PHYS320, Fall 2015

HOMEWORK SET 4
Due September 28, Monday

Please read attached supplementary material and understand 'Kepler's Laws',
‘Newtonian Mechanics' and 'Orbital Mechanics'.



: . . Prof. Dale E. Gary
Physics 320 Astrophysics I: Lecture #4 NIIT

Kepler's Laws

Support for the Heliocentric Model

Although Copernicus set down the basic principles of the heliocentric model, it was
regarded as simply an alternative way of thinking about the universe, without any
certainty that the Earth really moved. Two later scientists, Galileo and Kepler, gave
several strong arguments in favor of the heliocentric model.

Galileo gave observational evidence:

Moons of gave clear evidence of smaller objects circling larger
Jupiter: objects (although no one knew why)

Phasgs of gave clear evidence that Venus circles the Sun
Venus:

Sunsp OFS on gave clear evidence that heaven is not "perfect"

the Sun:

Craters and

Mountains gave clear evidence that the Moon is another "world"
on the Moon:

Kepler gave direct, mathematically rigorous evidence:

Kepler's Three Laws (qualitative version)

Eg\i’t Planets travel in elliptical orbits with the Sun at one focus
Second Planets move more slowly in their orbits when far from the Sun
Law: than when close to the Sun

Third Planets with larger orbits move more slowly than planets with
Law: smaller orbits.

Let's look at how Kepler determined his first Law. First, he showed how to measure
the relative distance to the inner planets (Mercury and Venus) by measuring their

angle of greatest elongation, o


http://galileo.rice.edu/sci/observations/jupiter_satellites.html
http://galileo.rice.edu/sci/observations/moon.html
http://galileo.rice.edu/sci/observations/moon.html
http://galileo.rice.edu/sci/observations/sunspot_drawings.html

Venus at greatest
elongation \ Determining distance of inner planet from
Earth Sun:

I"" 1 AU '_1 Greatest Elongation is o, and we want to determine the
distance, r, of Venus from the Sun, in AU (Astronomical

Units). The relationship is just r = sin a.

Greatest Elongations for Mercury in 2001-2002 (from JPL Calendar)

Sep 18 - Mercury Greatest Eastern Elongation (26 Degrees)

Oct 29 - Mercury At Its Greatest Western Elongation (18 Degrees)
Jan 12 - Mercury At Its Greatest Eastern Elongation (19 Degrees)
Feb 21 - Mercury at Greatest Western Elongation (27 Degrees)
May 04 - Mercury Greatest Eastern Elongation (20 Degrees)

Jun 21 - Mercury at Greatest Western Elongation (22 Degrees)

Earth Orbit

Animation showing the six

consecutive greatest elongations of

Mercury listed above. The position

of Earth is advanced the

appropriate number of degrees

Earth On around its orbit for each date, then

Sep 18, 2001 the line to Mercury is drawn East or
West of the Sun as needed.
Mercury is on this ray, at the point
that the ray passes closest to the
Sun.

By measuring Mercury's greatest elongation from many places along Earth's orbit,
any variation in distance of Mercury from the Sun can be determined.


http://www.jpl.nasa.gov/calendar/

The situation for the outer planets is harder, but can be done. Kepler did it by
observing the outer planet at pairs of times separated by one sidereal rotation of the
planet. Here is an outline of how this is done, for one pair of observations of Mars:

Determining distance of outer
planet from Sun:

Take two measurements of the elongation (angle
from the Sun) of Mars, one sidereal period (687
days) apart. Earth is at location E' at the time of
the first observation, goes once around its orbit

and arrives back at location E (almost completing
w = two orbits) after Mars has gone around once.

The figure below shows the situation at a larger
scale, with the angles labeled. The two
elongation angles are ¢ and €', and we also know
the angle n, which is just the number of degrees
less than two full orbits that the Earth makes in
687 days. You should be able to show that n =
42.89 degrees.

Since triangle ASEE' is isoceles, we can determine
o, (you should be able to show that it is 68.56
degrees) and hence the length EE' (use the Law of
Sines to show that it is 0.73 AU). Subtract o from
¢ and ¢', which allows us to solve for triangle
AEPE'. Finally, using the Law of Cosines for
triangle ASPE', we can determine the distance r.

Kepler repeated this procedure for many pairs of measurements of the planet Mars,
taken by the excellent observer, Tycho Brahe, and was able to show that the
distance r varies with time in the way expected if the path were an ellipse! You can
see that this is not easy, and requires extremely good observations of elongation
angles.

C. Kepler's Laws

1. Ellipses
In order to talk quantitatively about what Kepler discovered, we first need
to remind ourselves of the properties of an ellipse.
Properties of the Ellipse:

e Semi-major axis a = half of
the long axis of ellipse



e Semi-minor axis b = half of
the short axis of ellipse

e Eccentricity e = distance of
focus F from center, in units
of a. The eccentricity
ranges from O (a circle) to 1
(a parabola).

e Sum of distances of a point
on the ellipse from the two
foci (» and /') is a constant:

r+r'=2a.
Idi major axis 4>|_
The triangle at right is 1/2 of the triangle formed by the light gray 17
lines in the figure above. Convince yourself that the lengths of
the sides are as shown. By the Pythagorean Theorem, show that
the following relation holds: b? = a2(1 —e2).
oe

We would like to have an equation for the ellipse, and it is most convenient
to express it in polar coordinates, relative to an origin at the focus F. A

point on the ellipse P(r, 6) will then have polar coordinates r and 0, as

shown in the diagram below. In the case of planetary orbits 0 is called the
true-anomaly.

Equation for an Ellipse, in Polar
Coordinates:

The coordinates of a point on the
ellipse are (r,0). The triangle AFPF
has sides of length r, 7/, and 2ae.
Thus, by the Law of Cosines:

%= 2+ (2ae)2 - 2r(2ae) cos(nm — 0)
but remember r + ' = 2a, or r’ 2 = (2a

- r)2., so combining these and solving
for r, we have the polar equation for




an ellipse:

r=a(1-€2) /(1 +ecos 0)

2. Orbits as Ellipses

The above properties belong to all ellipses, but when the ellipse represents
a planetary orbit, some of these variables have special significance. Here
are some of them:

« As Kepler found, planets have an orbit that is an ellipse with the Sun at one
focus. In the above drawings, the Sun would be at focus F. There would be
nothing at all at focus F'.

« When the planet is at position A on the ellipse (closest to the Sun), it is at
perihelion.

« When the planet is at position A' in its orbit (farthest from the Sun), it is at
aphelion

3. Conic Sections
The equation for an ellipse is again:
r=a(1-e?)/(1+ecos0) (equation for an ellipse)
and if we set the eccentricity, e, to zero, the equation reduces to
r = a = constant (equation for a circle -- e = 0)

while if we set e to 1, the equation reduces to

r=a(1—e)(1+e)/(1+ecosb)
= 2p/ (1 + cos 6) (equation for a parabola -- e = 1)

Thus, the eccentricity parameter determines how "stretched-out" the
ellipse is. Note that the eccentricity can even be greater than one, in
which case we have the equation

r=a(e*~ 1)/ (1 + e cos 0) (equation for a hyperbola -- e> 1)

Note that the above equation cannot be derived from the equation of the
ellipse, as we could the limiting cases for e =0 and e = 1, but rather must
be derived from the cartesian equation for a hyperbola (see Wikipedia, for


http://en.wikipedia.org/wiki/Hyperbola#The_true_anomaly

example). The circle, ellipse, parabola, and hyperbola are all conic
sections, and they all represent possible orbit shapes. We will see later
how the total energy of the orbiting object will determine which of these
shapes it follows.

4. Kepler's Laws

We repeat once more Kepler's Laws, but being a bit more quantitative:

Kepler's Three Laws (quantitative version)
Planets travel in elliptical orbits with the Sun at one focus, and
First  obey the equation = ¢/ (1 + e cos 0), where ¢ = a(1 —e?) for 0 < e
Law: < 1. (Comets and other bodies can have hyperbolic orbits, where
c=a(e?—1),fore>1))
Second The radius vector of a planet sweeps out equal areas in equal
Law: times (planet travels fastest when near perihelion).

The square of the orbital period of a planet is proportional to the
cube of its semi-major axis:

Third P? = ka3, where k is a constant

Law:  Note: Kepler showed that this relationship also held for the newly

discovered moons of Jupiter by Galileo, but with a different value
for the constant k! One consequence of this law is that inner
planets travel faster than outer planets, also.

D. What we have Learned

Careful measurements (by Tycho Brahe) were used by Kepler to measure the orbits
of the planets and show that The Earth Moves! Kepler's Laws prove quantitatively
that the true situation is given by a heliocentric model in which the planets revolve
around the Sun. Kepler showed that the planets move in ellipses. We learned the
important terms for ellipse characteristics: focus, semi-major axis, semi-minor axis,
eccentricity, and for elliptical orbits, the terms perihelion and aphelion. We examined
the characteristics and mathematical formulas for conic sections (ellipse, parabola,
and hyperbola).

Kepler thought that there was a clockwork universe of crystal spheres, arranged
harmonically (in certain ratios, related to regular geometric solids), but we will see
next time that Newton was able to put it all on a firm physical foundation with his Law
of Universal Gravitation.
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Newtonian Mechanics

A: Dynamics

We are now going to study orbits in some detail, but first we need to review some
basic mechanics such as you learned in your Freshman Physics class. In particular,
we need to review:

« motion (coordinates, vectors, velocity, acceleration)
e linear momentum
« forces

We will especially be working in polar coordinates, which are the natural coordinate
system for orbital motion. In the next lecture we will review additional topics in basic
mechanics--angular momentum and energy.

1. Coordinates and Vectors

Recall that in three dimensions, a vector equation really represents three
equations, one for each spatial dimension. A vector equation like

F=r, T vyt
really represents the three equations

X=Xy TVt

Y =Yo T Voyl
Z=2zy T vt

where the coordinates of the vectors are

r=(xy, z)
rO = (xO’ yO’ ZO)
vO = (VOX’ voys vOZ)'

Legal vector operations are addition and subtraction, e.g.,

vtu=u-+tvy
v—u)+w=v—(u—-w)



of multiplication by a scalar, e.g.,

av =va
a(v+u)=av+au, etc.

Ordinary multiplication of two vectors generally has no meaning, but there
are two special ways to "multiply" vectors that are defined: the dot product
and the cross product.

a. Dot Product (or scalar product)
v.u= vy + vy +v,u, = |v||u| cos O (a scalar)

The meaning is " the component of v in the direction of u times the
magnitude of »," or equivalently, " the component of « in the direction of v
times the magnitude of »."

Example: A box sliding down an incline

b. Cross Product (or vector product)

x vz
vXxu |Vx v, Vz| = (Vyuz_uyvz) X (Vi ~uyv,) ¥ + (quy_uxvy) z(a
= vector)

|ux Uy |

uZ

where X, y, and z are unit vectors.
The magnitude is

|vxu|=vusin® (area of parallelogram)

and the direction is perpendicular to both v and wu.

c. Unit Vectors

Note that polar coordinates, (r, 6), are related to rectangular (2-D)
coordinates (x, y) by

r=(x*+y2)V2; 0=tan! (y/x)

or conversely



x=rcos0;y=rsin0.

Unit vectors are vectors of length 1, e.g. the x, y, and z above. Unit vectors
in polar coordinates are:

r= cosOx+sinBy;
O=-sinBx+cosOy

and have directions in the » and 6 directions, respectively. Graphically:

Note that

dr
/d0 =

d. Time Derivatives, Velocity and Acceleration

In rectangular coordinates, the 2-dimensional position, velocity, and
acceleration are as follows:

r=xx-+yy (position)

v=dr/dt=r" (prime notation)
=dx/dt X + dy/dty =vyX+ vy (velocity)

a=dv/dt=d*r/ df

r" (prime notation)

_dAx/ditx + dhy/drty = agxtayy
(acceleration)

In terms of polar coordinates, things are a little more complicated:

r=rr

v=(d/dt) rr=r'r +rdr/dt = rr+rdr/do dO/dt = r'r +1r0'0



=>y.=r'; vyg=r0'
a=dv/dt (d/dt)(r'r+r0Q)=r"r+r'dr/do do/dt + r'0'0+ r0"0+
= r0'd0/d06 do/dt

_ ’/,HL, + I"’e,ﬂ'i‘ rrerﬂ+ 7"6 "ﬂ _ 7”6'21_’ — (I"”— rer2)z + (ren +
2r'0"0

==>q.=r"—1r0%; ag=r0"+2r0’

B. Newton's Laws

|. Law of Inertia

Newton's first law is basically a statement of conservation of linear
momentum, p = mv. The law states:

"The velocity of a body remains constant unless the body is acted on by
an outside force."

or

"A body at rest tends to remain at rest, a body in motion tends to remain
in motion, unless acted on by an outside force.."

or
dp/dt =0 ==> mdv/dt =0 ==>ma =0
Il. Force Law

Newton's second law defines the force on a body in terms of its effect in
accelerating the body. The law states:

"The acceleration imparted to a body is proportional to and in the direction
of the force applied, and inversely proportional to the mass of the body."

or
F =ma
Note that if m = constant, this can be written
F =m dv/dt = d/dt mv = dp/dt

This can be thought of as the definition of force. If you pull or push a 1 kg
body, and it is observed to accelerate by 1 m/s, you have applied a force



of 1 N (newton).
[1l. Action and Reaction

Newton's third law is basically a statement of conservation of total linear
momentum for a system of particles. The law states:

"For every force acting on a body, there is an equal and opposite force
exerted by the body."
or

F,=-F,
or

P =% p,= constant

C. Law of Universal Gravitation

Newton was interested in explaining the motion of the Moon. He knew its distance
fairly accurately, and that it orbited the Earth with a nearly uniform circular motion.

In uniform circular motion, the magnitude of v is constant, but the direction changes.
This turning of the velocity is due to a central force, called the centripetal force,
which gives the body a centripetal acceleration (towards the center of its circular
path). The centripetal acceleration can be found by considering the velocity at two
points on the circle, and taking the limit,

Av  dv
Im — = — =qa
A=>0 At dt



Diagram showing centripetal acceleration for an
object in uniform circular motion. The centri-
petal acceleration needed to "turn" the velocity
from v to v'is Av/At, where the relationships
between s, Av and A6 are as shown.

From the drawings above, we have

s=rA0=vAt and Av=v AO ==> Av/At =V*/r
SO

a=vr (centripetal acceleration)

Note that the velocity here is only in the theta direction, vy = r d0/dt, so we can

recognize the second term in our earlier, general expression for radial acceleration
as the centripetal acceleration, complete with minus sign to indicate that it points
inward toward the center:

a,=r"—r0”?=r"—vr

The force is F = ma, so the Moon must experience a force F = mv?/r, where m =
My100n, = Mass of the Moon, v = orbital velocity of the Moon, and » = Dy, = distance

to the Moon from the center of the Earth (actually from the center of the Earth-Moon
system, as we will see later).

It may seem hard to measure the velocity of the Moon--how would you do it?

Just use its period and the length of its orbit (2nDy;.,) t0 get v = 21nDy;,,./P, Which
gives



mv? jMMoon(znl)Moon/P)2 MMoon4n2DMoon

r DMoon P?

But recall that Kepler gave the relationship between the period and radius (semi-
major axis) of an orbit, which in this case is: P? = kDy;,,3, Which gives

2
MMoon4TC

F = ————— ==>inverse square law Fo 1/,
kDM00n2

From Newton's third law, he knew that the force of the Earth on the Moon must be
balanced by an equal and opposite force of the Moon on the Earth, so the force had
to be proportional to both masses:

MMoonMEarth GMm

F o =
2

2

r r

Of course, the force is attractive, directed along the radius vector, so the vector force

Newton now took at leap of insight, and considered this law to be valid everywhere,
i.e. it is a Universal Law. In particular, he could measure the force on an object at
the surface of the Earth:

GMEarthm
F=————r=—-mgr

2
REarth

which allowed him to relate his constant, G, to the acceleration of gravity at Earth's
surface:



GMEarth
g~

2
REarth

If his law was Universal, then the magnitude of the force on the Moon would be

Could it be so simple? |Is the Moon merely "falling" with this value of acceleration?
To find out, Newton needed to show that the acceleration needed to keep the Moon
in its orbit was related to the acceleration of a stone falling at the Earth's surface,
according to this relationship (working with accelerations rather than forces avoids
the need to know the Moon's mass). To show this, Newton considered the distance
the Moon must "fall" towards Earth in one second.

The value of g', above, is
2'=9.8 m/s? (Rgaun/Prtoon)” = 2.71 x 1073 m/s?.
Thus, in 1 s, the Moon will fall a distance
d=12g2 =¢g72=136x102m (1.36 mm).

Let's see if this matches the orbit of the Moon. The sidereal period of the Moon is P =
27.32 days = 2.36 x 10° s, so the angular velocity is 2n/P =2.66 x 10°s~!. Thus, in 1 s,

the Moon moves through an angle of 2.66 x 1076 radians. The distance that the Moon
falls is shown in the figure below, and is related to the distance to the Moon by

d = Dyoon/€0S © — Dyioon = —Dmoon (1 — 1/cos 9) .



Path of Moon w/o Acceleration

\ A
e\l

~ Actual
Distance Path of Moon
that Moon
"falls"
4] U.‘u‘luun

We cannot use most calculators with such a small angle (most will just give cos 2.66 x

10~°= 1), but we can expand as a power series, which for such a small angle will
allow us to keep only the leading terms. We will need two expansions:

cos 0=1-0%/2+0%24 — ...
(1 —=x)"=1+nx+12n(n-1)x*>+ ...

where the second expansion is used to expand the result of the first expansion, in

the form (1 -6%/2)~!. Performing these expansions and keeping only the leading
term, we find that

d = Dyyy0,0%/2 = (384,000 km) (2.66 x 10°9)2/2=1.36x 10> m.

The same answer! So Newton finally understood the truth! The Moon is falling
towards Earth just like any stone or appl/e would do. The Law of Gravitation truly is
Universall!
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Orbital Mechanics I

A: Physical Interpretation of Kepler's Laws

Kepler's first law states that the planets move in elliptical orbits around the Sun, with
the Sun at one focus. Elliptical orbits are indeed a property of inverse square law
central forces, as we will show shortly.

Let us examine Kepler's second and third laws in view of Newton's Law of Universal
Gravitation.

1. Law of Areas and Angular Momentum

Kepler's second law states that the radius vector between the Sun and an
orbiting planet sweeps out equal areas in equal times. Consider a planet
moving along its elliptical orbit at a distance r, with velocity v, as in the
figure below.

After a time At, it moves an angular distance from point P to point Q of
AO = Vg At/r.

During this time, the radius vector sweeps out the triangle FPQ, whose
area is

A dA rvy
im —=—=—=1/2,20
t-->0 At dt 2

According to Kepler's law, dA/dt = constant, and in particular after one



complete period P, the area swept out is the total area of the ellipse,
dA/dt = A/P = mab/P = constant = rvy/2.

There are two places in its orbit where the radial velocity, v,, of a planet
goes to zero, and it has only v = vy --these are at aphelion and perihelion.
At these locations, the speeds obey the relation

v = 2A/Pr = 2nab/Pr
but at perihelion, » = a(1 — e) and at aphelion » = a(1 + ¢), so

Vperi = 2ntab/Pa(l — e)
Vap = 2mab/Pa(l +e)

but remember our relation » = a (1 — e)!’?, so these become
Voeri = 2ma/P)[(1 +e)/(1 — e)]'?

Vap = (2ma/P)[(1 - e)/(1 + e)]'2

Example: What are v,.;and v,, for Earth orbit?

P =365.26 days = 3.156 x 107 s
e=0.0167,a=1AU = 1.496 x 108 km

Vperi = (21a/P)[(1 +e)/(1 - e)]'?=30.28 km/s
Vap = 2ma/P)[(1 — e)/(1 + )]''?=29.28 km/s

Again, this result shows that planets move faster near the Sun, but the
Earth's orbit is so nearly circular that the speed does not change much.
App for planetary orbits.

Angular Momentum:

What does all of this have to do with angular momentum? Recall that
angular momentum is a measure of rotational motion about a center of
rotation--usually the center of mass (but if an object is "pinned," the center
of rotation is about that pinning point).


http://galileo.phys.virginia.edu/classes/109N/more_stuff/flashlets/kepler6.htm

This system has zero angular momentum This system has non-zero angular momentum
The angular momentum is given by
L=rxp

where p = mv is the linear momentum. In magnitude, this is [L| = L = rp sin
0 = rppernp- Butin polar coordinates, pye,= mvy, SO

L=mrvy,=mr@

so this is the appropriate expression for the angular momentum of a planet
about the Sun. The key is to examine how the angular momentum
changes around the orbit, i.e.,

fﬂ‘_

(rxp)=rxp+rxp=vxp+rxF

d
dt
butvxp=mvxv=0

dL/dt =r x F (this is the torque on the planet)

For any central force, in particular for Newton's Law of Universal

Gravitation, where F = — (GMm/r?) r, we are going to have r x F =0 also!
Thus,

dL/dt =0; so L = constant.

In fact, from the above expression, L = mrvy. Finally, we see that the
statement of Kepler's second law is that same as the statement of
conservation of angular momentum:

dA/dt = L/2m = constant

2. Kepler's Third Law



For the general case of two masses interacting according to Newton's Law
of Universal Gravitation, the two masses actually orbit about the center of
mass of the system, not necessarily the center of the more massive body.

|— r, — | rs
F, F,
— x
CM

Recall the equation for center of mass
Yo = 2M;Y;/ Zmy

For a two mass system, we will refer to the separation of the two masses
as a =r; + ry, where r, is the distance of mass m, from the center, and r,

is the distance of mass m, from the center. Consider the case when the

two masses are in circular orbits. During their motion, the two planets
must be acted on by a centripetal force given by

Fy = mv¥r =4n’mr, | P?
and
Fy = myv2lr = 4n’myr, | P?

where we have used v=2nr/ P. Now, by Newton's third law, these two
forces must be equal in magnitude (and opposite in direction), which
means mr; = m,r, . This actually proves that the center of the circular

motion is the center of mass. From this and a = r; + r,, we have
rp = [my/(mi+ my)]a.

Also, by Newton's Law of Universal Gravitation we have the expression for
the force:

F,=F,=F=Gmm,la?,
so using the expression for F, we have
Gmm,/a> = 4n’m ry /| P?> = (4n’m, | P?) [my/(m+ m,)] a,

or



P? = [4n%/G(m+ m,)]a’
which, as promised, is the expression corresponding to Kepler's third law.

Note that the center of mass is also called the barycenter. The two
masses orbit the barycenter with the same period--you use the separation
between the masses, a, not the distances of the masses r; and r, from the

center of mass, to determine the period.

3. Orbital Velocity

We will now use these results to derive a particularly simple equation for
the orbital velocity for any point on an elliptical orbit. Since most orbits are
elliptical, this will be a very useful equation.

We decompose the velocity into its two components:

v.=dr/dt =r" and vy =r(d0/dt) =10’
Going back to our equation for an ellipse:
r=a(l-e*)/(1+ecos0)

we can explicitly take the derivative and get the radial component of the
velocity as

v, = dr/dt = a(1 — e?) d/dt [(1 + e cos 0)]!
= ae(1 — e?) sin 0 d0/dt / (1 + e cos 0)?

But note that earlier we had rvy = 12d0/dt = 2nab/P = 2na*(1 — €?)V?/P, so
do/dt = 2ma®(1 — e?)V/2/Pr?
Substitution of this into the equation for v,, gives

v, = ae(1 — €?) sin 0 [2ma*(1 — e?)'"2/Pr?)/ (1 + e cos 0)?
=[2na / P(1 — €%)'?] (e sin 0).

The corresponding perpendicular component of the velocity is

vg = r d0/dt = 2ma*(1 — e*)V?/Pr
=[2na/ P(1 —e*)!2] (1 + e cos 0).

We simply sum the squares of these components to get the total


http://en.wikipedia.org/wiki/Two-body_problem

magnitude of the velocity
v =12 +ve=02na/P)* (1 +2ecos0+e?)/(1-e?).

It is useful to substitute from the equation of an ellipse for the quantity e cos
0:

ecos 0 =a(l-e*)r-1
which gives:

v = Qnra/ PP [QRar)(1-e*)+e*—1]/(1 —e?)=Q2na/ P)* 2alr -
.

Finally, from Kepler's third law, P? = [4rn?/G(m,+ m,)]a®, we have
V2 = [(4n2a?) G(my+ my) | 4n2a3]Ra/r— 1) = G(m+ my) (2/r — 1/a)

This final equation for the velocity of an elliptical orbit

V=G(my+ m,) 2/r — 1/a)
is called the vis viva equation.

What have we learned?

We found that Kepler's second law (Law of Equal Areas), is equivalent to
conservation of angular momentum L = mrvy, so that dL/dt = 0 for any
orbit. This is a consequence of the central force nature of the gravitational
force--only a perpendicular force could change a bodies' angular
momentum, and since there is none, the angular momentum cannot
change. We obtained simple expressions for the speed of a planet or
other orbiting body at perihelion and aphelion:

Voeri = (2ma/P)[(1 +e)/(1 — e)]'?
Vap = 2ma/P)[(1 — e)/(1 + e)]"2.

We also noted, using Newton's third law (Law of equal action and
reaction), that two bodies orbit their combined center of mass (the
barycenter) rather than the center of either body. From this and Newton's
Law of Universal Gravitation (F = Gm;m,/a*), we proved Kepler's third law

in its quantitative form:



P2 = [47[2/G(m1+ n’I2)]a3.

Applying Kepler's third law, we were able to obtain a more general
equation for orbital speed, valid at any point in the orbit, the vis viva
equation:

V=G(m+ m,) (2/r — 1/a).
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Orbital Mechanics 11

B: Orbits and Enerqy

1. Conservation of Energy

Recall the concepts of potential energy U, and kinetic energy K, the sum of
which gives the total energy

E=K+U

where K = 1/2 mv?>. But what is the potential energy appropriate to our
planetary system?

Remember that only differences in potential energy are important. If we
raise a mass at the surface of the Earth by a distance h, we do work
against gravity

r
W= f F - dr = —mgAr=—mgh

r

and the negative of this work is the change of potential energy

)

AU=—W=—/ F - dr =mgh

r

Raising a mass from the floor to the desk raises the potential energy by
mgh, and raising it by the same height from the desk to a shelf also raises
U by mgh -- only the difference AU matters. Thus, we are free to choose
our zero of potential energy anywhere we wish.

We will choose AU = 0 at r = infinity, which means the potential energy
anywhere in the system is negative. Now what is the potential energy at
position »? We first place a test mass of mass m at infinity, and then move



it radially inward to distance r from the center (from mass M) with the force
of gravity acting all the way along this path. We have

r GMm
U=- | - r-dr

inf ;2

which evaluates to

rodr GMm | r
U=GMm — = —
inf 72 r |inf

or finally,

U=-GMm/r (Gravitational potential energy)

As advertised, the potential energy is negative for any r, and approaches
zero as r approached infinity. The total energy for an elliptical orbit, then, is

E =K+ U=1/2mv*~ GMm/r
=1/2 mG(M+m)[2/r— 1/a] — GMm/r

E=—GMm/2a

where we have used the vis viva equation (which is why this is valid only
for elliptical orbits), and we have made the approximation that A >> m.

Note that the total energy is negative, and is just a constant. Thus, energy
is conserved along the orbit, as of course it must be.

2. Total Energy for any Orbit

Now we will examine the total energy for any orbit, not limited to elliptical
orbits. To do this, we need to use conservation of angular momentum. It
is possible to show, although we will not do so, that the angular
momentum and eccentricity are related by

L?/ GMm?r=1+ e cos 0,
so solving for r, we get

r=(L*/ GMm?)/ (1 + e cos 0).



Note that this has the same form as the general expression for the polar
equation for a conic section. Let us now repeat the calculation of total
energy in the same way as before:

v, = dr/dt = (L* | GMm?) d/dt [(1 + e cos 0)]!
= (L? /| GMm?) e sin 0 d0/dt / (1 + e cos 0)?

Recall that |L| = |r x p| = mrvy, so that rvy = L/m. But since vy = r d0/dt, we
have 2d0/dt = L /m, so. Putting this into the above equation,

v, =(GMm /L) (e sin 0).

The corresponding perpendicular component of the velocity is even
simpler to derive

vg=rdo/dt = r*d0/dt /v = L/rm = (GMm /L) (1 + e cos 0).
So the total velocity is

v =v2+v2=(GMm /L) (1 + 2e cos 0 + &%)
and finally the kinetic energy is

K =12mv? =12 m(GMm /L)* (1 + 2e cos 0 + ¢?)
while the potential energy is

U=-GMm/r = ~(GMm)*m/L*(1 + e cos 0)
=—1/2 m(GMm / L)* (2 + 2e cos 0)

We finally come to the rather simple expression for total energy, for an
orbit of the form of any conic section:

E=K+U=12m(GMm /L)*(e*- 1) (Total energy for any
orbit)

It is instructive to solve this equation for the eccentricity, to get
e =[1+2L*E /(GMm)*m]"?
In particular, note that

« for £E>0, we have e > 1 ==> hyperbola
« for £=0, we have e =1 ==> parabola
e for £<0, we have e <1 ==>ellipse



3. Planetary Motion and Effective Potential

We can consider the kinetic energy as having a radial part and an angular
part:

K =12 mv?* =112 mv2+ 1/2 mvy?
K = K. + K,

where v2=L? /m*r? ==> Ky=1/2mve?>=1/2 L> /mr?. Consider a body
moving inward through the solar system. As r decreases, the angular
kinetic energy increases for smaller » due to conservation of angular
momentum. Since the total energy is conserved, this increasing angular
kinetic energy comes in part from the radial kinetic energy. The system
acts as though there were a radial force opposing the inward motion. Let
us write the total energy as

E=K+Ky+Ur)=12mv2+ 12 L? /mr* — GMm/r = K+ Uy

so we call this combination an effective potential. Graphically, we have:
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There is a nice way to interpret orbits using this diagram. Since E =
constant on any orbit, if £ < 0 we have a bound orbit, with two turning
points where K,= 0,

Note that any orbit with £ < 0 has two turning points. For E =0, there is
only one turning point, and the object reaches infinity with zero energy.
Finally, for E > 0, there is again one turning point, but the object reaches
infinity with energy left over.
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Effective potential in general relativity (strongly curved space-time).



http://www.fourmilab.to/gravitation/orbits/

