Physics 320 Astronomy and Astrophysics I

Wenda Cao

7 Physics Department

Outline

- Physics 320 Course Information
- Lecture 1 Introduction to the Solar System
 - 1.1 Why do we study astronomy and solar system?
 - 1.2 What constitutes the Solar System?
 - 1.3 Scaling the Solar System
 - 1.4 The Thousand-Yard Model
 - 1.5 Summary

Course Information: Instructor

- Instructor: Prof. Wenda Cao
- Office: 101 Tiernan Hall
- Office hour: <u>2:30 4:00 PM Monday</u> and <u>Thursday</u>. Other time by appointment
- □ Telephone: 973-596-5301; Email: *cao@njit.edu*
- Website: <u>http://web.njit.edu/~cao/320.htm</u>where you will find weekly reading assignments, lecture notes, reviews, homework assignments and solutions etc.

9/22/15

Course Information: Materials

- □ 1:00 pm-2:25 pm, Monday and Thursday at FMH 110
- Lecture notes available at <u>http://web.njit.edu/~cao/320.htm</u>
- Primary Textbook: "An Introduction to Modern Astrophysics", 2nd Edition, by Carroll and Ostlie
- Reading Material: reading assignments are listed below. For this course, we will be covering Chapters 1, 2, 6, 11, 12, 19, 20, 21, 22 and 23 (the part of the Sun and the Solar System). Complete the readings
 before the corresponding lectures.

New Jersey's Science & Technology University

9/22/15

THE EDGE IN

Course Information: Homework

- Problem sets are given every Monday or Thursday before the classes.
- Homework due the following Monday or Thursday at the classes.
- The homework assignments will be collected on each Monday or Thursday in the classes.

Course Information: Grating

- □ In-class Exams (15% each, 30% total)
 - Midterm Exam 1: Monday, October 1st, 1:00 2:25 pm
 - Midterm Exam 2: Thursday, November 3rd, 1:00 2:25 pm

New Jersey's Science & Technology University

85+

80-84

70-79

C+

9/22/15

65-69

THE EDGE IN KNOWL

55

- Final Exam (30%)
- Homework (20%)
- Project and Attendance (20%)
 - Project Presentation: Monday, November 5th, in class
- Final Letter Grade

Classroom Response System: i-Clicker

□ iClicker is required as part of the course

- Similar to requiring a textbook for the course
- Can be purchased at the NJIT bookstore
- Can't share with your classmate

□ iClicker use will be integrated into the course

- To be used during most or all lectures/discussions
- iClicker questions will be worked into subject matter
- Some related issues ("My iClicker doesn't work", or "I forgot my iClicker.") More later.

	iclicker.»
	<u> </u>
	c
l	Ē

Astronomy Courses

- The NJIT Physics Department now has an undergraduate minor and a concentration in Astronomy, and has enhanced the astronomy offerings for both technical and non-technical students.
 - Phys. 202, 202A Introduction to Astronomy and Cosmology

New Jersey's Science & Technology University

- Phys. 203, 203A The Earth in Space
- Phys. 320 Astronomy and Astrophysics I
- Phys. 321 Astronomy and Astrophysics II
- Phys. 322 Observational Astronomy
- Phys. 420 Special Relativity
- Phys. 421 General Relativity
- Phys. 444 Fluid and Plasma Dyn

9/22/15

Astronomy and Astrophysics I

- Phys 320 A quantitative introduction to the astronomy of the Sun, Earth, and the solar system, with an emphasis on the physical principles involved. Includes celestial mechanics, planetary atmospheres, and the physics of comets, asteroids, and meteorites.
- Description Students will study the motion, structure, atmosphere, energy, and magnetism of the Sun, planets, and satellites. The major themes include: the role of gravity in shaping the solar system, the energy balance of the planets, magnetism, and physics of light and colors. Importantly, students will learn to *reason* out of observational facts using basic physics knowledge.
- Methodology we will learn about them from the point of view of physics. <u>The language of physics is mathematics</u>. We will be using the somewhat more advanced language of algebra, trigonometry, calculus, and even a bit of simple differential equations.

PHYS 320

The Sun and the Solar System

Introduction and Overview

Jiong Qiu MSU, Physics Department

Outline

- Physics 320 Course Information
- Lecture 1 Introduction to the Solar System
 - 1.1 Why do we study astronomy and solar system?
 - 1.2 What is the Solar System?
 - 1.3 Scaling the Solar System
 - 1.4 The Thousand-Yard Model
 - 1.5 Summary

1.1 Astronomy is a physical science

To understand the universe, astronomers employ scientific methods to test hypothesis, build models and theories, and uncover the laws of physics.

What physics will we learn from the Sun, planets, and satellites?

at NJI

9/22/15

New Jersey's Science & Technology University

Advances in astrophysics benefit from, as well as contribute to, new understandings of fundamental physical rules and technology development.

- (a) celestial objects being laboratories to test physical rules.
 - Ex.1: astronomical proofs of general relativity.
- (b) development in observing technologies Ex.2: Hubble Space Telescope
- (c) high speed computers used to *simulate* astrophysical processes on extreme time-spatial scales and with extreme physical conditions

9/22/15

THE EDGE IN KNO

HST has uncovered the dimmest stars in globular star clusters.

9/22/15

Physics at NIT 9/

Why the Solar System?

By exploring the planets, astronomers uncover clues about the formation of the solar system.

New Jersey's Science & Technology University

Physics

at

9/22/15

Why study the Sun?

Physics at

New Jersey's Science & Technology University

1.2 Solar System

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Pluto). (<u>MVEMJSUN</u> – *My Very Easy Method Just Seems No Use*)

- The star we call the Sun and all the celestial bodies that orbit the Sun
 - including Earth
 - the other seven planets
 - all their various moons

at

smaller bodies such as asteroids, comets, meteoroids and dust

New Jersey's Science & Technology University

9/22/15

		Th	e So	plar	Sys	tem			
	0		X		the second				
•	Sun	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Mass in Yg (1 Yg = 10^21 kg) Mass relative to earth	1,989,100,000 332837	330.2 0.06	4,868.5 0.88	5,974.2 1	641.85 0.11	1,899,000 319	568,460 95	86,832 15	102,430 17
Radius in km	696000	2439.7	6051.9	6372.8	3402.5	68366	- 60268	25559	24622
Gravity relative to earth	. 28	0.38	0.90	9.0	0.38	24.6	. 1.06	0.90	1.1
(1 AE = distance sun-earth	.73	.5 Mass i % Mass relativ	n Yg re to earth			lari 🍙			
moon	17 1. Moon 148	7 Radius 6 Gravity on	in km equator	20.2		oons Phobos	11.1 Deimos	6.3	
Jupiters moons	2.5 9 263 1.4 Ganymede	6 1.8 241 1.2 Callisto		5% 821 1.8 <i>Europa</i>	0.8 % Satu 1561 mod 1.3	nrns ons Titan	4.5 3% 76 .4 <i>Rhea</i>	2.3 04 % 0.64 0.3 . <i>Lapetus</i>	2.0 0.3 % 736 0.2 Dione 1.1 0.02 % 562 0.2 Dione
Uranus moons	3.5 0.06 % 789 0.4 Titania	0.05 76 0.3 Oberon	% (1.0.02) 57 0.02 Ariel	4. 2% 79 .3 <i>Umbriel</i>	1.2 0.02 % Nept 585 0.2	unes on Triton	-21.5 0.4 % 1353 0.8		

- We will learn the motion, structure, atmosphere, magnetic field of the Sun, planets, and satellites, and how to observe them.
- We will learn how to explain them gravity, energy, and nature of light.
- □ We will learn why our planet, the Earth, hosts life.

PART I: INTRODUCTION TO ASTRONOMY

- 1. Introduction to the Solar System
- 2. Astronomical Distance
- 3. Nature of Light I
- 4. Nature of Light II
- 5. Optics and Telescopes
- 6. Celestial Mechanics

PART II: PLANETS AND MOONS

- 1. Our Solar System: Overview
- 2. Physical Processes in the Solar System
- 3. The Living Earth
- 4. The Moon and Eclipses
- 5. Terrestrial Planets Mercury and Venus
- 6. Terrestrial Planets Mars
- 7. Jovian Planets Jupiter and Saturn
- 8. Pluto and Kuiper Belt
- 9. Asteroids, Comets and Meteors

PART III: OUR STAR: THE SUN

- 1. Standard Solar/Stellar Model
- 2. Solar Interior and Helioseismology
- 3. Solar Cycle
- 4. Solar Atmosphere

9/22/15

- 5. Solar Magnetism
- 6. The Active Sun
- 7. Space Weather

New Jersey's Science & Technology University

1.3 Scaling the Solar System

- Astronomical and Physical Constants Appendix A: Inside Front Cover
- Unit Conversions Appendix B: Inside Back Cover
- Solar System Data Appendix C: A-1

at

□ Solar Radius R = 695,500 km

Physi<u>cs</u>

Object	Orbital Radius D (x 10 ⁶ km)	Equatorial Radius <i>R</i> (km)	D/R _o	R/R _o
Sun		696,000		1.0
Mercury	57.9	2,439	83.2	0.0035
Venus	108.2	6,052	155.5	0.0087
Earth Moon	149.6	6,387 1,738	215	0.0092 0.0025
Mars	228.0	3,393	327.6	0.0049
Jupiter	779.3	71,398	1118	0.1026
Saturn	1427	60,000	2050	0.0862
Uranus	2871	25,559	4125	0.0367
Neptune	4497	24,800	6461	0.0356
Pluto	5913	1,140	8496	0.0016

New Jersey's Science & Technology University

Units of Distance in Astronomy

- Solar Radius (R^O)
 - $695,508 \text{ km} = 6.95508 \times 10^8 \text{ m}$
- Astronomical Unit (AU)
 - One AU is the average distance between Earth and the Sun
 - 1.496 × 10⁸ km or 92.96 million miles
 - the distance of light traveled in 500s
- Light Year (ly)
 - One ly is the distance light can travel in one year at a speed of about 3 ×10⁵ km/s or 186,000 miles/s
 - 1 ly = 9.46×10^{12} km or 63,240 AU
- Parsec (pc)
 - the distance at which 1 AU subtends an angle of 1 arc-second
 - 1 pc = 3.09×10^{13} km = 3.26 ly

Object	Orbital Radius D (x 10 ⁶ km)	Equatorial Radius <i>R</i> (km)	D/R _o	R/R _o
Sun		696,000		1.0
Mercury	57.9	2,439	83.2	0.0035
Venus	108.2	6,052	155.5	0.0087
Earth Moon	149.6	6,387 1,738	215	0.0092 0.0025
Mars	228.0	3,393	327.6	0.0049
Jupiter	779.3	71,398	1118	0.1026
Saturn	1427	60,000	2050	0.0862
Uranus	2871	25,559	4125	0.0367
Neptune	4497	24,800	6461	0.0356
Pluto	5913	1,140	8496	0.0016

Q: What are the distances of planets to the Sun in units of AU?

THE EDGE IN KNOW

New Jersey's Science & Technology University

Scaling Solar System

Object	Orbital Radius D (x 10 ⁶ km)	Equatorial Radius <i>R</i> (km)	D/R _o	R/R _o		
Sun		696,000		1.0	Pl Venus Pl	luto
Mercury	57.9	2,439	83.2	0.0035	Earth Jupiter Saturn	
Venus	108.2	6,052	155.5	0.0087	Uranus Neptune	e \
Earth Moon	149.6	6,387 1,738	215	0.0092 0.0025		
Mars	228.0	3,393	327.6	0.0049		
Jupiter	779.3	71,398	1118	0.1026		
Saturn	1427	60,000	2050	0.0862		
Uranus	2871	25,559	4125	0.0367	Sun	
Neptune	4497	24,800	6461	0.0356		1
Pluto	5913	1,140	8496	0.0016		$\overline{\mathbf{A}}$

Physics at

New Jersey's Science & Technology University

1.4 The Thousand-Yard Model

 $\Box Choose 1 inch = 100,000 miles$

Our Sun will be about 8.6 inches in diameter

Object	Distance D (yards)	Diameter <i>R</i> (inches)	Model Object
Sun		8.6	Melon
Mercury	10	0.03	Mustard seed
Venus	19	0.08	Peppercorn
Earth Moon	26	0.08 0.02	Peppercorn
Mars	39	0.04	Mustard seed
Jupiter	134	0.88	Walnut
Saturn	246	0.74	Acorn
Uranus	495	0.32	Peanut
Neptune	775	0.31	Peanut
Pluto	1020	0.01	Mustard seed

Physics at

THE EDGE IN KNOWLEDG

New Jersey's Science & Technology University

Tabulation

- Choose 1 inch = 100,000 miles
- Our Sun will be about 8.6 inches in diameter

Our scale is 1: 6,336,000,000. This means that:

at

1 inch	represents	100,000 miles	
1 foot	"	1,200,000 "	
1 yard	11	3,600.000 "	
1 mile	"	6,336,000,000 "	
928 miles	"	5,880,000,000,000	

Moon to Earth Sun to Earth Sun to Jupiter Sun to Pluto Sun to Proxima Centauri

- 1.28 light-seconds
 8.3 light-minutes
 43.27 light-minutes
 5 1/2 light-hours
 4.22 light-years
- in model 2.4 inches 26 yards 132 yards 1019 yards 4000 miles

New Jersey's Science & Technology University

The Thousand-Yard Model

Mercury Venus Earth Jupiter Mars	Saturn	Pluto anus Neptune	in ya:
diameter of Ju	upiter	90,000	-
distance from orbit of diameter of Sa	f Jupiter to Saturn aturn	403,000,000 75,000	1
distance from orbit of diameter of Ur	f Saturn to Uranus ranus	896,000,000 32,000	24
distance from orbit of diameter of Ne	f Uranus to Neptune eptune	1,011,000,000 30,000	28
distance from orbit of diameter of Pl	f Neptune to Pluto luto	872,000,000	24
total	of distances	3,666,000,000	1,0
distance from Earth to	o Moon	240,000	
UTAILETET OT MOON		Z,000	

Physics at

the model rds inches 8.0 (ball) 10 0.03 (pinhead) 9 0.08 (peppercorn) 7 0.08 (peppercorn) 14 0.04 (pinhead) 95 0.90 (chestnut) 12 0.75 (filbert) 49 0.30 (peanut) 81 0.30 (peanut) 42 0.01 (pinhead) 19 2.40

0.02 (pinhead)

New Jersey's Science & Technology University

Summary

- To understand the universe, astronomers use the laws of physics to construct testable theories and models to explain observations and predict new phenomena.
- Astronomers study planets to learn the formation of the solar system.
- Astronomers study the Sun to learn the structure and evolution of stars and sun-earth connection (climate and space weather).
- Solar system constitutes the Sun and all the celestial bodies that orbit the Sun.
- The thousand-yard model gives a clear picture of sizes and relative distances of all the celestial bodies orbiting the Sun by scaling the solar system.

New Jersey's Science & Technology University

9/22/15

THE EDGE IN KNOWL