PHYS320, Fall 2015

HOMEWORK SET 10

Due October 22, Thursday

1. To estimate a planet's equilibrium temperature, assume that the planet is a spherical blackbody of radius R_{p} and temperature T_{p} in a circular orbit a distance D away from the Sun. For simplicity, we will assume that the planet's temperature is uniform over its surface and that the planet reflects a fraction a of the incoming sunlight (a is known as the planet's albedo). From the condition of thermal equilibrium, the sunlight that is not reflected must be absorbed by the planet and subsequently re-emitted as blackbody radiation. Of course, we will also treat the Sun as a spherical blackbody having an effective temperature T_{S} and radius R_{S}. Use the Stefan-Boltzmann law and simple geometry to derive the temperature T_{p} of a planet at a distance D from the Sun:

$$
T_{p}=T_{S}(1-a)^{1 / 4} \sqrt{\frac{R_{S}}{2 D}}
$$

2. Mercury's albedo is 0.12 . The average distance from Mercury to the Sun is $0.387 \mathrm{AU}=5.79 \times 10^{7} \mathrm{~km}$. Using the equation derived in Problem 1, estimate the surface temperature on Mercury.
3. Venus's albedo is 0.59 . The average distance from Venus to the Sun is $0.723 \mathrm{AU}=1.082 \times 10^{8} \mathrm{~km}$.
(a) Using the equation derived in Problem 1, estimate the surface temperature on Venus.
(b) Explain why the calculated the surface temperature is lower than the real one on Venus.
