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The Apache™ Hadoop® project develops open-source software for reliable, scalable,

distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed processing

of large data sets across clusters of computers using simple programming models. It is
designed to scale up from single servers to thousands of machines, each offering local
computation and storage. Rather than rely on hardware to deliver high-availability, the
library itself is designed to detect and handle failures at the application layer, so
delivering a highly-available service on top of a cluster of computers, each of which may
be prone to failures.

The project includes these modules:

Hadoop Common: The common utilities that support the other Hadoop modules.

Hadoop Distributed File System (HDFS™): A distributed file system that provides high-
throughput access to application data.

Hadoop YARN: A framework for job scheduling and cluster resource management.
Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

http://hadoop.apache.org
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Remind -- Hadoop-related Apache Projects

: A web-based tool for provisioning, managing, and monitoring Hadoop
clusters.lIt also provides a dashboard for viewing cluster health and ability to view
MapReduce, Pig and Hive applications visually.

. A data serialization system.

. A scalable multi-master database with no single points of failure.
: A data collection system for managing large distributed systems.

. A scalable, distributed database that supports structured data storage
for large tables.

: A data warehouse infrastructure that provides data summarization and
ad hoc querying.
: A Scalable machine learning and data mining library.

. A high-level data-flow language and execution framework for parallel
computation.

. A fast and general compute engine for Hadoop data. Spark provides a
simple and expressive programming model that supports a wide range of
applications, including ETL, machine learning, stream processing, and graph
computation.

. A generalized data-flow programming framework, built on Hadoop YARN,
which provides a powerful and flexible engine to execute an arbitrary DAG of
tasks to process data for both batch and interactive use-cases.

. A high-performance coordination service for distributed
applications.


http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/

Remind -- Hadoop Distributed File System (HDFS)

HDFS Architecture
Metadata (Name, replicas, ...):
Metadata,ops"[ Namenode /homeffoo/data, 3, ...
Block ops
Read Datanodes Datanodes

O & = = Replication a B =
[] [] Blocks
“ J
Y
Rack 1 Rack 2

http://hortonworks.com/hadoop/hdfs/

Namenode: This is the daemon that runs on all the masters. Name node stores metadata such as filename,

the number of blocks, number of replicas, location of blocks, block IDs, etc. This metadata is available in
memory on the master for faster retrieval of data. On the local disk, a copy of metadata is available for
persistence. So the name node’s memory should be high as per the requirement.

(data blocks).

Datanode: This is the daemon that runs on each slave. These are actual worker nodes that store the data
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Hadoop is designed to work best with a modest number of extremely large
files.

Average file sizes = larger than 500MB.

Write Once, Read Often model.

Content of individual files cannot be modified, other than appending new data
at the end of the file.

What we can do:
— Create a new file
— Append content to the end of a file
— Delete a file
— Rename afile
— Modify file attributes like owner



HDFS blocks

« File is divided into blocks (default: 64MB in Hadoop 1 and 128 MB in Hadoop 2) and
duplicated in multiple places (default: 3, which could be changed to the required values
according to the requirement by editing the configuration files hdfs-site.xml)

2013-dec.log
513MB

3 | b c d e
128 MB 128 MB 128 MB 128 MB 1MB

« Dividing into blocks is normal for a native file system, e.g., the default block size in Linux
is 4KB. The difference of HDFS is the scale.

« Hadoop was designed to operate at the petabyte scale.

» Every data block stored in HDFS has its own metadata and needs to be tracked by a
central server.

How to set the block size and replication number properly?

Why replicate?
* Reliability
* Performance



HDFS block replica placement

* Replication patterns of data blocks in HDFS.
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« When HDFS stores the replicas of the original blocks across the Hadoop cluster, it tries
to ensure that the block replicas are stored at different failure points.

« Rack-aware replica placement to improve data reliability, availability, and network
bandwidth utilization

« NameNode places replicas of a block on multiple racks for improved fault tolerance.

« NameNode tries to place at least one replica of a block in each rack, so that if a
complete rack goes down, the system will be still available on other racks.



HDFS is a User-Space-Level file system
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Interaction between HDFS components




HDFS Federation

« Before Hadoop 2.0
« NameNode was a single point of failure and operation limitation.

« Hadoop clusters usually have fewer clusters that were able to scale beyond
3,000 or 4,000 nodes.

* In Hadoop 2.x and beyond

« Multiple NameNodes can be used (HDFS High Availability feature — one is
in an Actlve state, the other one is in a Standby state).

............................................

NameNode NameNode '
E : Nomespace 2 :

Block locations
Block metadata

ey

Master Node 2

(D#taNode 1 | | Data Node2 |  Data Node3 ) | Data Node 4 |

..............................................................

http: //hadoop apache.org/docs/r2.3.0/hadoop- yarn/hadoop -yarn- S|te/HDFSH|ghAva|Iab|I|tyW|thNFS html 1U



High Availability of the NameNodes

« Active NameNode

« Standby NameNode — keeping the state of the block locations and block metadata in
memory -> HDFS checkpointing responsibilities.

e E e E . — . — ., — . - ——————————— P r T T T T . — . .- - r e E T — . . . . -

| [ Active NameNode J [Standby NameNodeJ
: ' : :
ZookeeperFC ZookeeperFC
| . g
| [ JournalNode ) P [ JournalNode JournalNode J
i M {
[ Zookeeper J [ Zookeeper Zookeeper ]
Master Node 1 Master Node 2 Master Node 3

« JournalNode — if a failure occurs, the Standby Node reads all completed journal entries to
ensure the new Active NameNode is fully consistent with the state of the cluster.

« Zookeeper — provides coordination and configuration services for distributed systems.
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Data Compression in HDFS

Table 5-1 Hadoop Codecs
Codec File Splittable? Degree of Compression
Extension Compression Speed
Gzip .gz No Medium Medium
Bzip2 .bz2 Yes High Slow
Snappy . Snappy No Medium Fast
LZ0 .1zo No, unless Medium Fast
indexed
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All hadoop commands are invoked by the bin/hadoop script.

hadoop [--config confdir] [COMMAND]
[GENERIC OPTIONS] [COMMAND OPTIONS]

% hadoop fsck / -files —blocks
=» list the data blocks that make up each file in HDFS.

For HDFS, the schema name is hdfs, and for the local file system, the schema name is file.
A file or directory in HDFS can be specified in a fully qualified way, such as:
hdfs://namenodehost
hdfs://namenodehost/parent/child

The HDFS file system shell command is similar to Linux file commands, with the following
general syntax: hadoop hdfs —file_cmd

For instance mkdir runs as:
$hadoop hdfs dfs —mkdir /user/directory _name

13



Several useful commands for HDFS

For example, to create a directory named “joanna”, run this mkdir
command:

$ hadoop hdfs dfs -mkdir /user/joanna

Use the Hadoop put command to copy a file from your local file
system to HDFS:

$ hadoop hdfs dfs -put file_ name /user/login_user name

For example, to copy a file named data.txt to this new directory,
run the following put command:

$ hadoop hdfs dfs -put data.txt /user/joanna

Run the Is command to get an HDFS file listing;:
$ hadoop hdfs dfs -Is .
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Big Data Management

Data Encoding Format for File-based Data Management
« JSON
« XML
« CSV
« Hierarchical Data Format (HDF4/5)
* Network Common Data Form (netCDF)
NoSQL Database for System-based Data Management
« Key-Value Store
* Document Store
« Tabular Store (HBase, distributed management)
* Object Database

« Graph Database
» Property graphs
» Resource Description Framework (RDF) graphs

15



Commonly Used Data Encoding Formats

JSON (JavaScript Object Notation, .json)

* An open-standard language-
independent data format

* Use text to transmit data objects:
attribute—value pairs and array data
types

» Used for asynchronous browser—
server communication

{

"firstName":
"lastName"

"age": 25,
"address":

n John " -

: "sSmith",

{

"streetAddress": "21 2nd Street",
"New York",

rolity™:
"state":

n NY n v

"postalCode”:

o

"phoneNumber": [

{
L) type "

"number" :

b
{
"type "

"number" :

}
1,

"gender":
n type n :
}

i 10 ) s

: "home",

212 555=1234"

: llfaxll’

{

"male"

"646 555-4567"
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Commonly Used Data Encoding Formats

XML (Extensible Markup Language, .xml)

« Use tag pairs to describe
structured data and to serialize
objects

« XML supports comments, but
JSON does not

<person>
<firstName>John</firstName>
<lastName>Smith</lastName>
<age>25</age>
<address>
<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>
</address>
<phoneNumber>
<type>home</type>
<number>212 555-1234</number>
</phoneNumber>
<phoneNumber>
<type>fax</type>
<number>646 555-4567</number>
</phoneNumber>
<gender>
<type>male</type>
</gender>
</person>

17



Commonly Used Data Encoding Formats

CSV (Comma-Separated Values, .csv)

* A delimited data format

» Fields/columns are separated by the comma character

* Records/rows are terminated by newlines

* All records have the same number of fields in the same order
« Any field may be quoted

Year Make Model Description Price
1997 Ford | E350 ac, abs, moon 3000.00
1999 Chevy | Venture "Extended Edition" 4900.00
1999 Chevy  Venture "Extended Edition, Very Large" 5000.00
1996 Jeep | Grand Cherokee MUSTISELN 4799.00

air, mpon roqf, loaded

The above table of data may be represented in CSV format as follows:

Year,Make,Model,Description,Price

1997 ,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy, "Venture ""Extended Edition""","",4900.00
1999,Chevy, "Venture ""Extended Edition, Very Large""",,5000.00
1996,Jeep,Grand Cherokee, "MUST SELL!

air, moon roof, loaded",4799.00 18



Commonly Used Data Encoding Formats

Hierarchical Data Format (HDF4/5, .hdf)

» A set of file formats (HDF4, HDF5) designed to store and organize large amounts of data
» Widely used in scientific applications
» Supported by many commercial and non-commercial software platform
- Java, MATLAB, Scilab, Octave, Mathematica, IDL, Python, R, Fortran, Julia, etc.
« HDF5 simplifies the file structure to include only two major types
» Datasets, which are multidimensional arrays of a homogeneous type
« Groups, which are container structures which can hold datasets and other groups

datasets

I o
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metadata -
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H DFS metadata metadata =
\ metadata
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Commonly Used Data Encoding Formats

Network Common Data Form (netCDF, .nc)

« A set of self-describing, machine-independent data formats that support the creation,
access, and sharing of array-oriented dataset

» Widely used in scientific applications

« Starting with version 4.0, the netCDF API allows the use of the HDF5 data format

* An extension of netCDF for parallel computing called Parallel-NetCDF (or PnetCDF) has
been developed by Argonne National Laboratory and Northwestern University
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NoSQL: Key-Value Store

* Considered as the most primary and the simplest version of all NoSQL databases
e Use a one-way mapping from the key to the value for data management

A£&§§f

Key-Value Ordered Key-Value Big Table Document, Graph

Full-Text Search
\3

”H
1
H
Ll
H

Only provide some simple operations:
* Get(key), which returns the value associated with the provided key.
» Put(key, value), which associates the value with the key.
» Multi-get(key1, key2,.., keyN), which returns the list of values associated with the list of keys.

» Delete(key), which removes the entry for the key from the data store.
Example Data Represented in a Key—Value Store

Key Value

“BMW” {“I_Series”, “3—Sel‘ies”, 665-Se1‘ies”7 “5_Se1'ies G ”, 667_Series”, “X3”, “X5”, “X6’9’ “Z4”}
“Buick” |{*Enclave”, “LaCrosse”, “Lucerne”, “Regal”}
“Cadillac”|{“CTS”, “DTS”, “Escalade”, “Escalade ESV”, “Escalade EXT”, “SRX”, “STS"}
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The following diagram highlights the components of a MongoDB insert operation:

NoSQL: Document Store

db.users.insert ( <«—— collection
Data Warehouse {

n n

name: "sue”, «—— field: value

'@Iﬁhp' . age: 26, < field: value
, Map-Reduce }- status: "A"  <«— field: value
n| - )

The components of a MongoDB insert operations.
O mongoDB | o f 2 ors e

The following diagram shows the same query in SQL:

document

Application INSERT INTO users <«—— table
( name, age, status ) <«—— columns
VALUES ( "sue", 26, "A" ) <«—— values/row
n ﬂ n m The components of a SQL INSERT statement.
p— — p— — {
|
| —
S S S — I
S ——
}
Relational data model Document data model
Highly-structured table organization Collection of complex documents with
with rigidly-defined data formats and arbitrary, nested data formats and

record structure. varying “record” format. 29



NoSQL: Graph Database

* Graph Models
* Labeled-Property Graphs

* Represented by a set of nodes, relationships, properties, and labels
* Both nodes of data and their relationships are named and can store properties represented by
key/value pairs

 RDF (Resource Description Framework: Triplestore) Graphs

Ap?ch Apache TinkerPop™ is a graph computing framework for both
TlnkerPop graph databases (OLTP: Online Transactional Processing) and
graph analytic systems (OLAP: Online Analytical Processing).

Amazon N eth ne Fast, reliable graph database built for the cloud

*ArangoDB - OLTP Provider for ArangoDB.

*Bitsy - A small, fast, embeddable, durable in-memory graph database.
*Blazegraph - RDF graph database with OLTP support.

*CosmosDB - Microsoft's distributed OLTP graph database.
*ChronoGraph - A versioned graph database.

*DSEGraph - DataStax graph database with OLTP and OLAP support.
*GRAKNL.AI - Distributed OLTP/OLAP knowledge graph system.
*Hadoop (Spark) - OLAP graph processor using Spark.

*HGraphDB - OLTP graph database running on Apache HBase.

*Huawei Graph Engine Service - Fully-managed, distributed, at-scale graph query/analysis service that provides a visualized interactive analytics platform.

*IBM Graph - OLTP graph database as a service.

*JanusGraph - Distributed OLTP and OLAP graph database with BerkeleyDB, Apache Cassandra and Apache HBase support.
*JanusGraph (Amazon) - The Amazon DynamoDB Storage Backend for JanusGraph.

*Neo4j - OLTP graph database (embedded and high availability).

*neodj-gremlin-bolt - OLTP graph database (using Bolt Protocol).

*OrientDB - OLTP graph database

*Apache S2Graph - OLTP graph database running on Apache HBase.

*Salg - OLTP implementation on SQL databases.

*Stardog - RDF graph database with OLTP and OLAP support.

TinkerGraph - In-memory OLTP and OLAP reference implementation.

+Titan - Distributed OLTP and OLAP graph database with BerkeleyDB, Apache Cassandra and Apache HBase support.
«Titan (Amazon) - The Amazon DynamoDB storage backend for Titan.

«Titan (Tupl) - The Tupl storage backend for Titan.

*Unipop - OLTP Elasticsearch and JDBC backed graph.
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https://github.com/ArangoDB-Community/arangodb-tinkerpop-provider
https://github.com/lambdazen/bitsy/wiki
https://github.com/blazegraph/tinkerpop3
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://github.com/MartinHaeusler/chronos/tree/master/org.chronos.chronograph
http://www.datastax.com/products/datastax-enterprise-graph
https://grakn.ai/
http://tinkerpop.apache.org/docs/current/reference/
https://github.com/rayokota/hgraphdb
https://www.huaweicloud.com/en-us/product/ges.html
https://console.ng.bluemix.net/catalog/services/ibm-graph/
http://janusgraph.org/
https://github.com/awslabs/dynamodb-janusgraph-storage-backend/
http://tinkerpop.apache.org/docs/current/reference/
https://github.com/SteelBridgeLabs/neo4j-gremlin-bolt
https://github.com/orientechnologies/orientdb-gremlin
http://s2graph.apache.org/
https://github.com/pietermartin/sqlg
http://stardog.com/
http://tinkerpop.apache.org/docs/current/reference/
http://thinkaurelius.github.io/titan/
https://github.com/awslabs/dynamodb-titan-storage-backend
https://github.com/classmethod/tupl-titan-storage-backend
https://github.com/rmagen/unipop

NoSQL: Graph Database
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Knowledge Graphs

Example query:

I’m interested in The Mona Lisa.
Help me find other artworks

* by Leonardo da Vinci, or

* J|ocated in The Louvre.
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What is the fundamental challenge for RDB on Linked Data?

User
UserlD | User | Address Phone Email Alternate
1 Alice | 123 FooSt. | 12345678 | alice@example.org | alice@neodj.org
In Relational DB, relationships are 2 Bob | 456 Bar Ave. bob@example.org
distributed. It takes a long time to
JOIN to retrieve a graph from data 99 Zach | 99 South St. zach@example.org
Order Lineltem
OrderlD | UserlD 4— OrderlD | ProductiD | Quantity
1234 1 1234 765 2
Native Graph DB stores nodes and 5678 1 1234 987 1
relationships directly. It makes
retrieval efficient. 5588 99 5588 765 1
inUse l
nextRelld nextPropld Product
o How is a grap h stored? ProductID | Description Handling
: ' . . 321 strawberry ice cream | freezer
L) ° .
N * Adjacency matrix
Relationship (33 bytes) 987 dried spaghetti
inUse firstPrevRelld secondNextRelld
firstNode secondNode  relationshipType firstNextRelld secondPrevRelld nextPropld
1 5 9 13 17 21 25 29 33

Retrieving multi-step relationships is a 'graph traversal’ problem

Cited “Graph Database” O’liey 2013
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Preliminary datastore comparison for Recommendation & Visualization

user 635 éES 625 625 625 655

People who bought this also bought that..

Recommendation ==> 2-hop traversal & ranking

Top 10 for each
of the top 100

T0p100 "
20—

> . @ 7
3

Visualization ==> 4-hop traversal & rankings
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Google Trends on Relational vs Graph Databases

Trends of search interest on Graph Database and Relational Database, realitme from Google (Google Trend normalizes
Y-axis to the highest value in a chart to 100%):

Interest over time. Web Search. Worldwide, 2004 - present. Interest over time. Web Search. Worldwide, 2004 - present.
B “graph database” B “relational database”
Go Sle v View full report in Google Trends Go Sle v View full report in Google Trends

Comparison of relative amounts of searches on Relational Database and Graph Database:

Interest over time. Web Search. Worldwide, 2004 - present.

M “graph database” |l “relational database”

Go 8l€ . View full report in Google Trends

27



HBase

A P ACHE

HBEBRASE

 HBase is modeled after Google’s BigTable and written in Java, and is developed on top
of HDFS

« It provides a fault-tolerant way of storing large quantities of sparse data

« Small amounts of information caught within a large collection of empty or
unimportant data, e.g.,

« Finding the 50 largest items in a group of 2 billion records
» Finding the non-zero items representing less than 0.1% of a huge collection

« HBase features compression, in-memory operation, and Bloom filters on a per-column
basis

 An HBase system comprises a set of tables
« Each table contains rows and columns, much like a traditional database.
« An HBase column represents an attribute of an object
« Each table must have an element defined as a Primary Key, and all access attempts
to HBase tables must use this Primary Key
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HBase History

Source: Lars, George. HBase The Definitive Guide. O'Reilly Media. 2011 [ 0.92 release ]
[ Apaj‘,he top-level project
[ ] Hadoop’ s sub project
[ } Hadoop’ s contribution
[ ] BigTable paper

2006 2007 2008 2010 2011

Who Uses HBase?

* Here is a very limited list of well-known names

— Facebook

— Adobe f
— Twitter ' -
— Yahoo! .
~ Netflix "‘ Y J 4 Maal

~ Meetup Adobe . vp
— Stumbleupon

—You???? '!_j‘
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When to use HBase?

Not suitable for every problem

— Compared to RDBMs has VERY simple and limited API

Good for large amounts of data

— 100s of millions or billions of rows

— If data 1s too small all the records will end up on a single node leaving the rest of the cluster idle
Have to have enough hardware!!

— At the minimum 5 nodes
* There are multiple management daemon processes: Namenode, HBaseMaster, Zookeeper, etc....

+ HDFS won't do well on anything under 5 nodes anyway; particularly with a block replication of 3
» HBase is memory and CPU intensive

Carefully evaluate HBase for mixed workloads

— Client request (interactive, time-sensitive) vs. Batch processing (MapReduce)
» SLAs on client requests would need evaluation

— HBase has intermittent but large I/0 access
* May affect response latency!!!

Two well-known use cases

— Lots and lots of data (already mentioned)

— Large amount of clients/requests (usually cause a lot of data)
Great for single random selects and range scans by key

Great for variable schema
— Rows may drastically differ
— If your schema has many columns and most of them are null

30



When NOT to use HBase?

« Bad for traditional RDBMs retrieval

— Transactional applications
— Relational Analytics
« 'group by, 'join', and 'where column like', etc....
« Currently bad for text-based search access
— There is work being done in this arena
» HBasene: https://github.com/akkumar/hbasene/wiki
+ HBASE-3529: 100% integration of HBase and Lucene based on HBase' coprocessors
— Some projects provide solution that use HBase
+ Lily=HBase+Solr

31


http://www.lilyproject.org/

HBase Data Model

 Data is stored in Tables
 Tables contain rows

— Rows are referenced by a unique (Primary) key
» Key is an array of bytes — good news
+ Anything can be a key: string, long and your own serialized data structures

Rows made of columns

Data is stored in cells
— Identified by “row x column-family:column”
— Cell’s content is also an array of bytes

HBase Families _ _
column family 1 (user) column famlly 2

* Columns are grouped into families column |
— Labeled as “family:column” [(first_name)

+ Example “user:first_name” j------

— A way to organize your data

— Various features are applied to familieS
« Compression
* In-memory option
» Stored together - in a file called HFile/StoreFile

Family definitions are static

— Created with table, should be rarely added and changed

— Limited to a small number of families
+ unlike columns that you can have millions of
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HBase Distributed Architecture

« Table is made of regions
* Region — a range of rows stored together
— Single shard, used for scaling
— Dynamically split as they become too big and merged if too small
* Region Server — serves one or more regions
— Aregion is served by only 1 Region Server
« Master Server — daemon responsible for managing HBase cluster, or Region
Servers
- HBase stores its data into HDFS
— Relies on HDFS’s high availability and fault-tolerance features
- HBase utilizes Zookeeper for distributed coordination

L x| Zookeeper
< >
Master
J /hbase/region1
/hbase/region2
\ Region <«
ST /hbase/regionx
memstore
Vv
HDFS HFile W WAL
(Write Ahead Log




Row Distribution Between Region Servers

A logical view with _

all rows in a table

p——

~——

Rows
-~
ﬁ; Region
—> y null->B11
B11 ¢ Region
/——I’ B12'> F34
F34
- < -
‘f 1
090 e Region
2 091->730
>/ Region
— | Z31->null
Z30 /
755 Region Server Region Server

Region
F35-> 090

Region Server

* Regions per server depend on hardware specs. With today's
hardware, it's common to have:
— 10 to 1000 regions per Region Server
— Managing as much as 1GB to 2GB per region

- Benefits of splitting data into regions allows
— Fast recovery when a region fails
— Load balancing when a server 1s overloaded

— Splitting is fast

+ May be moved between servers

— All of these happen automatically without user's involvement

— How many rows per region? Depending on the size of each row and the size of a region

» Reads from an original file while asynchronous process performs a split
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HBase Data Storage

« Data is stored in files called HFiles/StoreFiles
— Usually saved in HDFS

« HFile is basically a key-value map
— Keys are sorted lexicographically

 When data is added, it's written to a log called Write Ahead Log (WAL) and is
also stored in memory (memstore)

* Flush: when in-memory data exceeds maximum value, it is flushed to an HFile
— Data persisted to HFile can then be removed from WAL

— Region Server continues serving read-writes during the flush operations, writing values to the WAL and
memstore

- HBase periodically performs data compaction
s Why?
v To control the number of HFiles
v To keep the cluster well balanced

— Minor Compaction: Smaller HFiles are merged into larger HFiles (n-way merge)

» Fast - Data is already sorted within files
* Delete markers not applied

— Major Compaction:

» For each region merges all the files within a column-family into a single file
» Scan all the entries and apply all the deletes as necessary
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HBase Architecture
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HBase Deployment

Resources
- Home Page

HDFS HDFS
Namenode Secondary
Namenode
Management Management Management
Node Node Node
HDFS HDFS HDFS
DataNode DataNode Scale Horizontally DataNode
Data Node Data Node Data Node

* Mailing Lists

— Subscribe to

* Wiki

* Videos and Presentations

User List

« HBase: The Definitive Guide by Lars George
— Publication Date: September 20, 2011

- Apache HBase Reference Guide
— Comes packaged with HBase

oooooo

« Hadoop: The Definitive Guide by Tom White
— Publication Date: May 22, 2012 _
— Chapter about Hbase



http://hbase.apache.org/
http://hbase.apache.org/mail-lists.html
http://wiki.apache.org/hadoop/Hbase
http://hbase.apache.org/book.html
http://hbase.apache.org/book/book.html

Characteristics of data in HBase

Sparse data

Table 12-1 Traditional Customer Contact Information Table

Customer Last First Middle E-mail Street
1D Name Name Name Address Address
00001 Smith John Timothy John. 1 Hadoop
Smith@ Lane, NY
Xyz.com nmm
00002 Doe Jane NULL NULL 7 HBase
Multiple versions of Ave, CA
data for each cell 22222

Row Key | Column Family: {Column Qualifier:Version:Value}

CustomerName: {'FN’: 1383859182496:‘John’, ‘LN’: 13838509182858:‘Smith’, ‘MN’: 1383859183001: Timothy’, ‘MN’:
1383850182915:"T"}

ContactInfo: {"EA’: 1383859183030:'John.Smith@xyz.com’, 'SA’: 1383859183073:1 Hadoop Lane, NY 111117}

00001

00002 CustomerName: {'FN’: 1383850183103:'Jane’, ‘LN": 1383850183163:‘Doe’,
ContactInfo: { 'SA’: 1383850185577:7 HBase Ave, CA 22222’}

HDFS lacks random read and write access. This is where HBase comes into picture. It's
a distributed, scalable, big data store, modeled after Google's BigTable. It stores data
as key/value pairs.
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HBase Example

Creating a table

hbase(main):002:03 create

0 row(s) in 1.2080 seconds

'CustomerContactInfo’, 'CustomerName', 'ContactInfo’

a

Table name

a

Column
family 1

a

Column
family 2

39



HBase Example

Entering Records

hbase(main):008:0 'CustomerContactInfo’, '00001', 'CustomerName:FN', 'John'
0 row(s) in 0.2870 seconds

hbase(main):009:0> put 'CustomerContactInfo’, '00001', 'CustomerName:LN', 'Smith'
0 row(s) in 0.0170 seconds

hbase(main):010:0> put 'CustomerContactInfo’, '00001’, 'CustomerName:MN', T
0 row(s) in 0.0070 seconds

hbase(main):011:0> put 'CustomerContactInfo’, '00001', 'CustomerName:MN', "Timothy'
0 row(s) in 0.0050 seconds

hbase(main):012:0> put 'CustomerContactInfo’, '00001', 'ContactInfo:EA’, 'John.Smith@xyz.com'
0 row(s) in 0.0170 seconds

hbase(main):013:0> put 'CustomerContactInfo’, '00001', 'ContactInfo:SA’, '1 Hadoop Lane, NY 11111’
0 row(s) in 0.0030 seconds

hbase(main):014:0> put 'CustomerContactInfo’, '00002', 'CustomerName:FN', 'Jane'
0 row(s) in 0.0290 seconds

hbase(main):015:0> put 'CustomerContactInfo’, '00002', 'CustomerName:LN', 'Doe'
0 row(s) in 0.0090 seconds

hbase(main):016:0> put 'CustomerContactInfo’, '00002', 'ContactInfo:SA', '7 HBase Ave, CA 22222’
0 row(s) in 0.0240 seconds
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HBase Example

Scan Results

hbase(main):o2o:o>'CustomerContactInfo', {VERSIONS => 2}

ROW
00001
00001
00001
00001
00001
00001

00002
00002
00002

COLUMN+CELL

column=ContactInfo:EA, timestamp=1383859183030, value=John.Smith@xyz.com
column=ContactInfo:SA, timestamp=1383859183073, value=1 Hadoop Lane, NY 11111
column=CustomerName:FN, timestamp=1383859182496, value=John
column=CustomerName:LN, timestamp=1383859182858, value=Smith
column=CustomerName:MN, timestamp=1383859183001, value=Timothy
column=CustomerName:MN, timestamp=1383859182915, value=T

column=ContactInfo:SA, timestamp=1383859185577, value=7 HBase Ave, CA 22222
column=CustomerName:FN, timestamp=1383859183103, value=Jane
column=CustomerName:LN, timestamp=1383859183163, value=Doe

2 row(s) in 0.0520 seconds
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HBase Example

Using the get Command to Retrieve Entire Rows and Individual Values

(1) hbase(main):o37:o>'CustomerContactInfo', 'ooo01’

COLUMN CELL
ContactInfo:EA timestamp=1383859183030, value=John.Smith@xyz.com
ContactInfo:SA timestamp=1383859183073, value=1 Hadoop Lane, NY 11111
CustomerName:FN timestamp=1383859182496, value=John
CustomerName:LN timestamp=1383859182858, value=Smith
CustomerName:MN timestamp=1383859183001, value=Timothy

5 row(s) in 0.0150 seconds

(2) hbase(main):038:0> get 'CustomerContactInfo’, ‘00001,
{COLUMN => 'CustomerName:MN'"}

COLUMN CELL

CustomerName:MN timestamp=1383859183001, value=Timothy

1 row(s) in 0.0090 seconds

(3) hbase(main):039:0> get 'CustomerContactInfo’, '00001’,
{COLUMN => 'CustomerName:MN',
TIMESTAMP => 1383859182015}
COLUMN CELL
CustomerName:MN timestamp=1383859182015, value=T
1 row(s) in 0.0290 seconds



Create HBase table in Java

public static void main(String[] args) throws ICException {

// Instantiating configuration class

Configuration con = HBaseConfiguration.create();

// Instantiating HbaseAdmin class

HBaseAdmin admin = new HBaselAdmin(con);

// Instantiating table descriptor class
HTableDescriptor tableDescriptor = new
HTableDescriptor (TableName.valueQf ("emp")):

// Adding column families to table descriptor
tableDescriptor.addFamily (new HColumnDescriptor("personal")):;
tableDescriptor.addFamily (new HColumnDescriptor("professional”)):;

Configuration config = HBaseConfiguration.create();

// Execute the table through admin Job job = new Job(config, "ExampleReadWrite");
job.setJarByClass (MyReadWriteJob.class) ; class that contains magp

admin.createTable (tableDescriptor);
System.out.println(" Table created "); Scan scan = new Scan();

scan.setCaching (500) ;

scan.setCacheBlocks (false) ;

TableMapReduceUtil.initTableMapperJob (
sourceTable, i 1
scan,
MyMapper.class,

null,

null,
job) ;
TableMapReduceUtil.initTableReducerJob (
targetTable, 1

null,
job) ;
job.setNumReduceTasks (0) ;

boolean b = job.waitForCompletion (true) ;
if (!b) {
throw new IOException("error with job!");



HBase Table Mapper and Reducer

public static class MyMapper extends TableMapper<Text, IntWritable> {
public static final byte[] CF = "cf".getBytes():;
public static final byte[] ATTR1 = "attrl".getBytes();

private final IntWritable ONE = new IntWritable(l);

private Text text = new Text();

public void map (ImmutableBytesWritable row, Result value, Context context) throws IOException,

InterruptedException {
String val = new String(value.getValue (CF, ATTR1));

text.set (val); we can only emit Writables...
context.write (text, ONE);

)]

public static class MyTableReducer extends TableReducer<Text, IntWritable,
ImmutableBytesWritable> {

public static final byte[] CF = "cf".getBytes():

public static final byte[] COUNT = "count".getBytes();

public void reduce (Text key, Iterable<IntWritable> values, Context context)
InterruptedException {
int 1 = 0;
for (IntWritable wval : wvalues) {
i 4= wval.get():
}
Put put = new Put (Bytes.toBytes(key.toString())):
put.add(CF, COUNT, Bytes.toBytes(i)):

context.write (null, put):;

throws IOException,



Ingesting Data into HDFS/HBase — Apache Flume

Ingesting stream (log/event) data

- cloud

,‘ Facebook Twitter |

Web servers

Log/Event data generators

Flume Features:

f \
'8 g
' Log/Eventdata >

Web
Server

Flume

’ o

( Channel ( )

Agent
— |
i
N HDFS |
Log/Event data _—

HBase

Centralized stores

 Ingests log data from multiple web servers into a centralized store (HDFS, HBase) efficiently.
» Import huge volumes of event data produced by social networking sites like Facebook and Twitter, and e-
commerce websites like Amazon and Flipkart, along with the log files

» Supports a large set of sources and destinations types.

» Supports multi-hop flows, fan-in fan-out flows, contextual routing, etc.

» Can be scaled horizontally.
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Questions?
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