence
in each case.

46. When solving for several roots of a polynomial, we can obtain one root
and then “deflate” the polynomial by synthetic division, but any error in
early roots and round-off can build up with later roots. Investigate this
phenomenon with

fl) = 2° — 42 + 3z + 1

by deliberately using an imperfect root (error 1%) and see how this af-
fects the accuracy of the other roots. The roots are 1.44504, 2.80193 and
—0.246979. So give one root an error, use synthetic division to obtain a
quadratic (ignoring any remainder) and use the quadratic formula to find
the other 2 roots. The repeat starting with the other two roots.

47. Perform two iterations of Newton’s method (for systems) with initial guess
2z, — x9 + %6_:”1 = -1
—x1 + 229 + %e‘” =1

Rewrite the system as Kz + ¢(z) = b

whereKI(_? _;)Hﬁ(ﬂ?) = (gi:)andb - (_}>

(1,1) for the system:

Perform 2 iterations of the scheme zy11 = (b — ¢(zx) — Kzp, + 224)
with 2o = (1,1).

Perform 2 iterations of the scheme z31; = K~1(b— ¢(z1)) with zo =
(1,1).

Systems of linear equations

x +y +=z = -1
1. TEST Consider the system of linear equations 2z + 4y + 4z = —6
-2z 42y +42z = —-10

(a) Use Gaussian Elimination with back substitution to solve the system.

(b) Find the LU decomposition of the system and solve using L and U.

2. TEST Consider the system of linear equations:

1 + 3.’172 = -1
311 + 4dxo + 3z3 = 11
5Ty + 2x3 = 1

(a) Write the system as Az = b.

(b) Solve the system using Gaussian Elimination with back-sustitution.

13



(¢) Find the LU decomposition of A and solve using it.
(d) What is the determinant of A?

(e)
) 76 -9
A= o 6 -2 3
-15 5 5

What is the condition number of A? (Use the 1-norm).

3. What is the operation count for computing the matrix-vector product Ax?
What is the operation count if the matrix is tridiagonal?

4. TEST Consider the system of linear equations:

1 4+ dz2 4+ 3x3 = 4
T — X2 + 6x3 = 16
211 + T2 = 5

(a) Write the system as Az = b.
(b) Solve the system using Gaussian Elimination with back-sustitution.
(c) What is the determinant of A?

)

(d) Perform one step of the Gauss-Seidel method on this system (put the
equations in the most appropriate order), starting with initial guess

1

1

1

5. TEST Find the LU decomposition of

A =

— N =

— =N
— =

Find the determinant of A using L and U.

4x + z =5
6. TEST Consider the system of linear equations z + 4y + z =3
T +4z = —-10

(a) Use Gaussian Elimination with back substitution to solve the system.

(b) Find the matrix that needs to be analyzed to determine whether
Jacobi’s iteration method will converge for this problem. (Do not
analyze the relevant matrix, just find it).

1

(¢) Perform one iteration of Gauss-Seidel, with starting guess 2

-3

14



7. TEST Consider the system of linear equations

4 + 1y = 3
2 + oS5y = 1
(a) Set up Jacobi iteration with initial guess x = 3, y = 11 and

perform two steps of Jacobi’s method.

(b) Set up Gauss-Seidel iteration with initial guess z = 3,y = 11 and
perform two steps of the Gauss-Seidel method.

(c¢) Explain why both methods should converge for this case.
(d) Perform 2 steps of the Power Method on the matrix

4 1
= (3)
with initial guess (1,1)7 to approximate an eigenvalue and eigenvec-

tor of A.

8. TEST Solve using Gaussian Elimination with back-substitution.

r +2y +32z = =35
3r +5y +=z = 2
2z + 6y =0
9. Given the matrices
1 -2 2 -1 -2 4 10 2
A= 3 1 1|, B= 1 3 =5 |,andC = 4 2 -1
2 01 2 4 -7 2 3 1

(a) Show AB=BA=1
(b) Show AIT=TA=A
(¢) Show AC # CA and BC # CB.

10. Let
6 1 -1
A = [_13 _g], and B = 1 4 1
-1 3 2
(a) Find the characteristic polynomial of A and of B.

(b) Find the eigenvalues of A and of B.

Show that if the characteristic polynomial of A is p()\), then p(A) is
a zero matrix.

A
o
~

11. Write the set of equations:

2¢c — 6y + 2 = 11
—5r —y — 22 = —12
T+ 2y + 72 = 20

in matrix form and solve the set of equations.
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12.

13.

14.

15.

16.

TEST Consider the system of linear equations generated by

-5 1 -2 2
Az=b, A=| 2 -6 1|, b=| -1
1 2 7 3

(a) Perform 3 iterations of the Jacobi method with initial guess (0,0, 0)7
to find an approximation for the solution of the above matrix equa-
tion.

(b) Perform 3 iterations of the Gauss-Seidel method with initial guess
(0,0,0)T to approximate the solution.

(c) Given the exact solution (-0.58824,0.05348,0.49733), calculate the er-
ror in parts (a) and (b) using the Euclidean vector norm.

Solve the following system of equations using Gaussian elimination with
partial pivoting (row interchange) followed by back-substitution.

2 -1 1 7
Av=b, A=[3 0 2|, b=| 9
1 2 -1 -6

Find the LU decomposition of the matrix A above using Gaussian elimi-
nation without pivoting. Verify that LU = A.

Solve the following system of equations by hand using Gaussian elimina-
tion with no pivoting (row interchange) followed by back-substitution:

1 2 3 4
Az =b where A=|1 -1 6 and b= | -1
2 10 0

Save the coefficients used in the row-reduction process and construct the
lower triangular matrix L and write down the LU decomposition of A.

TEST Find the LU decomposition of ( i _? ) and use it to solve
z + 3y =9
4z —y =10
The linear system
T + 2y =3
1.0001z + 2y = 3.0001

has solution (1,1)7. Change the system slightly, to

T + 2y =3
0.9999z + 2y = 3.0001
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and compute the solution using 5 digit rounding. Compare the error to
the estimate
llz — =] _ K(4) [ A|
llzll = 1=K A([SA[l/IIAID {14l

Is the matrix ill-conditioned?

17. Show that the following system does not have a solution:

31 + 219 — xs3 — 4x4 = 10
T — T2 + 3x3 — T4 = —4
211 -+ X2 — 3x3 = 16
— X9 + 8x3 — 524 = 3

If the right hand side is changed to (2,3,1,3)7, show there are an infinite
number of solutions.

18. TEST Consider the following system of linear equations

2 -3y +2z =16
dr +y —z =6
—2r —2y 43z =10

(a) Use Gaussian Elimination with back substitution.

(b) Find the inverse of the matrix [ (13 1; ] using the Gauss-Jordan
method.
19. TEST

(a) Use Gaussian Elimination with back substitution to solve

—2x1 4+ x9 =0
xrK —2x2 + x3 =0
To —2r3 + T4 =0

T3 —2x4 + T3 =0

T4 — 225 = —6

(b) Approximate the number of operations needed to solve the n x n
system of the same form with right hand side all zeroes except for
the last entry, which is —1 —n.

20. TEST Consider the system of linear equations:

1+ 22 = -1
—2r;  — 3z2 + 223 = 3
—22[32 - 3.733 = -3

17



21.

22.

23.

24.

25.

(a) Write the system as Az = b.
(b
(c
(d
(e) Compute A~L.

Solve the system using Gaussian Elimination.

)

)

) Solve the system using the Gauss-Jordan method.

) Find the LU decomposition of A and solve using it.
)
)

(f) What is the determinant of A?
(g) What is the condition number of A? (Use the l-norm).

Find the determinant of the following matrices using row operations to
make them upper triangular:

25 -l -1 3 2 -6
1 6 4
T 4 o -5 -1 3 -9
2 3 -8 1
Set up nxn Hilbert matrices (where a;; = Zﬂ%l) H, tosolve H,z = b
where each row of b is just the sum of the entries of the row so that the
correct answer is [1,1,...,1]". Let n increase until the solution goes bad

for single precision runs and then for double precision runs. For each of
these matrices, find the (numerical) determinant. The fact that they are
close to zero is a sign of the ill-conditioned nature of such systems.

(a) For a general n x n matrix, show that Gaussian elimination takes
O(n?/3) operations.
(b) Show that back substitution takes O(n?/2) operations.

(c) Show that Gauss-Jordan takes O(n®/2) operations.
The following relations may be helpful.

1
1+24+3+ ... -I-n:%
12 4+ 22 + 32 4 + 02 = n(n+1)(2n +1)
= 5
Evaluate the norms || * ||, where p = 1,2, 00 for
(a) z = [2.15, —3.110.0, 2.2]
(b) Yy = [_45 _505 3; 7]
(¢) z + y. Does the triangle inequality hold?
TEST Given
B 2 4 [ 41/6 —20/3
A= [ 19/10 41/10] and AT =1 196 103
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(a)

Evaluate the norms ||A||, where p =1, c0.

(b) Find the condition number of A using the 1-norm.
26. Evaluate the norms || * ||, where p = 1, 0o for
(a)
-9 5 -9
A = -2 7 5
5 1 8
(b)
8 -2 1
B = -2 2 -1
-2 4 -3
(c) B?, A+ B, and AB. Does the triangle inequality hold?

27. Approximate the condition number for the Hilbert matrices Hy, Hy, Hs,
Hy, and Hs by computing their inverses and using the l-norm or the
infinity norm.

28. Consider the system Az = b, where

301 603 1.99 1
A= | 127 416 —123 |, and b = | 1
0987 —4.81 9.34 1

) Solve the system using single precision arithmetic

Solve the system using double precision arithmetic

) Change the 3,3 element of A from 9.34 to —9.34 and repeat parts (a)

and (b).
Are either of the 2 matrices ill-conditioned? What is your evidence
of it?

Find the condition number of the matrices (use the 1-norm). Find
their inverses by solving Az = b for z, for b’s that are standard
normal unit vectors (1,0,0)7 etc.

29. Let A be a matrix with all eigenvalues less than unity. Compute (I — A)~!
directly and using I — A)™! = T+A4+A%2+. ..

30. Consider the system,

2 -6 1 11
Az=b, A=|-5 1 2|, b= | -12
1 2 7 20

Solve using Jacobi and Gauss-Seidel with initial guess [0,0,0]7 and com-
pare the rates of convergence.
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31. TEST Consider the linear system of equations

3z +y =4
x +4y =5

(a) Start with initial guess ( 8 ) and perform 2 steps of Jacobi’s method.

(b) Start with initial guess ( 8 ) and perform 2 steps of the Gauss-

Seidel method.
(c) Analyze (i.e., analytically investigate) which of the two methods
should work better for this system.

32. TEST Perform one step of Jacobi’s method method with starting guess
-2
( 1 ) for the system of linear equations

3z +vy =4
2r +4y = -4

Take the result and perform one step of the Gauss-Seidel method.
33. TEST Consider the system of linear equations

92 + 2y = 7
8 + 4y = 4

(a) Set up Jacobi iteration with initial guessx = 0,y = 0 and perform
two steps of iteration.

(b) Set up Gauss-Seidel iteration with initial guessx = 0,y = 0 and
perform two steps of iteration.

(¢) Determine whether Jacobi and Gauss-Seidel converge to the solution
in this case and which converges faster (by analyzing the relevant
matrices without doing more iterations or finding the exact solution).

34. TEST Given [ 2 411 ] T = [ (75 ], with initial guess [ 8 ]

(a) Find the first two iterates of a converging Jacobi iteration.
(b) Find the first two iterates of a converging Gauss-Seidel iteration.
35. TEST

511 + x5 =7
ry + 5.%'2 = 11

(b) Set up the Jacobi method for solving the system and perform two

(a) Consider the system:

iterations with starting guess [ _;g ]
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(c) Set up the Gauss-Seidel method for solving the system and perform
two iterations with starting guess [ _gg ]

(d) Which method works better for this system? Explain (show) carefully
why.

36. TEST Consider the system of linear equations:

5(1]1 + Zo = 11
X1 - 20.’1)2 = —18

Perform two steps of Jacobi iteration with starting guess (12,21)7.

—~
o
S—

(b) Perform two steps of Gauss-Seidel iteration with starting guess (12, 21)7".

(¢) Find the matrix needed to analyze convergence of Jacobi’s method
and discuss convergence.

(d) Find the matrix needed to analyze convergence for Gauss-Seidel and
discuss convergence.

37. Consider heat conduction in a small wire carrying electrical current that
is producing heat at a constant rate. The equation describing the temper-
ature y(z) along the wire (0 < z < lcm) is

>y _
ox2

=S

with boundary conditions y(0) = y(1) = 0°C, thermodiffusion coefficient
D = 0.01cm?/sec, and normalized source term S = 1°C/sec.

If we discretize the domain into 20 equal sub-intervals, using z; = j/20
for j = 0 to 20, we can approximate (1) at z; to obtain

Yji—1 — 2y + Yj+1 _
D e =-S

where y; is the temperature at © = z; and h = 0.05 is the step size. If we
apply the boundary conditions at x¢ and z2q, we are left with 19 equations
for 19 unknown temperatures, y; to y19. We can put these equations into
the matrix form Ay = b where

-2 1 000 .. O Y1 [ —0.25
1 -2 100 .. 0 Y2 —0.25
0 1 -2 10 .. 0 Y3 —0.25
A= ) , ¥y = ) , and b =
0 0 .. 01 —2 1 Y18 —-0.25
| 0 0 0 0 1 —2_ _y19 i L —025
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Solve the above steady-state problem by writing computer programs to
implement Jacobi iteration and Gauss-Seidel iteration. Starting with an
initial guess of the zero vector (y = 0), plot y](-") vs. x5, =1,...,19,
for both methods for n = 10, 100, and 1000 (one plot per method). At
what step does the maximum error (over y; to y19) between successive
estimates fall below 1% for the two methods?

maz _ ( (n) _ ygn—l))/ygn—l)

max :
rel i=1,...,19 Yi

38. Consider the system of linear equations generated by

5 2 00 1

-1 6 1 0 3

Az =0, A= 02 71| b= _9
00 -2 6 4

(a) Verify that the equation in part (a) is equivalent to

2 1
D Th g i
x=Tzx+c, T= % 2 ‘(5) 1|, e=| _3
7 7 1

1
o 0o L o0 2

(b) Calculate ||T||1.

(¢) Perform 4 iterations of the Jacobi method and find an approximation
for the solution. What is your ||.||1- estimate of the error?

(d) How many Jacobi iterations do you have to perform so that the error
between the n-th iterate z,, and the exact solution z is ||z, — z||1 <€
with e = 1075,

39. Use Jacobi’s Method and Gauss-Seidel to solve

[ -4 2 0 . . .0 2
2 -4 20 0 3
0 2 -4 20 0
0 O .. .0 0 ]=x=
0 .0 . . .0
0 02 -4 2 .
| 0 0 2 —4 | | 11 |
1
40. TEST Perform two steps of the Power Method with initial guess | 1
1
5 0 5
for the matrix | 0 2 0 |. From the results, estimate an eigenvalue
5 0 5

and an eigenvector.
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41.

42.

43.

44.

45.

46.

47.

TEST Use 2 iterations of the Power Method to approximate the eigen-
value of largest magnitude for ( g 2 ) with initial guess: ( ; ) Try
to guess an eigenvalue and eigenvector from this?

Compute the largest eigenvalue of a matrix using the Power method. Com-

pute the matrix inverse and use the Power method on the inverse to com-
pute the smallest eigenvalue of the original matrix.

5 0 5
TEST Use 2 iterations of the Power Methodon | 0 1 0 | with initial
5 0 5
1 1
guesses: 1 | and 1 ]. Discuss the results.
1 -1
Show that 4; = { 1/}1 1/(2) ] isnot convergent, but Ay = [ 1{2 1/(2] ]

is convergent.

TEST Use one iteration of Newton’s method for systems with initial guess
(1/2,1/2)T on

x2+y3 = 1
22—y = —1/4

Use Newton’s method for systems to find two solutions near the origin of

2 + 1z -y

y — sinz? = 0

TEST Perform one step of Newton’s Method for systems with initial guess
(-1,2) on:

z? + Ty — y2

 +y

)
9

Interpolation and Curve Fitting

1.

Given that In(2) = 0.69315, In(3) = 1.0986 and In(6) = 1.7918 inter-
polate using a Lagrange polynomial to approximate the natural logarithm
of each integer from one to ten. Tabulate your results with the absolute
and relative errors.

TEST Find the Lagrange polynomial through the (z, y) points (1,2),
(2,5), (4,5) and (5,2) and use it to approximate y(3). Use a divided dif-
ference table to find the same polynomial.
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3. TEST Consider a function f(z) with the following values known:

z JO0[1[3] 4
f@)y[2]2]214

Find the Lagrange Polynomial through all the points.

~~
=3

Find the Lagrange Polynomial through z = 0,1 and 3.

—
(¢

Find the Lagrange Polynomial through z = 1,3 and 4.

—~~
o
Rar NI NN

Use the results of parts (a), (b) and (¢) to approximate f(2) and
write an expression for the error terms. (Your answer may include

FM(©).

(e) Approximate f'(2) using f(0) and f(4).

(f) Useinformation in the table and Richardson extrapolation to improve
your estimate of f'(2).

4. TEST Consider a function f(z) with the following values known:

T 111 3 6
f(x) 1(3|-3]|-27

(a) Set up the Lagrange Polynomial through all the points. (Do not
multiply it out).

(b) Use a divided difference table to find the same polynomial as in part
(a). (Do not multiply it out).

5. Construct the quadratic polynomial using Lagrange polynomials and di-
vided differences for y = % using the points £ = 1, 3/2, 2 and find an
upper bound for the error.

6. Show that the error in polynomial interpolation using 6 equally spaced
points (quintic interpolation) satifies

|f = ps| < 0.0235h0| f®)

7. TEST Consider a function f(z) with the following values known:

T -110]| 2
flz)| 9]4]12

(a) Find the Lagrange Polynomial through the 3 points.

(b) Use the result of part (a) to approximate f(1) and write an expression
for the error term.

(¢) Use the result of part (a) to approximate f'(1).
(d) Use the result of part (a) to approximate f02 f(z) de.
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8. TEST Consider a function f(z) with the following values known:

T 0(1]|4
fl®)y| 2|13

(a) Find the Lagrange Polynomial (show set-up work) through the points.
(b) Use the results of part (a) to approximate f(2), f(3) and f'(2).

T 0 2

9. TEST Find the Lagrange Polynomial through the points.

flx) | —2| -4

53

112 |

and use the result to approximate f(1).

10. TEST Consider the function f(z) = 3y/1 + =

(a) Find f(-1), f(0), £(7), f'(z), " ().
(b) Find the second degree Taylor polynomial approximation to f(z)
around z = 0. Use this to estimate f(1).

(¢) Use the information from part (a) to find a Lagrange polynomial of
degree 1 to approximate f(1). Give an upper bound to the error of
this approximation.

(d) Find the highest degree Hermite polynomial possible using informa-
tiononlyatz = Oandz = 7.

11. A car traveling along a straight road is clocked at a number of points. The
data are given in the table, where time is in seconds, distance is in feet
and speed is in feet per second:

Time 0 3 5 8| 13
Distance | 0| 225 | 383 | 623 | 993
Speed 75| Tr| 80| 74| T2

(a) Use a Hermite polynomial to predict the position of the car and its
speed when t = 10.

(b) Use the derivative of the Hermite polynomial to determine whether
the car ever exceeds a 55 mlies per hour speed. If so, what is the
time that the car first exceeds this value?

12. TEST Given the data

T 0 1 2
f(z) [ 1/2]1/8|1/18

(a) Find the interpolating polynomial, Py(x), using divided differences?
(b) What is P»(3/2)?

13. TEST For the data in problem 9 (this is the same as 9) Use the data in
the previous problem to:
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(a) Construct the Lagrange polynomial P(z) that interpolates the func-
tion f(z) at the nodes g, x1, z2.

(b) Find the value of P»(z) at # = 3 and compare it with f(z) at that
point.

(c) Find the error bound for approximating f(z) by Py(z) at z = 3.
Does it agree with the absolute error you found in part (b)?

14. Construct a divided difference table to compute a Lagrange polynomial
using all of the following data:

T 0.5 -=0.2 0.7 0.1 0.0
f(z) | —1.1518 | 0.7028 | —1.4845 | —0.14943 | 0.13534

15. TEST Let f(z) = z%/2.
(a) Construct the second degree Lagrange polynomial P»(z) that inter-
polates f(x) at the nodes zo =0, 1 = 1, x5 = 4.

(b) Find the value of P2(x) at = 2 and calculate the actual error at
that point.

(c¢) Calculate the error estimate for approximating f(z) by Pa(x) at x =
2. Does it agree with the error in (b)?

16. Find the coefficient matrix and the right-hand side for fitting a cubic spline
to the following data. (Use free boundary conditions).

T 0.15 0.27 0.76 0.89 1.07 2.11
f(z) ] 0.1680 | 0.2974 | 0.7175 | 0.7918 | 0.8698 | 0.9972

17. TEST S(z) is a cubic spline. Find S(3).

1 4+ azx + bz® on 0<z<?2

S@= 29 4 38w -2) + c@—2)? — 3z-2° on 2<<3

18. TEST Set up the system of equations for the cubic spline through the

points:
T 0 2| 5 6
F@) | —2 | —4 |53 112
given Sp = ¢"(0) = —6and S; = ¢”’(6) = 30. DO NOT SOLVE.

19. TEST Show S(z) is a cubic spline. Is it natural or is it clamped?

1+ 2+ 22 + 23 on 0<z<l1

S@)= 4 4 6(z—1) + 4xz—-12 on 1<z<?2
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20.

21.

22.

23.

24.

25.

26.

27.

For what value of k is the following a cubic spline?

filz) = kz? + 3/2 0<2z<1
f2(2) = 22 + 2z + 1/2 1<z <2
Is the following function a spline? Why or why not?

filz) = 0 z <0
f2(z) = z’ 0<z <1
fa(x) = 22 + 62 + 3 1<z <2
fa(@) = (z - 3)? 2<z<3
fs(z) = 0 z >3

TEST Find the values of a, b, ¢, d, e and f such that the following
functions define a cubic spline and find f(0), f(1), f(2) and f(3).

filz) = 2z3 + 422 — Tz + 5 0 <z <
folz) = 3(z—-12° + a(z—-1)? + bz—-1) + ¢ 1<z <
fs() = (-2)2° +d=xz-2)?2 +ex-2) + f 2 <z <

TEST A natural cubic spline g on [0, 2] is defined by:

go(z) = 1+ 2z — 23, 0<z<l1,
g1(x)= a+blz—1)+clzr—1)2?+dxz—-1)3 1<z<2
(a) What conditions should go and g; satisfy at z = 17
(b) What condition must g (z) satisfy at z = 27
(c) Apply the conditions in (a) and (b) to find a, b, ¢, d.
If the data given are periodic and cover one period, the first and last

points will have identical function values and slopes. Develop cubic spline
relations (equations) for such periodic data.

Suppose that f(z) is a polynomial of degree 3 on the interval [a,b]. Show
that f(x) is its own clamped cubic spline on this interval, but it cannot
be its own free cubic spline.

Suppose the data (z;, f(z;)), ¢ = 1,2, ...,n lie on a straight line. What can
be said about the free and clamped cubic splines for f.

TEST
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28.

29.

30.

31.

32.

33.

34.

(a) Set up the system of linear equations for finding a least squares line
through the points (—2,-1), (—1,0), (0,1), and (7,2)

(b) Which of the following methods may be used to solve this system
(DO NOT solve the system) (i) Gaussian Elimination, (ii) LU de-
composition, (iii) Choleski’s Method, (iv) LDLT.

TEST Find the best (Least-Squares) line through the points (—8,—9)
(—3,—4) (—1,—2) and (12,11).

Find the best “least squares” function of the form z = ax + by + ¢ for
the data:
0| 0]0.9573
0 11 2.0132
1| 0]2.0385
1 1(1.9773
0.5 0.5 | 1.9936

29a. Compute the best (least squares) line through (R is a function of T')

R| 765 | 826 | 873 | 942 | 1032
T 1205|327 |51.0]|73.2| 95.7

TEST Find the best (Least-Squares) line through the points (0,2) (0, 8)
(1,—1) and (3,11).

TEST Consider the following set of values for (z;,Y;): (1,1.9), (2,3.1),
(4,4.8). Find the least-squares line, of the form y = ax+b, that interpolates
this data. What is the squared error, Zle (y;—Y;)?, for this interpolation?

TEST The data points (0,e%!), (1,e2) and (3,e®) should lie approxi-
mately on a curve of the form y = ae®®. Set up a system of linear ”least

squares” equations that would be useful for approximating a and b. DO
NOT SOLVE.

Consider the following overdetermined system of equations:

1 -1 1
Ar=b, A=|1 11|, b=]1
12 3

Find the best (least squares) solution.

Find the best (least squares) values for a and b by fitting the data below
toy = ae’® where y is the Solubility. (Take logs to turn it into a linear
least squares problem).

T° 771100 | 185 | 239 | 285
Solubility | 24| 3.4| 7.0 | 11.1 | 19.6
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35.

It is suspected (from theoretical considerations) that the rate of flow from
a fire hose is proportional to some power of the pressure at the nozzle.
(Flow = constant Pressure?°®*"). Find the least squares values of the
constant and the power given the following data.

Flow (gal/min) | 94 | 118 | 147 | 180 | 230
Pressure (psi) |10 | 16| 25| 40| 60

Numerical Differentiation and Integration

1.

Use the Lagrange polynomial through f(xzo — h), f(zo) and f(zo + h) to
construct an approximation for f"(zo).

TEST What does the difference scheme approximate and give its error
order? 5= [f(z + 3h) + f(z — h) — 2f(z)].

TEST Given f'(z0) = & [f(zo + h) — [(wo)] — Lf"(zo) + O(h?).
Use the numerical derivative approximation f'(zo) =  [f(zo + h) — f(z0)]
and step size of 2h combined with the idea of Richardson extrapolation to
derive a 3 point formula for f’(zg) with improved (i.e., O(h?)) error.

TEST Derive a (the best possible) difference formula for f”(z¢) through
f(zg), f(xzg —h) and f(zo + 2h) and find the leading error term.

TEST Derive a (the best possible) difference formula for f”(zo) through
f(zg), f(zo + h) and f(zo + 3h) and find the leading error term.

Derive a three-point centered difference scheme for f/(z;) with the un-
evenly spaced nodes xg,x1,x2 be defined as: xg = x1 — h, o = 1 + 2h

(a) Construct the interpolation polynomial P(z) in terms of the values
of the function f(z) at these nodes.

(b) Differentiate the interpolation polynomial Ps(z) with respect to z
and evaluate it at x = z1. Write down both the difference formula
and the remainder term. What order of accuracy is this scheme?

(c) Now let f(z) = Inz, z;y = 1, and take h = 0.1. Calculate the
approximation of f'(1) and compare it with the exact value. What
is the actual error? Calculate the error from the remainder term
obtained in (b) and compare it to the actual error. Do they agree?

. Analyze the round-off errors to obtain the optimal step size for the formula

f'(ﬂfo) = 7]0(%%;)1_“%) - %f”(fo)-

. TEST Given f'(z) = 3 [f(x + 2h) — f(z — h)] + O(h).

If g(z) = 22® + x? + 1, use the formula given to approximate g'(—1)
using h = 2. Do the same for h = 1. Improve the result using
Richardson extrapolation.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Show the approximation

8f(x + h) —8f(x — h) — f(z +2h) + f(z + 2h)
12h

fl(z) =
in O(h*).

TEST Using the smallest step size possible, approximate f; ﬁda} using
the Midpoint Rule, the Trapezoidal rule and Simpson’s Rule using only
the values of f(z) at z = 2,3,4,5 and 6.

The length of a curve y = g(z) is given by fab V1+ (¢g'(x))%2dz. Use
Trapezoidal rule and Simpson’s rule to compute the length of one arch of
the sine curve.

Let f(z) = |z|; Use the trapezoidal rule with one interval and the smallest
Simpson’s iteration possible (3 points) and compare the result with the
exact value for [ _11 |z|dz. Comment on the error and the theoretical value
of the error.

Use the Midpoint Rule with A = % to approximate fol z(1 — 22)dz. How
small does h have to be to get the error less than 1072? 107%? and
compare to the theoretical value.

Use the Midpoint Rule with h = 2,1,%,%,... to approximate f13 In zdz.
Confirm the approximations are converging at the correct rate. How small
does h have to be theoretically to get the error less than 1073? 1076? Use
Romberg Integration on this problem assuming that the error has only
even power terms.

If the following data comes from a midpoint rule computation, is it con-
verging as it should?

Number of Points 4 8 16 32 64

Values —0.91595 | —0.95732 | —0.97850 | —0.98921 | —0.99459
TEST Approximate

4
1
/ dz
o 1+=z
using the Trapezoidal rule (with h = 1) and Simpson’s Rule (with A = 1).
Find a theoretical error bound in each case.
Apply the Trapezoidal rule to the integral fol Vzdz usingh =1/2,1/4, 1/8, ....
Do you get the expected rate of convergence? Explain.
. T -5 -4 -3 -2 =10 1| 2|3 4 )

TEST Given 00 [ =162 | =160 | =84 | 0| 50 | 48 | 0 | =64 | =90

(a) Approximate f06 f(z)dz using Trapezoidal rule with h = 2.
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(b) Approximate f06 f(z)dz using Trapezoidal rule with h = 6.

(¢) Improve the results of parts (a) and (b) using Romberg’s (Richard-
son’s) Method.

(d) Approximate foﬁ f(x)dx using Simpson’s rule using the largest step
size possible with the data given. What is the (global) error order
for Simpson’s rule?

(e) Find the Lagrange Polynomial through f(—5), f(—2), f(3) and f(4)
by setting it up by the definition. (Do not multiply it out).

(f) Find the Lagrange Polynomial through f(—5), f(—2), f(3) and f(4)
using a divided difference table.

(g) Find the least squares line through f(—5), f(—2), f(3) and f(4).

19. Write a computer program that uses the composite Simpson’s rule to
find the value of the following integrals. Tabulate the results using n =
2,4,8,16,...,16384 intervals using double precision. Compare these with
the best approximations available (that is, the ones obtained at the largest
value of n) and determine the number of intervals n needed for the nu-
merical solution to be within an absolute error of 1078,

(a)
2
I :/ e 2% dg.
)

4 25022
Iy(t) =
2(1) /,,r cosh® [500(z — #)]

for values t = 0,0.5,1.0,2.0

(c¢) Find the error bound as a function of n for part (a). Does it agree
with your approximation to the exact value of the integral?

(b)

20. TEST Given a continuous smooth function f(z) for which f(0) = 8,
f) =5, f(2) =3, f3) = 2,and f(4) = 3
(a) Use a 3-point centered difference scheme to approximate f"(2).
(b) Use Richardson extrapolation to improve this result.

(¢) Use the (composite) Trapezoidal Rule and Simpson’s Rule to approx-
imate f04 f(z)dz.

21. TEST Let f(z) = e~ and consider the integral

I= /01 f(x)dx.

(a) Use the composite Trapezoidal rule to approximate the integral I
using h = 0.25.
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22.

23.

24.

25.

(b) Use the composite Simpson’s 1/3 rule to approximate the integral I
using h = 0.25. Use this result to estimate the absolute error in part
(a).

(c¢) Calculate the bound on the absolute error for the Trapezoidal rule
in part (a) and compare it to the error estimated in part (b).

TEST Determine whether you need to subdivide the interval in

0.2 9
/ e—lOw dm,
0

if you wish to achieve the accuracy € = 107 in the adaptive quadrature
method (Using Simpson’s Rule).

TEST Let f(z) = ﬁ

(a) Use the composite trapezoidal rule with five subintervals to approx-
imate fol f(x)dz. Compare the result with the exact value.

(b) Calculate the step size for the composite trapezoidal method you
need to approximate the value of fol f(z)dz to within € = 10757

(¢) Use the forward difference formula with step h = 0.2 to approximate
f'(z) at z = 1. Calculate the absolute error.

(d) Calculate the error bound for part (¢). Does it agree with the actual
error you found in part (c)?

TEST The following data give approximations, I, to an integral fab f(z)dx
for a scheme with error terms E = K1h + Kyh® + K3h® + ...

I(h) = 2.3965, I(h/3) = 2.9263, I(h/9) = 2.9795
Construct an extrapolation table to obtain a better approximation.

TEST Consider the points

T 1 2 3 4 5
f(z) | 0.01 [ 0.69 | 1.10 | 1.39 | 1.61

(a) Approximate f'(3) using centered difference with h = 2.
(b) Approximate f'(3) using centered difference with h = 1.

—~
o

) Use Richardson extrapolation to improve the results in parts (a) and
(b).
(d) Approximate f"(3) using centered difference with h = 1.

(e) Set up the finest possible Trapezoidal rule approximation of ff f(z) dz.
DON’T ADD UP.

(f) Set up the coarsest possible Trapezoidal rule approximation of ff f(z) dz.
DON'T ADD UP.
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26. TEST

(g) Set up the finest possible Simpson’s rule approximation of f15 f(z) de.
DON'T ADD UP.

(h) Set up the coarsest possible Simpson’s rule approximation of ff’ f(z) dz.
DON’T ADD UP.

(a) What does the expression

4f(@+h)=3f(z)—f(z—2h)
6h

approximate at z?

(b) What is the leading order of the error in part a (L.e., h, h?, etc.)?
(¢) Use f'(z) =~ W on the data

z |-3]-2[-1]0[1]2]3
F@)| 25| 17| 11| 7]5]5]7
1.

to approximate f'(0) using h = 3 and h =

(d) Use Richardson extrapolation to improve the result in part (c).

27. The following data give approximations to the integral foﬂ sinzdx for
a scheme with error terms E = K;h?
I(h) = 1.570796, I(h/2) = 1.896119, I(h/4) = 1.974232, I(h/8) = 1.993570.
Construct an extrapolation table to obtain better approximations.

28

+ Kyht

+ K3hS

+

. Suppose that I(h) is an approximation to an integral M for every h > 0

and that M

= I(h) + K1h + K3yh? + K3h® + .... Use the values
I(h), I(h/3) and I(h/9) to produce an O(h®) approximation to M.

29. The Trapezoidal rule applied to f02 f(x)dx gives the value 4 and Simpson’s
rule gives 2. What is f(1)?

30. Derive Simpson’s 3/8 rule (i.e. using f(zo), f(z1), f(z2) and f(z3)) and
compute the error term by matching with exact integrals on [0, a] for as
many terms as possible.

31

. Consider the data in the table:
x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
f(z) | 1.543 | 1.669 | 1.811 | 1.971 | 2.151 | 2.352 | 2.577 | 2.828 | 3.107

(a) Approximate f'(1.4) using forward (non-centered) differences using

h = 0.1, 0.2, and 0.4.

(b) Use Richardson extrapolation to improve the results.

(c) Approximate f'(1.4) using centered differences using h = 0.1, 0.2,
and 0.4.

(d) Use Richardson extrapolation to improve the results.

]
~—

and 0.8.
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(f) Use Romberg’s method to improve the results.

(g) Use Simpson’s Rule to approximate fll's f(z)dz using h = 0.1, 0.2,
and 0.4.

(h) Use Romberg’s method to improve the results.

32. Consider the data in the table:

z | flx)
1.6 | 4.953
1.8 6.050
20| 7.389
2.2 9.025
2.4 |11.023
2.6 | 13.464
2.8 | 16.445
3.0 | 20.086

(a) Approximate fﬁ: f(z)dz using the Trapezoidal rule (h = 0.2).
(b) Compute the exact error, noting that f(z) = e®.
) Compute the error bound for the Trapezoidal Rule for this case.
)

If we did not know the true function, we would have to approxiamte
the maximum second derivative of f(x) using the data. Compute the
error bound in this manner.

(e) If we want the computation to be correct to 5 decimal places (error
< 0.000005) how small should the step size h be?

33. TEST

(a) Approximate f_33 f(z)dz for the data:

z |-3]-2]-1]0[1]2]3
F@)| 25| 17| 11|7|5]5]|7

using the Trapezoidal rule with step sizes h = 1 and 2.

(b) Use Romberg integration to improve the result.

(¢) Approximate f_33 f(z)dz for the data using Simpson’s rule with two
different step sizes.

(d) Compare the results of parts (b) and (c) and explain.

34. TEST Consider a function f(z) with the following values known:

x 1[5/4[3/2]7/4]2
fx) (11| 7| 5| 4|6
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(a) Use the Trapezoidal Rule with 2 trapezoids to approximate ff f(z) dz.

(b) Use the Trapezoidal Rule with 4 trapezoids to approximate |, 12 f(z) dz.

(c¢) Use parts (a) and (b) and Romberg Integration (Richardson Extrap-
olation) to obtain a “better” approximation of ff f(z) dz.

(d) Use Simpson’s Rule (with the smallest step size possible with the
given data) to approximate of ff f(z) dx.

(e) Use the Midpoint Rule (Rectangle Rule) with the smallest step size
possible with the given data to approximate of f12 f(z) de.

35. Use Trapezoidal Rule and Simpson’s Rule to approximate the following
integrals, refining the step size until you believe the answer is reasonable.
What is the step size in each case? (These integrals might fool automatic
step size finding algorithms).

! 0.001 ! dz
() /om dz () /0 1+ (230z — 30)2

36. Find the degree of precision of the quadrature formula

| t@as = 1 (—?) . (?)

37. The quadrature formula fil f@)de = cof(-1) + af(0) + caf(1)
is exact for all polynomials of degree less than or equal to 2. Determine
co, ¢1 and co.

38. The quadrature formula fol f(z)dz = cof(0) + c1f(z1) has the highest
possible degree of precision. Determine ¢y, ¢; and zj.

39. The quadrature formula fol f(z)dz = Lf(zo) + c1f(z1) has the highest
possible degree of precision. Determine xg, ¢; and ;.

40. Use the transformation ¢t = % and Simpson’s rule to approximate

*© 1 *© 1
a. / and b. / —_—
1 1 =+ .’1,'4 0 1 + $4

within 107%. You may want to break the second integral into two parts.

Differential Equations IVPs and BVPs

1. TEST Consider the ordinary differential equation ‘;—?; = —t2 + y2 with
y(0) = 1. Use the Runge-Kutta method with h = 2 to approximate
y(2).
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2. TEST Consider the ordinary differential equation % = (1 —t)y with
y(0) = 3.
(a) Use Euler’s method with h = 2 to approximate y(2) and y(4).
(b) Use Fourth Order Runge Kutta method with h = 2 to approximate
y(2).
(¢) Use part (a) at t = 2 to initialize Adams-Bashforth

h
Wnt1 = Wp + 5[3fn_fn—1]

and Adams-Moulton w11 = wp + Z[5faq1 + 8fn — fa—i]
to approximate y(4). (Le., all 3 — part (a), Adams-Bashforth and
Adams-Moulton are all used to obtain one answer).

3. TEST Consider the ordinary differential equation

dy _

7 —t’y with y(2) = 2

(a) Use Euler’s method with A = 1 to approximate y(3).

(b) Use the second order Taylor series method with h = 1 to approxi-
mate y(3).
(¢) Use Fourth Order Runge Kutta method with h = 1 to approximate
y(3).
(d) Use the Adams-Bashforth Two-Step method with A = 1 and the
results of part (a) to approximate y(4).
(e) Use the Adams-Moulton Two-Step method to update your result in
part (d).
4. TEST Consider the ordinary differential equation % = ty — 1 with
y(0) = 3.

(a)
(b) Use Modified Euler’s method with A = 2 to approximate y(2).
(©)

Use Euler’s method with h = 2 to approximate y(2).

Use Fourth Order Runge Kutta method with A = 2 to approximate
y(2).
(d) Use Taylor Series Method up to the z* term to approximate y(2).

(e) Use the result of part (b) along with the predictor-corrector method
to approximate y(4).

5. TEST Consider the ordinary differential equation % = 34 withy(1) = 2
and (when useful below) y(—1) = —2.

(a) Use Euler’s method with A = 1 to approximate y(3).
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(b) Use the 2nd order Taylor series method with h = 2 to approximate
y(3).

(c¢) Use the 4th-order Runge-Kutta method with h = 2 to approximate
y(3).

(d) Use the Adams-Bashforth Two-Step method to approximate y(3).

(e) Use the Adams-Moulton Two-Step method to approximate y(3).

6. TEST Consider the initial-value problem

dy t

_— = - 0)=1, 0<t<1

T y(0)=1, 0<t<

(a) Find the approximate solution to the above problem using Euler’s
Method with h = 0.25.

(b) Given that the exact value is y(1) = 1.41421356, find the absolute
error in part (a) and determine the h needed to get an absolute error
of 1077.

7. TEST Consider the ordinary differential equation ‘;—f{ = 2ty withy(1) = 2.

(a) Use Euler’s method with h = 0.5 to approximate y(2).

(b) Use the second order Taylor series method with h = 1 to approxi-
mate y(2).

(c¢) Use the Runge-Kutta method with A = 1 to approximate y(2).

(d) Use the Adams-Bashforth Two-Step method with A = 1 and the
results of part (a) to approximate y(3).

(e) Use the Adams-Moulton Two-Step method to update your result in

part (e).
(f) Compare the stability of the Adams-Bashforth and Adams-Moulton
Two Step methods for the ODE % = —4ywithh = 1.

8. Consider the differential equation Z—g =z + y + zy with y(0) = 1.

(a) Use the Taylor series method with terms through z* to approximate
y(0.1) and y(0.5).

(b) Use Euler’s method to approximate y(0.1) and y(0.5). Use step size
0.1.

(¢) Use Improved Euler’s method to approximate y(0.1) and y(0.5). Use
step size 0.1.

(d) Use the Fourth Order Runge-Kutta method to approximate y(0.1)
and y(0.5). Use step size 0.1.

9. Consider the differential equation % = z 4+ y with y(0) = 1. (The
analytical solution is y(z) = 2e® —z —1.)
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(a) Use the Taylor series method with terms through z® to approximate
y(0.1) and y(0.5).

(b) Use Euler’s method to approximate y(0.1) and y(0.5). Use step size
0.1.

(¢) Use Improved Euler’s method to approximate y(0.1) and y(0.5). Use
step size 0.1.

(d) Use the Fourth Order Runge-Kutta method to approximate y(0.1)
and y(0.5). Use step size 0.1.

10. For the differential equation % = ($)(1 — ) with y(0) = 1: (The

analytical solution is y(z) = 4=

(a) Use the Taylor series method with terms through z® to approximate
¥(0.1) and y(0.5).

(b) Use Euler’s method to approximate y(0.1) and y(0.5). Use step size
0.1.

(¢) Use Improved Euler’s method to approximate y(0.1) and y(0.5). Use
step size 0.1.

(d) Use the Fourth Order Runge-Kutta method to approximate y(0.1)
and y(0.5). Use step size 0.1.

11. For the differential equation Z—Z = 7 with y(0) = 1:

(a) Use Euler’s method to approximate y(1). Use step size 0.1 and 0.2.

(b) Extrapolate to improve the results of part (a) assuming that error
proportional to step size. Compare to the analytical result (y2 = 1+
z?).

(c) Repeat parts (a) and (b) with modified Euler noting that error is
proportional to step size squared.

12. For the differential equation% =y — t?withy(0) = 1withy(0.2) = 1.2186,

y(0.4) = 1.4682 and y(0.6) = 1.7379.

(a) Use the Adams-Bashforth four-step method to compute the solution
throught = 1.2

(b) Use the Adams-Bashforth four-step method in combination with the

Adams-Moulton method of the same order (3-step) to compute the
solution through ¢ = 1.2

13. Show that the Midpoint method, the Modified (Improved) Euler method,
and Heun’s Method give the same approximations for the IVP ¢/ = —
y +t 4+ 1,on0<t<1, where y(0) = 1 for any choice of h. Why is
this true?
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14.

15.

16.

17.

18.

19.

20.

Consider the initial-value problem:

2
y =xy?, 0<z<2, y(0)==.

(a) Write a computer program to solve the ODE using Euler’s method
and Improved-Euler’s method. Use your program to compute ap-
proximate solution y(z) up to z = 2 for step sizes h = 3, with

n=1,2,...,10. Plot the approximate solutions for each n.

(b) Use the 4th-order Runge-Kutta method to compute approximate so-
lutions to the ODE for the same step sizes as in Part 1. Given the

exact solution, y = ﬁ, make log-log plots of the absolute error in

y(2) vs. h for the three methods. What do these plots tell you?

(c) Using 4th-order Runge Kutta method with n = 4,i.e., h = 0.0625
to compute the solution to the ODE up to z = 3. What happens
and why?

Use the Adams-Moulton method (two-step) for the linear ODE ?Tg = (1+

3t2)y with y(0) = 1 and y(0.1) = 1.10628 (The exact solution is e'*+¢")
to compute an approximation of y(1). Notice that since the ODE is linear,
the corrector method can be applied on its own. That is, Adams-Moulton
reduces to an explicit method.

TEST Write the ODE " — ¢’ + y = t? with y(2) =2, 3'(2) = 3 and
h =1 as a system of first order ODEs. Use Euler’s method to approximate
y(4).

TEST Set up the first-order system of ODEs (the initial value problem)
for the ODE initial value problem y"”’ + 3y"y — 6(y')?> + 2y = 3t with
y(0) = 1 ¢'(0) = 2 4"(0) = 3.

TEST Investigate the following multistep difference scheme for solution
to differential equations of the form y' = f(¢,y) for consistency, stability
and convergence.

3 1 1
Wiyl = SWi — SWi-1 + §hf(tz',wz')

TEST Find a and b such that the method for solving ODEs given by:
Wnp+1 = AWp—1 + bh[f(tnflywnfl) + 4f(tn;wn) + f(tn+1;wn+1)]

is consistent. Is it stable? For extra credit — find the local truncation
error.

TEST Consider the multi-step scheme

5
Witl = Wi = QWi-1 + hbf(ti, ws) + cf (ti—1, wi—1)).
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Find a,b and ¢ to obtain the highest order scheme possible. Is the method
stable? Find the inequality that must be satisfied for the method to be
stable for the ODE 3y’ = —y for a step size h.

21. TEST Consider the Gear solver for solving ordinary differential equations:

18 9 2
Wit1 = Wi — Wi-i t opWi-2 + ahf(tivi, wit1)
where a is a constant.
(a) Find the characteristic polynomial to study the stability of this method
in general.
(b) Find a such that the method is consistent.

(¢) Noting that one solution to the polynomial you hopefully found in
part (a) is 1, determine whether the method is stable.

tn —y(t,
22. Use the approximation y'(t,) = Y(tnsr) —y(tn)

method for ODEs. What is the residual? What is the truncation error?
Is the method consistent?

to derive a numerical

—y(t dy(t,) — tn_
23. Use the approximation y'(t, 1) = Y(tnsr) +4y(tn) = 3y(tn 1) to de-

2h
rive a numerical method for ODEs. What is the residual? What is the
truncation error? Is the method consistent?

24. Show that the method yp+1 = 4yn—3yn—1 —2hf(tn—1,Yn—1) is unstable.

25. The IVP 3’ = e¥, on 0 < t < 0.20 with y(0) = 1 has solution y(¢t) = 1—
In(1 —et). Apply the three step Adam-Moulton method. You will get the
nonlinear equation:

h . . . .
Wit1 = w; + ﬁ[gewerl + 19e™i — Be™i-t 4+ eWi-?]

(a) With h = 0.01, obtain w;;1 by functional iteration for i = 1,2,...,19
using exact starting values wg, wy, wy. At each step, use w; as your
first guess.

(b) Solve each time using Newton’s method with w; as your first guess.
Does Newton’s method speed convergence over functional iteration?

26. TEST

(a) Consider the one-step method for solving ordinary differential equa-
tions:

h 2h 2h
Wit+1 = W; + Z f(tz-,wz-) + 3f(t, + ?,wi + ?f(tz,wz))
What inequality must be satisfied by the step size h such that the
method will be stable for the ODE 3y’ = — y? (Do not solve the
inequality).
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

(b) Consider the multi-step method
1 h
Wit1 = §(wz + wi—1) + Z[f(tz',wz') + 5f(ti—1, wi—1)]

Is this method consistent? Is this method stable?

Derive Simpson’s method for ODEs by applying Simpson’s rule to the
integral in:

Y(tiv) — y(tis) = / " pyt)a

ti_1

Show that the fourth order Runge-Kutta method, when applied to the
ODE 3’ = Ay, can be written in the form

_ 1 2 1 3 1 4y,
Wip1 = (1 + hA + 5(h)\) + 6(h)\) + 24(h)\) )w,
Discuss consistency, stability and convergence for the Implicit Trapezoidal

method Wir1 = wW; + %[f(ti+1,wi+1) + f(tz','w,')] for y’ = —)\y with
A>0.

(a). Discuss A-stability for the Backwards Euler method w;r1 = w; + hf(ti+1, wir1)

for y' = —Ay with A > 0.

(b). Discuss A-stability for the 2 Step BDF method wi11 = 3w; — 3wi—1 + 2Af(tiy1, wit1)

for y' = —Ay with A > 0.

TEST Is the multi-step scheme w1 = 1 (2w; +wi—1) + 22 f(t;,w;) for
y' = f(t,y) stable?

Investigate the conditions for stability with respect to step size for the
Midpoint method and for Heun’s method. (Just set it up. Do not solve).

TEST Find the condition on step size h such that the second order Taylor
series method will be stable for the ODE ¢/ = — 2y.

TEST Consider the multi-step method

3
Wiyl = SWi + awi—1 + bh[f(ti,w;) + 2f(ti—1,wi—1)]

where a and b are a constants. Find a and b such that the scheme is
consistent. Is the scheme stable?

Find the inequality that must be satisfied for the Taylor series method of
order n to be stable.

TEST Consider the modified Euler method

wo = owip1 = w; + g[f(t,-,wi) + f(tig1, wi + hf(ts,w;))]
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Find the inequality to use in determining the step size such that the
method will be stable for the differential equation y' = — 4y. You
DO NOT have to solve the inequality.

37. TEST Write the third order differential equation y"' + 2y" —y' — 2y = €t
where 0 <= ¢t <= 3and y(0) = 1,%'(0) = 2and ¢y"(0) = Oasa
system of first order differential equations. Find y"'(0).

38. TEST Set up (but DO NOT SOLVE) a system of first-order linear equa-
tions for solving the ODE Boundary Value Problem y" + y' + 3zy = 9z
on 0 <z <1withy(0) = 1andy(l) = 2. Use grid spacing h = 3.

39. TEST Consider the boundary-value problem

(a)
(b)

y' —zy' +3y =11z, y(1)=15 y(2)=15

Convert the above second-order differential equation into a system of
two first-order equations.

Consider solving the given boundary-value problem using the equa-
tions in part (a) and the Linear Shooting Method. If for the 4th-
order Runge-Kutta method with A = 0.1, choosing y'(1) = 1 gives
y(2) = 9.48535 and choosing y'(1) = 2 gives y(2) = 10.71083, what
is the appropriate value of 3'(1) to use to solve this problem?

40. TEST Consider the boundary-value problem

(a)
(b)

y' +ay —a'y =207 y(0)=1, y(1)=-1
Write down the central-difference approximations to y'(z;) and y" (x;)
for any z; and h.
Using h = 0.25 and the approximations in part (a), write down the

equations needed to solve the given problem by the Finite-Difference
Method.

41. Consider the boundary-value problem:

yll

(a)

(b)

=y’ + 2y + cos, nggg, y(0) = —0.3, y(g):—o.l (1)

Obtain the exact solution to (1) by assuming the form y(z) = Asinz+
B cosz and applying the given boundary conditions to find the con-
stants A and B.

Write a computer program that uses the Modified Euler Method and
Linear Shooting to approximate the solution to (1) for step sizes h =
w/12, h = w/24, and h = 7/48. For each h compare the numerical
approximations of y(x) to the exact solution by plotting the functions
and computing the mean-square error in y over the numerical solution
points:

1 n—1

mean square error = | — 2;(% —y(z;))?
1=
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(c) Now use your program to approximate the solution y(z) = e~10% to
the boundary-value problem:

y" =100y, 0<z<1, y(0)=1, y(1)=e* (2)

Use step sizes h = 0.1 and A = 0.01 and compare the numerical
approximations to the exact solution.

42. TEST Is the multi-step scheme y;411 = 2(2y; + yi-1) + L f(t;,y;) for
y' = f(t,y) stable?
Miscellaneous

1. TEST Short answer questions (match the term on the left with the most
appropriate term on the right): Each answer is used exactly once.

a. Partial Pivoting A. Accelerates convergence of sequence of linear iterates

b. Cubic splines B. Used for solution to a nonlinear equation

c. Predictor — Corrector method C. Improves stability in solving systems of linear equations
d. Aitken's Method D. A second order Runge — Kutta method

e. Heun's method E. Order n® operations in general

f. Muller’s method F. Multi — step ODE solving methods

g. Gaussian Elimination G. Interpolates piecewise with f, f’ and f" continuous

2. TEST Short answer questions (match the term on the left all appropriate
terms on the right): Answers may be used more than once. Assume any
functions implied are continuous.

a. Bisection A. Always finds a root if bracket it initially

b. Secant B. Convergence order ~ 1.62

c. Regula Falsi C. Iterates may oscillate or diverge

d. Newton D. Can usually apply Aitken’s method on it when it converges
e. Fixed Point Iteration E. Quadratic (second order) convergence (usually)

F. Linear convergence in most or all cases (when it converges)
G. Need to compute derivative

H. Approximates function as a line

I. Need two initial iterates

Useful Formulas for exams

Euler’s method: w;y 1 = w; + h f(t;, w;)
Taylor series method: wiy1 = w; + h f(t;,w;) + 'B—Z%f(ti,wi)
Runge-Kutta: wiy1 = w; + %(kl + 2ko + 2k3 + k4) where

ki = hf(ti, w;);

ke = hf(t,' + h/2,w, + k1/2);

k3 = hf(ti + h/2,w; + k2/2);

ti,wi
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ks = hf(t; + hyw; + k3);
Adams Bashforth Implicit

Steps

+
+
+

%[&fn - fnfl]
1’1_2[23fn - lﬁfnfl + 5fn72]
2155 fn —59fn—1 +3Tfn 2 — 9fn_3]

Adams Moulton Implicit

Wp1 = Wp
Wp+1 = Wp
Wp+1 = Wn
Wnp41 = Wn
Wp+1 = Wn
Wn+1 = Wn

+
+
+

L 5fnt1 + 8fn — fn-il
B [9Fns1 +19fn — 5fnt + fa—s]

Truncation error

T

5) 74

my( h
Truncation error
=1,,(4)p3
ST
720 Y

7
(251 frg1 + 646 fr, — 26401 + 106fn 2 — 19fn_3] o5y O
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