
Chase Wu
New Jersey Institute of Technology

Some of the slides were provided through the courtesy of Dr.
Ching-Yung Lin at Columbia University

1

CS 644: Introduction to Big Data

Chapter 4. Big Data Storage and Management

2

Remind -- Apache Hadoop

The Apache™ Hadoop® project develops open-source software for reliable, scalable,
distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed processing
of large data sets across clusters of computers using simple programming models. It is
designed to scale up from single servers to thousands of machines, each offering local
computation and storage. Rather than rely on hardware to deliver high-availability, the
library itself is designed to detect and handle failures at the application layer, so
delivering a highly-available service on top of a cluster of computers, each of which may
be prone to failures.

The project includes these modules:
• Hadoop Common: The common utilities that support the other Hadoop modules.
• Hadoop Distributed File System (HDFS™): A distributed file system that provides high-

throughput access to application data.
• Hadoop YARN: A framework for job scheduling and cluster resource management.
• Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

http://hadoop.apache.org

3

Remind -- Hadoop-related Apache Projects

• Ambari™: A web-based tool for provisioning, managing, and monitoring Hadoop
clusters.It also provides a dashboard for viewing cluster health and ability to view
MapReduce, Pig and Hive applications visually.

• Avro™: A data serialization system.
• Cassandra™: A scalable multi-master database with no single points of failure.
• Chukwa™: A data collection system for managing large distributed systems.
• HBase™: A scalable, distributed database that supports structured data storage

for large tables.
• Hive™: A data warehouse infrastructure that provides data summarization and

ad hoc querying.
• Mahout™: A Scalable machine learning and data mining library.
• Pig™: A high-level data-flow language and execution framework for parallel

computation.
• Spark™: A fast and general compute engine for Hadoop data. Spark provides a

simple and expressive programming model that supports a wide range of
applications, including ETL, machine learning, stream processing, and graph
computation.

• Tez™: A generalized data-flow programming framework, built on Hadoop YARN,
which provides a powerful and flexible engine to execute an arbitrary DAG of
tasks to process data for both batch and interactive use-cases.

• ZooKeeper™: A high-performance coordination service for distributed
applications.

http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/

4

Remind -- Hadoop Distributed File System (HDFS)

http://hortonworks.com/hadoop/hdfs/

• Namenode: This is the daemon that runs on all the masters. Name node stores metadata such as filename,
the number of blocks, number of replicas, location of blocks, block IDs, etc. This metadata is available in
memory on the master for faster retrieval of data. On the local disk, a copy of metadata is available for
persistence. So the name node’s memory should be high as per the requirement.

• Datanode: This is the daemon that runs on each slave. These are actual worker nodes that store the data
(data blocks).

5

Data Storage Operations in HDFS

• Hadoop is designed to work best with a modest number of extremely large
files.

• Average file sizes è larger than 500MB.

• Write Once, Read Often model.
• Content of individual files cannot be modified, other than appending new data

at the end of the file.

• What we can do:
– Create a new file
– Append content to the end of a file
– Delete a file
– Rename a file
– Modify file attributes like owner

6

HDFS blocks

• File is divided into blocks (default: 64MB in Hadoop 1 and 128 MB in Hadoop 2) and

duplicated in multiple places (default: 3, which could be changed to the required values

according to the requirement by editing the configuration files hdfs-site.xml)

• Dividing into blocks is normal for a native file system, e.g., the default block size in Linux

is 4KB. The difference of HDFS is the scale.

• Hadoop was designed to operate at the petabyte scale.

• Every data block stored in HDFS has its own metadata and needs to be tracked by a

central server.

How to set the block size and replication number properly?
Why replicate?
• Reliability
• Performance

7

HDFS block replica placement

• Replication patterns of data blocks in HDFS.

• When HDFS stores the replicas of the original blocks across the Hadoop cluster, it tries
to ensure that the block replicas are stored at different failure points.

• Rack-aware replica placement to improve data reliability, availability, and network
bandwidth utilization
• NameNode places replicas of a block on multiple racks for improved fault tolerance.
• NameNode tries to place at least one replica of a block in each rack, so that if a

complete rack goes down, the system will be still available on other racks.

8

HDFS is a User-Space-Level file system

9

Interaction between HDFS components

10

HDFS Federation

http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailabilityWithNFS.html

• Before Hadoop 2.0

• NameNode was a single point of failure and operation limitation.

• Hadoop clusters usually have fewer clusters that were able to scale beyond

3,000 or 4,000 nodes.

• In Hadoop 2.x and beyond

• Multiple NameNodes can be used (HDFS High Availability feature – one is

in an Active state, the other one is in a Standby state).

11

High Availability of the NameNodes

• Active NameNode
• Standby NameNode – keeping the state of the block locations and block metadata in

memory -> HDFS checkpointing responsibilities.

• JournalNode – if a failure occurs, the Standby Node reads all completed journal entries to
ensure the new Active NameNode is fully consistent with the state of the cluster.

• Zookeeper – provides coordination and configuration services for distributed systems.

12

Data Compression in HDFS

13

Several useful commands for HDFS

• All hadoop commands are invoked by the bin/hadoop script.

• % hadoop fsck / -files –blocks
è list the data blocks that make up each file in HDFS.

• For HDFS, the schema name is hdfs, and for the local file system, the schema name is file.
• A file or directory in HDFS can be specified in a fully qualified way, such as:

hdfs://namenodehost
hdfs://namenodehost/parent/child

• The HDFS file system shell command is similar to Linux file commands, with the following
general syntax: hadoop hdfs –file_cmd

• For instance mkdir runs as:
$hadoop hdfs dfs –mkdir /user/directory_name

14

Several useful commands for HDFS

Big Data Management
Data Encoding Format for File-based Data Management

• JSON
• XML
• CSV
• Hierarchical Data Format (HDF4/5)
• Network Common Data Form (netCDF)

NoSQL Database for System-based Data Management
• Key-Value Store
• Document Store
• Tabular Store (HBase, distributed management)
• Object Database
• Graph Database

• Property graphs
• Resource Description Framework (RDF) graphs

15

Commonly Used Data Encoding Formats

• An open-standard language-
independent data format

• Use text to transmit data objects:
attribute–value pairs and array data
types

• Used for asynchronous browser–
server communication

16

JSON (JavaScript Object Notation, .json)

• Use tag pairs to describe
structured data and to serialize
objects

• XML supports comments, but
JSON does not

17

Commonly Used Data Encoding Formats

XML (Extensible Markup Language, .xml)

CSV (Comma-Separated Values, .csv)
• A delimited data format
• Fields/columns are separated by the comma character
• Records/rows are terminated by newlines
• All records have the same number of fields in the same order
• Any field may be quoted

18

Commonly Used Data Encoding Formats

Hierarchical Data Format (HDF4/5, .hdf)
• A set of file formats (HDF4, HDF5) designed to store and organize large amounts of data

• Widely used in scientific applications
• Supported by many commercial and non-commercial software platform

• Java, MATLAB, Scilab, Octave, Mathematica, IDL, Python, R, Fortran, Julia, etc.
• HDF5 simplifies the file structure to include only two major types

• Datasets, which are multidimensional arrays of a homogeneous type
• Groups, which are container structures which can hold datasets and other groups

19

Commonly Used Data Encoding Formats

Network Common Data Form (netCDF, .nc)
• A set of self-describing, machine-independent data formats that support the creation,

access, and sharing of array-oriented dataset
• Widely used in scientific applications

• Starting with version 4.0, the netCDF API allows the use of the HDF5 data format

• An extension of netCDF for parallel computing called Parallel-NetCDF (or PnetCDF) has
been developed by Argonne National Laboratory and Northwestern University

20

Commonly Used Data Encoding Formats

NoSQL: Key-Value Store

21

• Considered as the most primary and the simplest version of all NoSQL databases
• Use a one-way mapping from the key to the value for data management

Only provide some simple operations:

NoSQL: Document Store

22

NoSQL: Graph Database
• Graph Models

• Labeled-Property Graphs
• Represented by a set of nodes, relationships, properties, and labels
• Both nodes of data and their relationships are named and can store properties represented by

key/value pairs

• RDF (Resource Description Framework: Triplestore) Graphs

23

Apache TinkerPop™ is a graph computing framework for both
graph databases (OLTP: Online Transactional Processing) and
graph analytic systems (OLAP: Online Analytical Processing).

Amazon Neptune Fast, reliable graph database built for the cloud
•ArangoDB - OLTP Provider for ArangoDB.
•Bitsy - A small, fast, embeddable, durable in-memory graph database.
•Blazegraph - RDF graph database with OLTP support.
•CosmosDB - Microsoft's distributed OLTP graph database.
•ChronoGraph - A versioned graph database.
•DSEGraph - DataStax graph database with OLTP and OLAP support.
•GRAKN.AI - Distributed OLTP/OLAP knowledge graph system.
•Hadoop (Spark) - OLAP graph processor using Spark.
•HGraphDB - OLTP graph database running on Apache HBase.
•Huawei Graph Engine Service - Fully-managed, distributed, at-scale graph query/analysis service that provides a visualized interactive analytics platform.
•IBM Graph - OLTP graph database as a service.
•JanusGraph - Distributed OLTP and OLAP graph database with BerkeleyDB, Apache Cassandra and Apache HBase support.
•JanusGraph (Amazon) - The Amazon DynamoDB Storage Backend for JanusGraph.
•Neo4j - OLTP graph database (embedded and high availability).
•neo4j-gremlin-bolt - OLTP graph database (using Bolt Protocol).
•OrientDB - OLTP graph database
•Apache S2Graph - OLTP graph database running on Apache HBase.
•Sqlg - OLTP implementation on SQL databases.
•Stardog - RDF graph database with OLTP and OLAP support.
•TinkerGraph - In-memory OLTP and OLAP reference implementation.
•Titan - Distributed OLTP and OLAP graph database with BerkeleyDB, Apache Cassandra and Apache HBase support.
•Titan (Amazon) - The Amazon DynamoDB storage backend for Titan.
•Titan (Tupl) - The Tupl storage backend for Titan.
•Unipop - OLTP Elasticsearch and JDBC backed graph.

https://github.com/ArangoDB-Community/arangodb-tinkerpop-provider
https://github.com/lambdazen/bitsy/wiki
https://github.com/blazegraph/tinkerpop3
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronograph
http://www.datastax.com/products/datastax-enterprise-graph
https://grakn.ai/
http://tinkerpop.apache.org/docs/current/reference/
https://github.com/rayokota/hgraphdb
https://www.huaweicloud.com/en-us/product/ges.html
https://console.ng.bluemix.net/catalog/services/ibm-graph/
http://janusgraph.org/
https://github.com/awslabs/dynamodb-janusgraph-storage-backend/
http://tinkerpop.apache.org/docs/current/reference/
https://github.com/SteelBridgeLabs/neo4j-gremlin-bolt
https://github.com/orientechnologies/orientdb-gremlin
http://s2graph.apache.org/
https://github.com/pietermartin/sqlg
http://stardog.com/
http://tinkerpop.apache.org/docs/current/reference/
http://thinkaurelius.github.io/titan/
https://github.com/awslabs/dynamodb-titan-storage-backend
https://github.com/classmethod/tupl-titan-storage-backend
https://github.com/rmagen/unipop

NoSQL: Graph Database

ind
us

try

industry

industry

founder

Charles
Flint

“1850”

“1934”

born

died

IBM

Software

Hardware

Services

“Armonk” HQ

433,362
employees

industry

industry

founder
Larry Page

“1973”

“Palo Alto”

born

home

Google

“Mountain
View”

HQ 54,604

employees

Internet

board

Androiddeveloper

“4.1”version

Linux
kernel

“4.0”
preceded

OpenGL

graphics

industry

industry

founder

Steve Jobs

“1955”

“2011”

born

died

Apple

“Cupertino”
HQ 80,000

employees

board

iOSdeveloper

“7.1”version

XNU
kernel

“7.0”
preceded

24

Knowledge Graphs
Example query:
I’m interested in The Mona Lisa.
Help me find other artworks
• by Leonardo da Vinci, or
• located in The Louvre.

Example query:
What alternative mobile OS is available for iOS?

What is the fundamental challenge for RDB on Linked Data?

Native Graph DB stores nodes and
relationships directly. It makes
retrieval efficient.

In Relational DB, relationships are
distributed. It takes a long time to
JOIN to retrieve a graph from data

Retrieving multi-step relationships is a 'graph traversal' problem Cited “Graph Database” O’liey 2013 25

How is a graph stored?
• Linked list
• Adjacency matrix

Preliminary datastore comparison for Recommendation & Visualization

Visualization ==> 4-hop traversal & rankings

Recommendation ==> 2-hop traversal & ranking

user

item

People who bought this also bought that..

26

Google Trends on Relational vs Graph Databases

27

28

HBase

• HBase is modeled after Google’s BigTable and written in Java, and is developed on top
of HDFS

• It provides a fault-tolerant way of storing large quantities of sparse data
• Small amounts of information caught within a large collection of empty or

unimportant data, e.g.,
• Finding the 50 largest items in a group of 2 billion records
• Finding the non-zero items representing less than 0.1% of a huge collection

• HBase features compression, in-memory operation, and Bloom filters on a per-column
basis

• An HBase system comprises a set of tables
• Each table contains rows and columns, much like a traditional database.
• An HBase column represents an attribute of an object
• Each table must have an element defined as a Primary Key, and all access attempts

to HBase tables must use this Primary Key

HBase History

29

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011

2006

0.92 release

Apache top-level project

Hadoop’s sub project

Hadoop’s contribution

BigTable paper

2007 2008 2010 2011

Who Uses HBase?
• Here is a very limited list of well-known names

– Facebook
– Adobe
– Twitter
– Yahoo!
– Netflix
– Meetup
– Stumbleupon

– You????

When to use HBase?

30

• Not suitable for every problem
– Compared to RDBMs has VERY simple and limited API

• Good for large amounts of data
– 100s of millions or billions of rows
– If data is too small all the records will end up on a single node leaving the rest of the cluster idle

• Have to have enough hardware!!
– At the minimum 5 nodes

• There are multiple management daemon processes: Namenode, HBaseMaster, Zookeeper, etc....
• HDFS won't do well on anything under 5 nodes anyway; particularly with a block replication of 3
• HBase is memory and CPU intensive

• Carefully evaluate HBase for mixed workloads
– Client request (interactive, time-sensitive) vs. Batch processing (MapReduce)

• SLAs on client requests would need evaluation
– HBase has intermittent but large I/O access

• May affect response latency!!!
• Two well-known use cases

– Lots and lots of data (already mentioned)
– Large amount of clients/requests (usually cause a lot of data)

• Great for single random selects and range scans by key
• Great for variable schema

– Rows may drastically differ
– If your schema has many columns and most of them are null

When NOT to use HBase?

31

• Bad for traditional RDBMs retrieval
– Transactional applications
– Relational Analytics

• 'group by', 'join', and 'where column like', etc....
• Currently bad for text-based search access

– There is work being done in this arena
• HBasene: https://github.com/akkumar/hbasene/wiki
• HBASE-3529: 100% integration of HBase and Lucene based on HBase' coprocessors

– Some projects provide solution that use HBase
• Lily=HBase+Solr http://www.lilyproject.org

http://www.lilyproject.org/

HBase Data Model

32

• Data is stored in Tables
• Tables contain rows

– Rows are referenced by a unique (Primary) key
• Key is an array of bytes – good news
• Anything can be a key: string, long and your own serialized data structures

• Rows made of columns
• Data is stored in cells

– Identified by “row x column-family:column”
– Cell’s content is also an array of bytes

HBase Families
• Columns are grouped into families

– Labeled as “family:column”
• Example “user:first_name”

– A way to organize your data
– Various features are applied to families

• Compression
• In-memory option
• Stored together - in a file called HFile/StoreFile

• Family definitions are static
– Created with table, should be rarely added and changed
– Limited to a small number of families

• unlike columns that you can have millions of

column family 1 (user) column family 2
Column

(first_name)

row

HBase Distributed Architecture

33

• Table is made of regions
• Region – a range of rows stored together

– Single shard, used for scaling
– Dynamically split as they become too big and merged if too small

• Region Server – serves one or more regions
– A region is served by only 1 Region Server

• Master Server – daemon responsible for managing HBase cluster, or Region
Servers

• HBase stores its data into HDFS
– Relies on HDFS’s high availability and fault-tolerance features

• HBase utilizes Zookeeper for distributed coordination

/hbase/region1
/hbase/region2

…
…

/hbase/regionx

HDFS

Zookeeper

Master

Region ServersRegion Servers

HFile WAL
(Write Ahead Log

Region
Servers
memstore

Row Distribution Between Region Servers

34

• Regions per server depend on hardware specs. With today's
hardware, it's common to have:
– 10 to 1000 regions per Region Server
– Managing as much as 1GB to 2GB per region

– How many rows per region? Depending on the size of each row and the size of a region
• Benefits of splitting data into regions allows

– Fast recovery when a region fails
– Load balancing when a server is overloaded

• May be moved between servers

– Splitting is fast
• Reads from an original file while asynchronous process performs a split

– All of these happen automatically without user's involvement

Rows
A1

A2

…

B11

…

…

F34

…

…

…

O90

…

…

…

Z30

…

Z55 Region Server

Region

null-> B11

Region Server

Region

B12-> F34

Region Server

Region

F35-> O90

Region

O91-> Z30

Region

Z31-> null

A logical view with

all rows in a table

HBase Data Storage

35

• Data is stored in files called HFiles/StoreFiles
– Usually saved in HDFS

• HFile is basically a key-value map
– Keys are sorted lexicographically

• When data is added, it's written to a log called Write Ahead Log (WAL) and is
also stored in memory (memstore)

• Flush: when in-memory data exceeds maximum value, it is flushed to an HFile
– Data persisted to HFile can then be removed from WAL
– Region Server continues serving read-writes during the flush operations, writing values to the WAL and

memstore
• HBase periodically performs data compaction

v Why?
ü To control the number of HFiles
ü To keep the cluster well balanced

– Minor Compaction: Smaller HFiles are merged into larger HFiles (n-way merge)
• Fast - Data is already sorted within files
• Delete markers not applied

– Major Compaction:
• For each region merges all the files within a column-family into a single file
• Scan all the entries and apply all the deletes as necessary

HBase Architecture

36

HBase Deployment

37

Management
Node

Zookeeper

HBase
Master

Management
Node

Zookeeper

HDFS
Namenode

Management
Node

Data Node

HDFS
DataNode

HBase
Region Server

Zookeeper

HDFS
Secondary
Namenode

Data Node

HDFS
DataNode

HBase
Region Server

Data Node

HDFS
DataNode

HBase
Region Server

Scale Horizontally
N Machines

......

Resources
• Home Page

– http://hbase.apache.org
• Mailing Lists

– http://hbase.apache.org/mail-lists.html
– Subscribe to User List

• Wiki
– http://wiki.apache.org/hadoop/Hbase

• Videos and Presentations
– http://hbase.apache.org/book.html#other.info

Books
• HBase: The Definitive Guide by Lars George

– Publication Date: September 20, 2011

• Apache HBase Reference Guide
– Comes packaged with HBase
– http://hbase.apache.org/book/book.html

• Hadoop: The Definitive Guide by Tom White
– Publication Date: May 22, 2012
– Chapter about Hbase

http://hbase.apache.org/
http://hbase.apache.org/mail-lists.html
http://wiki.apache.org/hadoop/Hbase
http://hbase.apache.org/book.html
http://hbase.apache.org/book/book.html

38

Characteristics of data in HBase
Sparse data

HDFS lacks random read and write access. This is where HBase comes into picture. It's
a distributed, scalable, big data store, modeled after Google's BigTable. It stores data
as key/value pairs.

Multiple versions of
data for each cell

39

HBase Example

Table name Column
family 1

Column
family 2

40

HBase Example

41

HBase Example

42

HBase Example

Create HBase table in Java

HBase Table Mapper and Reducer

45

Ingesting Data into HDFS/HBase – Apache Flume

Ingesting stream (log/event) data

Flume Features:
• Ingests log data from multiple web servers into a centralized store (HDFS, HBase) efficiently.
• Import huge volumes of event data produced by social networking sites like Facebook and Twitter, and e-
commerce websites like Amazon and Flipkart, along with the log files

• Supports a large set of sources and destinations types.
• Supports multi-hop flows, fan-in fan-out flows, contextual routing, etc.
• Can be scaled horizontally.

46

Questions?

