Oscillations

Periodic or harmonic motion is any motion that repeats itself at regular intervals of time.

1 Hertz = 1 Hz = 1 Oscillation/sec

Frequency = # of oscillations/sec

Period \(T = \frac{1}{f} \) = Time per oscillation

\[x = x_M \sin \left(\frac{2\pi t}{T} \right) \]

\(x \) = Amplitude

\(\pm x_M \)

So in general

\[x = x_M \sin (\omega t + \phi) \]

or

\[x = x_M \cos (\omega t + \phi') \]
\[x(t) = x_0 \cos (\omega t + \phi) \]
\[v(t) = \frac{dx(t)}{dt} = -\omega x_0 \sin (\omega t + \phi) \]
\[a(t) = \frac{dv(t)}{dt} = -\omega^2 x_0 \cos (\omega t + \phi) \]
\[a(t) = -\omega^2 x(t) \]

A Linear Simple Harmonic Oscillator

\[F = -kx(t) \]

From Newton's 2nd Law

\[F = ma(t) = -m\omega^2 x(t) \]

So that

\[k = m\omega^2 \]

\[\omega = \sqrt{\frac{k}{m}} \quad \omega = 2\pi f \quad f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]

\[T = 2\pi \sqrt{\frac{m}{k}} \]
ENERGY IN S.H.M.

\[U(x) = \frac{1}{2} k x^2 = \frac{1}{2} k x_m^2 \cos^2 (\omega t + \phi) \]

\[K(x) = \frac{1}{2} m v^2 = \frac{1}{2} m (\omega x_m)^2 \sin^2 (\omega t + \phi) \]

THE MECHANICAL ENERGY

\[E = U + K = \frac{1}{2} k x_m^2 \]

Pendulum

\[T = -L (F_y \sin \theta) \]

\[\Sigma F_y = I \alpha \]

\[-L F_y \sin \theta = I \alpha \]

For small \(\theta \), \(\sin \theta \approx \theta \)

\[\frac{\alpha - mg L \theta}{I} \quad \text{but} \quad I = mL^2 \]

\[\alpha \approx -\frac{mg L \theta}{mL^2} = -\frac{g \theta}{L} \]

Comparing with 16.8 \(\alpha = -w^2 \theta \)

\[\omega = \sqrt{g/L} \quad T = 2\pi \sqrt{\frac{L}{g}} \quad \text{for small} \ \theta \]

Problem 16.2 A block-spring system takes 3/4 sec to begin repeating its motion

a) \(T = ? \) Time/cycle = 3/4 sec \(T = 3/4 \) sec

b) \(f = \frac{1}{T} = \frac{1}{3/4} = 1.33 \) Hz

c) \(\omega = ? \) \(\omega = 2\pi f = 6.28(1.33) = 8.37 \) rad/s
16-3

\[X_M = 35 \text{ cm} \]

The oscillator repeats its motion in \(\frac{1}{2} \text{ sec} \)

\[T = \frac{1}{2} \text{ sec} \]

(a) Find \(T \)

(b) Find \(f \)

\[f = \frac{1}{T} = \frac{1}{\frac{1}{2}} = 2 \text{ Hz} \]

(c) Find \(\omega \)

\[\omega = 2\pi f = 2\pi (2) = 12.57 \text{ rad/s} \]

(d) \(k = ? \)

\[k = \frac{\omega^2 m}{m} = (12.57)^2 \left(\frac{1}{2} \right) = 78.9 \text{ N/m} \]

(e) \(v_{\text{max}} = ? \)

\[v_{\text{max}} = \omega X_M = 12.57 \times 35 = 440 \text{ m/s} \]

(f) \(F_{\text{max}} \) on the block by the spring:

\[F_{\text{max}} = k X_{\text{max}} = 78.9 \times 3.5 = 276 \text{ N} \]