: . . Prof. Dale E. Gary
Physics 320 Astrophysics I: Lecture #4 NIIT

Kepler's Laws

Support for the Heliocentric Model

Although Copernicus set down the basic principles of the heliocentric model, it was
regarded as simply an alternative way of thinking about the universe, without any
certainty that the Earth really moved. Two later scientists, Galileo and Kepler, gave
several strong arguments in favor of the heliocentric model.

Galileo gave observational evidence:

Moons of gave clear evidence of smaller objects circling larger
Jupiter: objects (although no one knew why)

Phasgs of gave clear evidence that Venus circles the Sun
Venus:

Sunsp OFS on gave clear evidence that heaven is not "perfect"

the Sun:

Craters and

Mountains gave clear evidence that the Moon is another "world"
on the Moon:

Kepler gave direct, mathematically rigorous evidence:

Kepler's Three Laws (qualitative version)

Eg\i’t Planets travel in elliptical orbits with the Sun at one focus
Second Planets move more slowly in their orbits when far from the Sun
Law: than when close to the Sun

Third Planets with larger orbits move more slowly than planets with
Law: smaller orbits.

Let's look at how Kepler determined his first Law. First, he showed how to measure
the relative distance to the inner planets (Mercury and Venus) by measuring their

angle of greatest elongation, o


http://galileo.rice.edu/sci/observations/jupiter_satellites.html
http://galileo.rice.edu/sci/observations/moon.html
http://galileo.rice.edu/sci/observations/moon.html
http://galileo.rice.edu/sci/observations/sunspot_drawings.html

Venus at greatest
elongation \ Determining distance of inner planet from
Earth Sun:

I"" 1 AU '_1 Greatest Elongation is o, and we want to determine the
distance, r, of Venus from the Sun, in AU (Astronomical

Units). The relationship is just r = sin a.

Greatest Elongations for Mercury in 2001-2002 (from JPL Calendar)

Sep 18 - Mercury Greatest Eastern Elongation (26 Degrees)

Oct 29 - Mercury At Its Greatest Western Elongation (18 Degrees)
Jan 12 - Mercury At Its Greatest Eastern Elongation (19 Degrees)
Feb 21 - Mercury at Greatest Western Elongation (27 Degrees)
May 04 - Mercury Greatest Eastern Elongation (20 Degrees)

Jun 21 - Mercury at Greatest Western Elongation (22 Degrees)

Earth Orbit

Animation showing the six

consecutive greatest elongations of

Mercury listed above. The position

of Earth is advanced the

appropriate number of degrees

Earth On around its orbit for each date, then

Sep 18, 2001 the line to Mercury is drawn East or
West of the Sun as needed.
Mercury is on this ray, at the point
that the ray passes closest to the
Sun.

By measuring Mercury's greatest elongation from many places along Earth's orbit,
any variation in distance of Mercury from the Sun can be determined.


http://www.jpl.nasa.gov/calendar/

The situation for the outer planets is harder, but can be done. Kepler did it by
observing the outer planet at pairs of times separated by one sidereal rotation of the
planet. Here is an outline of how this is done, for one pair of observations of Mars:

Determining distance of outer
planet from Sun:

Take two measurements of the elongation (angle
from the Sun) of Mars, one sidereal period (687
days) apart. Earth is at location E' at the time of
the first observation, goes once around its orbit

and arrives back at location E (almost completing
w = two orbits) after Mars has gone around once.

The figure below shows the situation at a larger
scale, with the angles labeled. The two
elongation angles are ¢ and €', and we also know
the angle n, which is just the number of degrees
less than two full orbits that the Earth makes in
687 days. You should be able to show that n =
42.89 degrees.

Since triangle ASEE' is isoceles, we can determine
o, (you should be able to show that it is 68.56
degrees) and hence the length EE' (use the Law of
Sines to show that it is 0.73 AU). Subtract o from
¢ and ¢', which allows us to solve for triangle
AEPE'. Finally, using the Law of Cosines for
triangle ASPE', we can determine the distance r.

Kepler repeated this procedure for many pairs of measurements of the planet Mars,
taken by the excellent observer, Tycho Brahe, and was able to show that the
distance r varies with time in the way expected if the path were an ellipse! You can
see that this is not easy, and requires extremely good observations of elongation
angles.

C. Kepler's Laws

1. Ellipses
In order to talk quantitatively about what Kepler discovered, we first need
to remind ourselves of the properties of an ellipse.
Properties of the Ellipse:

e Semi-major axis a = half of
the long axis of ellipse



e Semi-minor axis b = half of
the short axis of ellipse

e Eccentricity e = distance of
focus F from center, in units
of a. The eccentricity
ranges from O (a circle) to 1
(a parabola).

e Sum of distances of a point
on the ellipse from the two
foci (» and /') is a constant:

r+r'=2a.
Idi major axis 4>|_
The triangle at right is 1/2 of the triangle formed by the light gray 17
lines in the figure above. Convince yourself that the lengths of
the sides are as shown. By the Pythagorean Theorem, show that
the following relation holds: b? = a2(1 —e2).
oe

We would like to have an equation for the ellipse, and it is most convenient
to express it in polar coordinates, relative to an origin at the focus F. A

point on the ellipse P(r, 6) will then have polar coordinates r and 0, as

shown in the diagram below. In the case of planetary orbits 0 is called the
true-anomaly.

Equation for an Ellipse, in Polar
Coordinates:

The coordinates of a point on the
ellipse are (r,0). The triangle AFPF
has sides of length r, 7/, and 2ae.
Thus, by the Law of Cosines:

%= 2+ (2ae)2 - 2r(2ae) cos(nm — 0)
but remember r + ' = 2a, or r’ 2 = (2a

- r)2., so combining these and solving
for r, we have the polar equation for




an ellipse:

r=a(1-€2) /(1 +ecos 0)

2. Orbits as Ellipses

The above properties belong to all ellipses, but when the ellipse represents
a planetary orbit, some of these variables have special significance. Here
are some of them:

« As Kepler found, planets have an orbit that is an ellipse with the Sun at one
focus. In the above drawings, the Sun would be at focus F. There would be
nothing at all at focus F'.

« When the planet is at position A on the ellipse (closest to the Sun), it is at
perihelion.

« When the planet is at position A' in its orbit (farthest from the Sun), it is at
aphelion

3. Conic Sections
The equation for an ellipse is again:
r=a(1-e?)/(1+ecos0) (equation for an ellipse)
and if we set the eccentricity, e, to zero, the equation reduces to
r = a = constant (equation for a circle -- e = 0)

while if we set e to 1, the equation reduces to

r=a(1—e)(1+e)/(1+ecosb)
= 2p/ (1 + cos 6) (equation for a parabola -- e = 1)

Thus, the eccentricity parameter determines how "stretched-out" the
ellipse is. Note that the eccentricity can even be greater than one, in
which case we have the equation

r=a(e*~ 1)/ (1 + e cos 0) (equation for a hyperbola -- e> 1)

Note that the above equation cannot be derived from the equation of the
ellipse, as we could the limiting cases for e =0 and e = 1, but rather must
be derived from the cartesian equation for a hyperbola (see Wikipedia, for


http://en.wikipedia.org/wiki/Hyperbola#The_true_anomaly

example). The circle, ellipse, parabola, and hyperbola are all conic
sections, and they all represent possible orbit shapes. We will see later
how the total energy of the orbiting object will determine which of these
shapes it follows.

4. Kepler's Laws

We repeat once more Kepler's Laws, but being a bit more quantitative:

Kepler's Three Laws (quantitative version)
Planets travel in elliptical orbits with the Sun at one focus, and
First  obey the equation = ¢/ (1 + e cos 0), where ¢ = a(1 —e?) for 0 < e
Law: < 1. (Comets and other bodies can have hyperbolic orbits, where
c=a(e?—1),fore>1))
Second The radius vector of a planet sweeps out equal areas in equal
Law: times (planet travels fastest when near perihelion).

The square of the orbital period of a planet is proportional to the
cube of its semi-major axis:

Third P? = ka3, where k is a constant

Law:  Note: Kepler showed that this relationship also held for the newly

discovered moons of Jupiter by Galileo, but with a different value
for the constant k! One consequence of this law is that inner
planets travel faster than outer planets, also.

D. What we have Learned

Careful measurements (by Tycho Brahe) were used by Kepler to measure the orbits
of the planets and show that The Earth Moves! Kepler's Laws prove quantitatively
that the true situation is given by a heliocentric model in which the planets revolve
around the Sun. Kepler showed that the planets move in ellipses. We learned the
important terms for ellipse characteristics: focus, semi-major axis, semi-minor axis,
eccentricity, and for elliptical orbits, the terms perihelion and aphelion. We examined
the characteristics and mathematical formulas for conic sections (ellipse, parabola,
and hyperbola).

Kepler thought that there was a clockwork universe of crystal spheres, arranged
harmonically (in certain ratios, related to regular geometric solids), but we will see
next time that Newton was able to put it all on a firm physical foundation with his Law
of Universal Gravitation.



