CS 444: Big Data Systems

Chapter 2. Computing Trends for Big Data

Chase Wu

Professor of Data Science Director of Center for Big Data New Jersey Institute of Technology Collaborative Research Staff Computer Science and Mathematics Division Oak Ridge National Laboratory

Outline

- Introduction
- Challenges & Objectives
- Computing Technologies
 - High-performance computing
 - Supercomputing and Cluster Computing
 - Grid computing
 - Computing continuum: from edge to fog to cloud
 - Mobile computing
- Ongoing Research in Our Group
 - Data-intensive computing
 - High-performance networking

Albert Einstein Old Grove Rd. Hassau Point Peconic, Long Island

August 2nd, 1939

F.D. Roosevelt, President of the United States, White House Washington, D.C.

Sirs

Some recent work by E.Fermi and L. Szilard, which has been communicated to me in manuscript, leads me to expect that the element uranium may be turned into a new and important source of energy in the immediate future. Certain aspects of the situation which has arisen seem to call for watchfulness and, if necessary, quick action on the part of the Administration. I believe therefore that it is my duty to bring to your attention the following facts and recommendations:

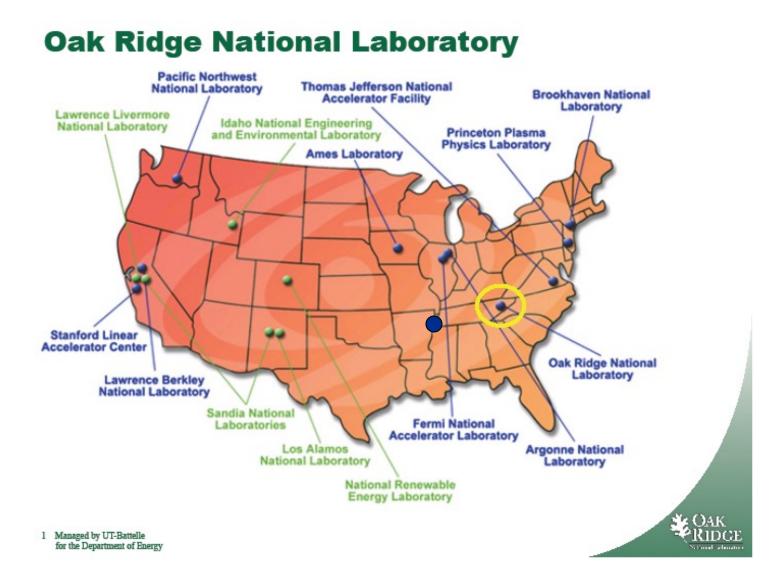
In the course of the last four months it has been made probable through the work of Joliot in France as well as Fermi and Szilard in America - that it may become possible to set up a nuclear chain reaction in a large mass of uranium, by which wast amounts of power and large quantities of new radium-like elements would be generated. Now it appears almost certain that this could be achieved in the immediate future.

This new phenomenon would also lead to the construction of bombs, and it is conceivable - though much less certain - that extremely powerful bombs of a new type may thus be constructed. A single bomb of this type, carried by boat and exploded in a port, might very well destroy the whole port together with some of the surrounding territory. However,

such bombs might very well prove to be too heavy for transportation by air.

-2-

The United States has only very poor ores of uranium in moderate quantities. There is some good ore in Canada and the former Czechoslovakia, while the most important source of uranium is Belgian Congo.


In view of this situation you may think it desirable to have some permanent contact maintained between the Administration and the group of physicists working on chain reactions in America. One possible way of achieving this might be for you to entrust with this task a person who has your confidence and who could perhaps serve in an inofficial capacity. His task might comprise the following:

a) to approach Government Departments, keep them informed of the further development, and put forward recommendations for Government action, giving particular attention to the problem of securing a supply of uranium ore for the United States;

b) to speed up the experimental work, which is at present being carried on within the limits of the budgets of University laboratories, by providing funds, if such funds be required, through his contacts with private persons who are willing to make contributions for this cause, and perhaps also by obtaining the co-operation of industrial laboratories which have the necessary equipment.

I understand that Germany has actually stopped the sale of uranium from the Czechoslovakian mines which she has taken over. That she should have taken such early action might perhaps be understood on the ground that the son of the German Under-Secretary of State, von Weizsäcker, is attached to the Kaiser-Wilhelm-Institut in Berlin where some of the American work on uranium is now being repeated.

> Yours very truly. *A. Constein* (Albert Einstein)

Oak Ridge National Laboratory

Six Scientific Themes

Born of necessity. Inspired by our quest to know. We have always been called upon to address America's greatest scientific challenges.

BIOLOGICAL SYSTEMS Developing New Options

Whether converting biomass to fuel or understanding the impacts of climate change, biological research at ORNL is helping develop new options for energy, environmental protection, and human health. mannre@ornl.gov

NEUTRON SCIENCE Leading the World

The Spallation Neutron Source and the High Flux Isotope Reactor together make Oak Ridge the world's foremost center for neutron science. andersonian@ornl.gov

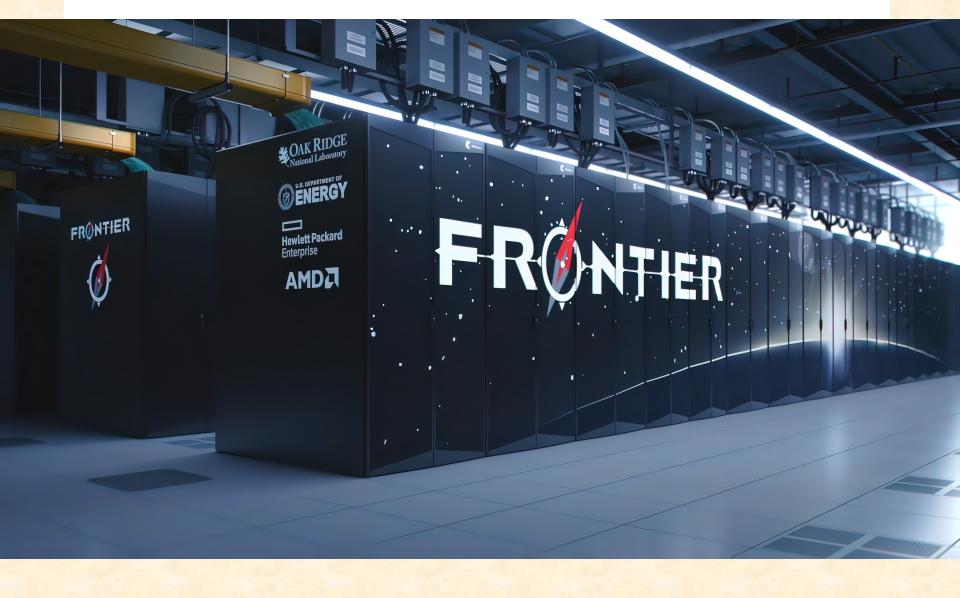
ADVANCED MATERIALS

Strengthening American Industry

With DOE's first Nanoscience Center, the world's most powerful electron microscope, and the High Temperature Materials Laboratory, Oak Ridge plays a critical role in American industrial competitiveness. **buchananmv@ornl.gov** "Men love to wonder, and that is the seed of science." ...Ralph Waldo Emerson

NATIONAL SECURITY Guarding the Gates

From biochemical sensors to stopping the proliferation of nuclear weapons, technologies that make America safer are among the laboratory's top research priorities. akersfhjr@ornl.gov


HIGH PERFORMANCE COMPUTING Tackling the Big Problems

With unmatched computational capacity for open scientific research, Oak Ridge is on a path by 2009 to reach a peta^Mop, or 1 quadrillion mathematical calculations per second, making it possible to model the most complex scientific problems. **zachariat@ornl.gov**

ENERGY Providing Energy Alternatives

Increased production, improved transmission, reduced consumption: Oak Ridge is addressing our energy challenges on all fronts, from safer nuclear power to more energye⊠ cient cars and homes. christensend@ornl.gov

World-class Facilities

Big-data Applications

- BIG DATA: rapidly increase from T to P, to E, to Z, to Y, and beyond...
- Science
 - Simulation
 - Astrophysics, climate modeling, combustion research, etc.
 - Experimental
 - Spallation Neutron Source, Large Hadron Collider, microarray, genome sequencing, protein folding, etc.
 - Observational
 - Large-scale sensor networks, astronomical imaging/radio devices (Dark Energy Camera, Five-hundred-meter Aperture Spherical Telescope – FAST), etc.

Business

- Financial transactions
 - Wal-Mart, NY stock trading center, Amazon, Alibaba
- Social media
 - YouTube, Facebook, Twitter, Weblogs, TikTok, WeChat

No matter which type of data is considered, we need <u>a high-performance end-to-end computing solution</u>

to support data generation, storage, transfer, processing, and analysis!

Big-data Workflows

Require massively distributed resources

- Hardware
 - Computing facilities, storage systems, special rendering engines, display devices (tiled display, powerwall, etc.), network infrastructures, etc.
- Software
 - Domain-specific data analytics/processing tools, programs, etc.
- Data
 - Real-time, archival
- Feature different complexities
 - Simple case: linear pipeline (a special case of DAG)
 - Complex case: DAG-structured graph
- Different application types have different performance requirements
 - Interactive: minimize total end-to-end delay for fast response
 - Streaming: maximize frame rate to achieve smooth data flow

Computing Paradigms: an Overview

Client–Server Model

 Client-server computing refers broadly to any distributed application that distinguishes between service providers (servers) and service requesters (clients)

High-performance Computing (Supercomputing, Cluster Computing)

- Powerful computers: supercomputer, PC cluster
- Used mainly by large organizations for critical applications, typically bulk data processing such as scientific computing, enterprise resource planning, and financial transaction processing
- Programming models: MPI, OpenMP, CUDA, MapReduce/Hadoop, Spark

Grid Computing

 A form of distributed computing and parallel computing, whereby a "super and virtual computer" is composed of a cluster of networked, loosely coupled computers acting in concert to perform very large tasks

<u>Cloud (Utility) Computing</u>

 The packaging of computing resources, such as computation and storage, as a metered service similar to a traditional public utility, such as electricity

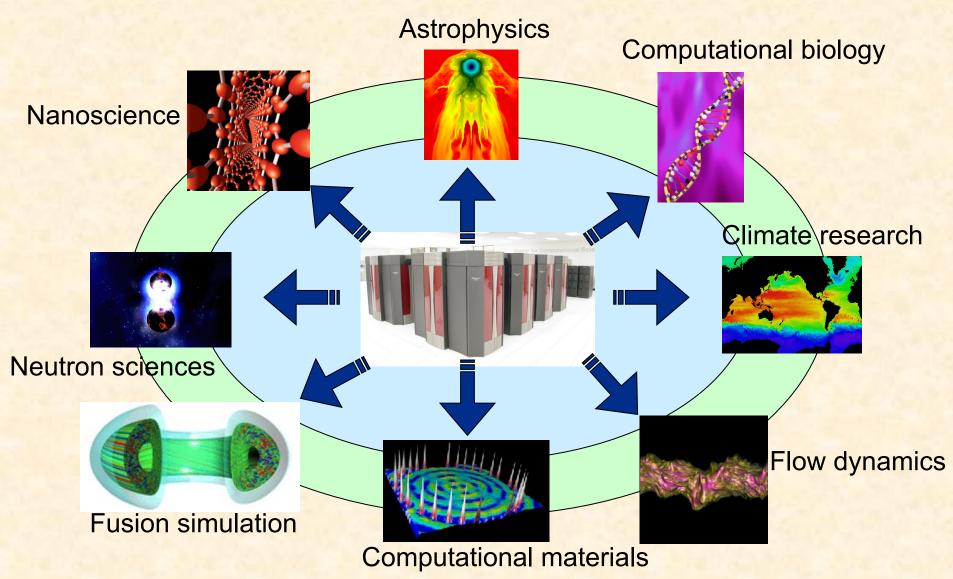
Service-Oriented Computing

 Cloud computing provides services related to computing while, in a reciprocal manner, service-oriented computing consists of the computing techniques that operate on software-as-a-service

Edge Computing

- A distributed computing paradigm that brings computation and data storage closer to the sources of data to improve response times and save bandwidth
- Internet of things (IoT) is an example of edge computing

Peer-to-peer (P2P) Computing


 Distributed architecture without the need for central coordination, with participants being at the same time both suppliers and consumers of resources (in contrast to the traditional client-server model)

Mobile Computing

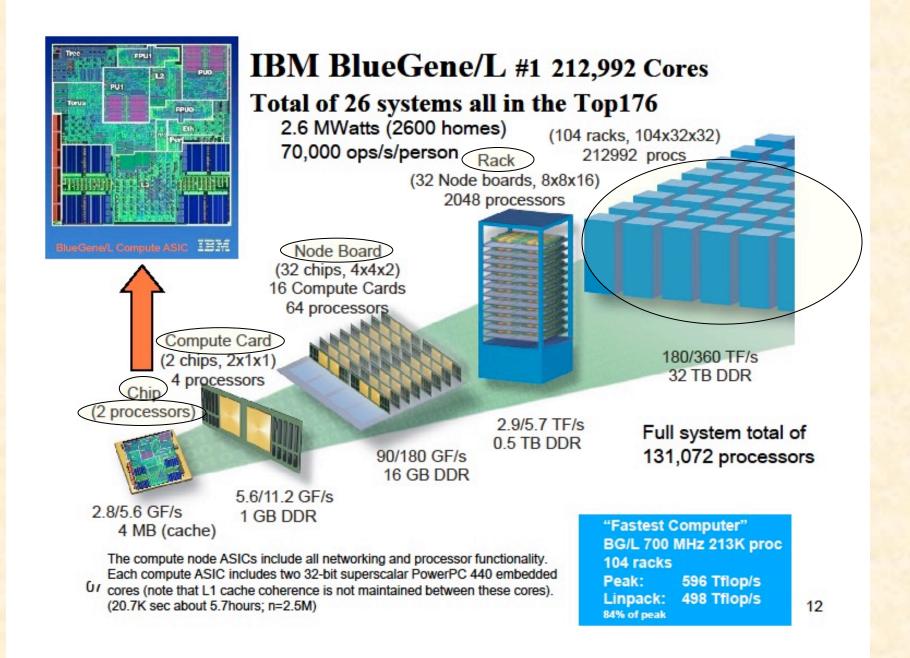
– Computing on the go!

High-performance Computing (Supercomputing, Cluster Computing)

Supercomputing for Scientific Applications

Why do we care about computing power? Computer Security: Exhaustive Key Search

- Two types of security
 - Computational security
 - Unconditional security

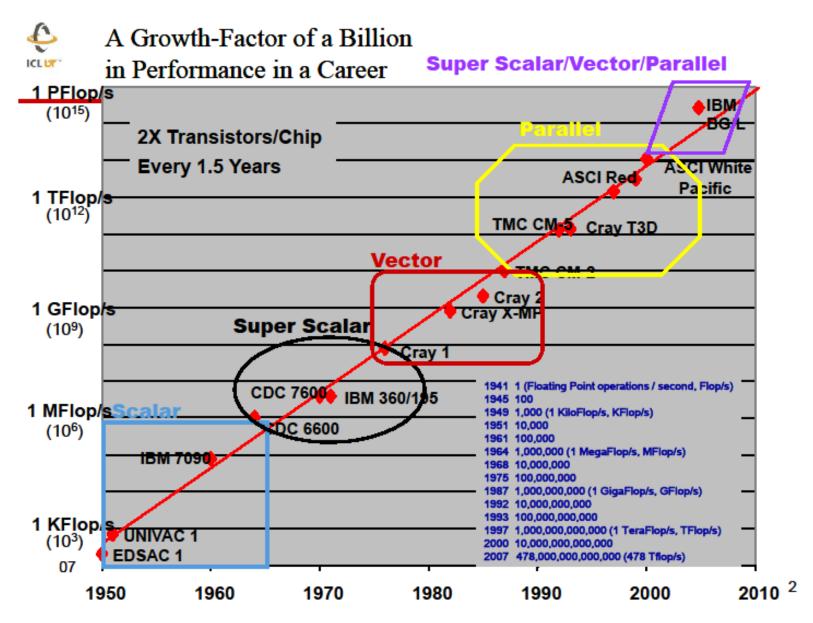

Two types of encryption methods

- Conventional (a.k.a. single-key, secret-key, symmetric): DES/DEA
- Public key-based (a.k.a. asymmetric): RSA, D-H
 - Either key could be used for encryption, but only the other key can be used for decryption

• Attack on computational security

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume to either know / recognize plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/µs
32	$2^{32} = 4.3 \times 10^9$		
56	$2^{56} = 7.2 \times 10^{16}$		
128	$2^{128} = 3.4 \times 10^{38}$		
168	$2^{168} = 3.7 \times 10^{50}$		
26 letters (permutation)	$26! = 4 \times 10^{26}$		



Exascale Race/Technologies

Projected Exascale Dates and Suppliers


 U.S. Sustained ES*: 2022-2023 Peak ES: 2021 Vendors: U.S. Processors: U.S. (some ARM?) Initiatives: NSCI/ECP Cost: \$600M per system, plus heavy R&D investments 	EU • <u>PEAK ES</u> : 2023-2024 • <u>Pre-ES</u> : 2021-2022 • Vendors: U.S., Europe • Processors: Likely ARM • Initiatives: EuroHPC • Cost: \$300-\$350M per system, plus heavy R&D investments
 China Sustained ES*: 2021-2022 Peak ES: 2020 Vendors: Chinese (multiple sites) Processors: Chinese (plus U.S.?) 13th 5-Year Plan Cost: \$350-\$500M per system, plus heavy R&D 	 Japan Sustained ES*: ~2022 Peak ES: Likely as a Al/ML/DL system Vendors: Japanese Processors: Japanese Cost: \$800M-\$1B, this includes both 1 system and the R&D costs, will also do many smaller size systems
* 1 exaflops on a 64-bit real application	tion

© Hyperion Research 2018

PERFORMANCE DEVELOPMENT

Top 500 June 2024 Release

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

CAK RIDGE

FRØNTIER

System Performance

- Peak performance of 2 Eflop/s for modeling & simulation
- Transformation and the constant of 25 C.
 State of a constant of the Constant of the

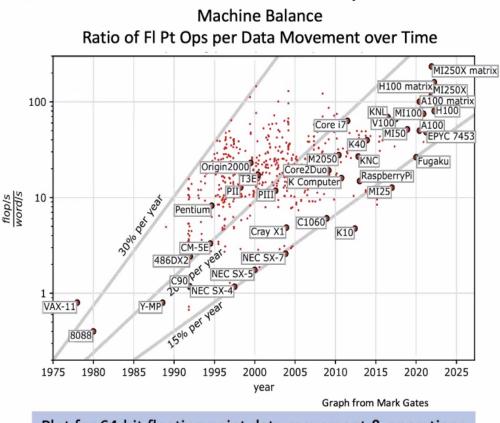
Current #1 System Overview

Each node has

- 1-AMD EPYC 7A53 CPU w/64 cores (2 Tflop/s)
- 4-AMD Instinct MI250X GPUs
 Each w/220 cores (4*53 Tflop/s)
 - 730 GB of fast memory
- 2 TB of NVMe memory

The system includes

9408 nodes


- C State Bar
- Cray Slingshot interconnect
- 706 PB (695 PB Disk + 11 PB SSD)

15

When We Look at Performance in Numerical Computations ...

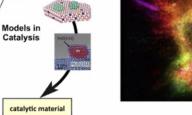
- Data movement has a big impact
- Performance comes from balancing floating point execution (Flops/sec) with memory->CPU transfer rate (Words/sec)
 - "Best" balance would be 1 flop per word-transfered
- Today's systems are close to 100 flops/sec per wordtransferred
 - Imbalanced: Over provisioned for Flops

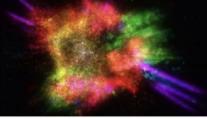
Plot for 64-bit floating point data movement & operations (Bandwidth from CPU or GPU memory to registers)

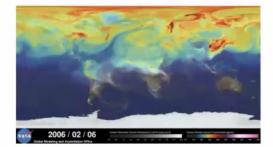
Top 10 Challenges to Exascale

3 Hardware, 4 Software, 3 Algorithms/Math Related

- Energy efficiency:
 - Creating more energy efficient circuit, power, and cooling technologies.
- Interconnect technology:
 - Increasing the performance and energy efficiency of data movement.
- Memory Technology:
 - Integrating advanced memory technologies to improve both capacity and bandwidth.
- Scalable System
 Software:
 - Developing scalable system software that is power and resilience aware.
- Programming systems:
 - Inventing new programming environments that express massive parallelism, data locality, and resilience

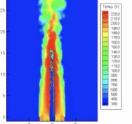

- Data management:
 - Creating data management software that can handle the volume, velocity and diversity of data that is anticipated.
- Scientific productivity:
 - Increasing the productivity of computational scientists with new software engineering tools and environments.


Exascale Algorithms:

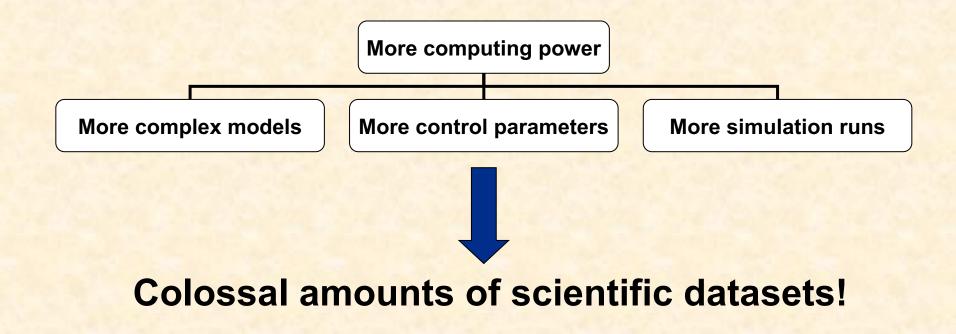

- Reformulating science problems and refactoring their solution algorithms for exascale systems.
- Algorithms for discovery, design, and decision:
 - Facilitating mathematical optimization and uncertainty quantification for exascale discovery, design, and decision making.
- Resilience and correctness:
 - Ensuring correct scientific computation in face of faults, reproducibility, and algorithm verification challenges.

Today's Top HPC Systems Used to do Simulations

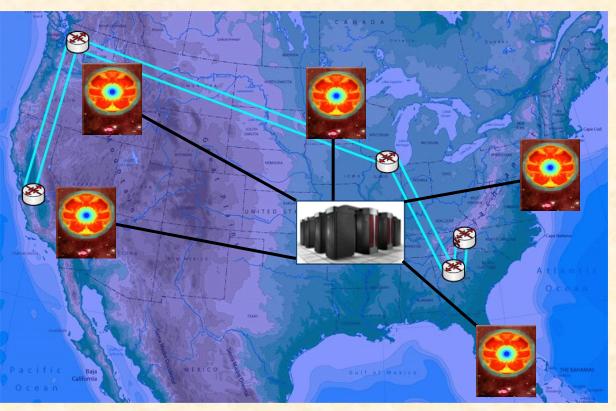
- Climate
- Combustion
- Nuclear Reactors
- Catalysis
- Electric Grid
- Fusion
- Stockpile
- Supernovae
- Materials
- Digital Twins
- Accelerators
- ...
- Usually 3-D PDE's
 - Sparse matrix computations, not dense



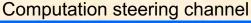
Padial Distance in Jet Diameters



Plasma electric current econdery transformer circuit)

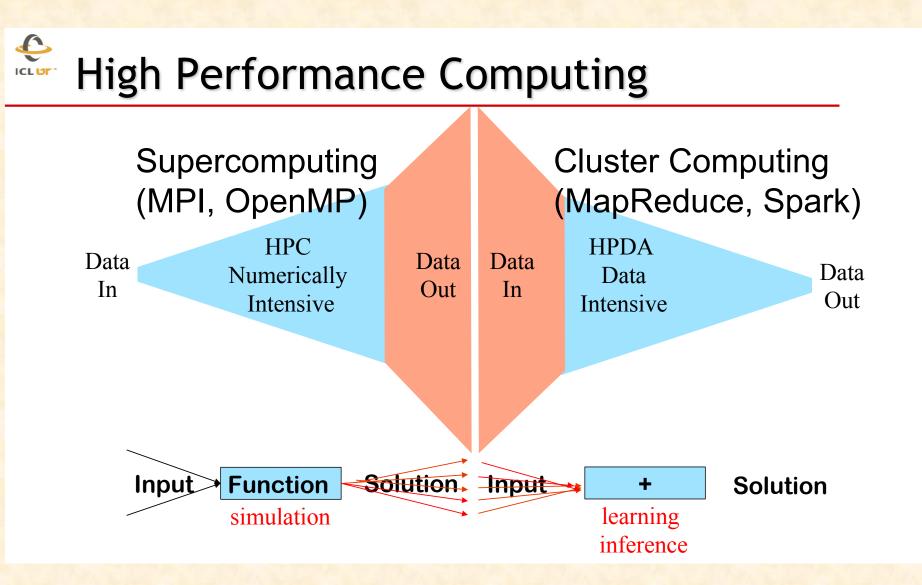

Computing power continues to increase over time

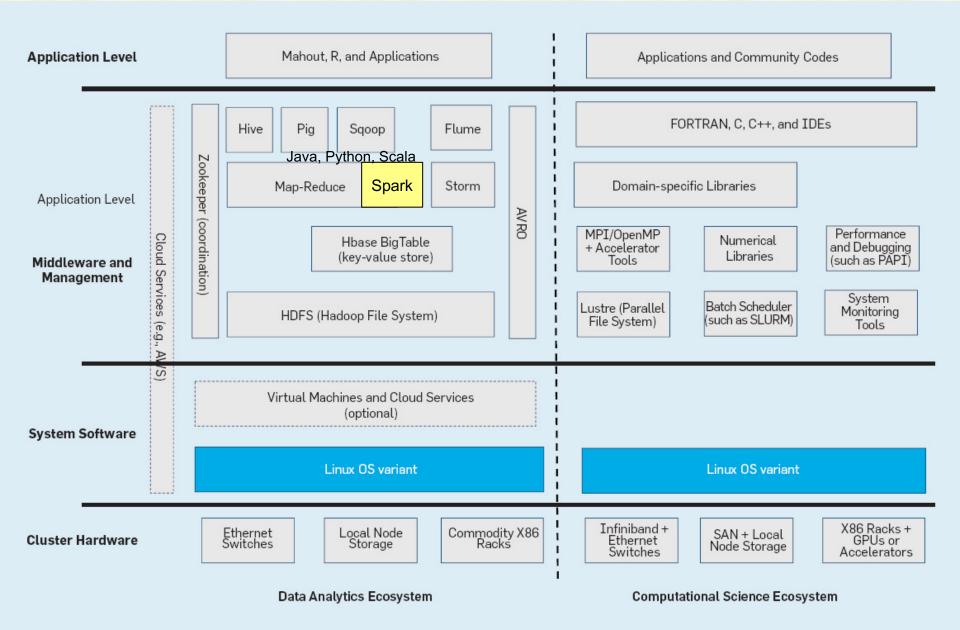
Frontier: first ever reaching exascale supercomputing!


Terascale Supernova Initiative (TSI)

- Collaborative project
 - Supernova explosion
- TSI simulation
 - 1 terabyte a day with a small portion of parameters
 - From TSI to PSI to ESI
- Transfer to remote sites
 - Interactive distributed visualization
 - Collaborative data analysis
 - Computation monitoring
 - Computation steering

Visualization channel


Visualization control channel



Supercomputer or Cluster

Client

Comparison of Data Analytics and Computing Ecosystems

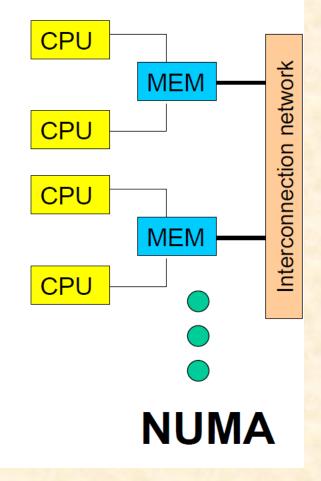
HPC Architectures

- SMP symmetric multiprocessing (up to 64CPUs)
 - All processors access common memory on the same rights
 - Used in desktops

NUMA – nonuniform memory access

- Global address space (as in SMP)
- Faster access to local memory
- Slower to remote

Distributed memory multicomputers

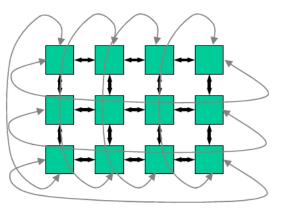

Communication via messages

Vector computers

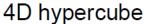
- Multiple functional units performing the same operation on vector registers (very long ones) E.g. vector addition, dot product
- Almost disappeared

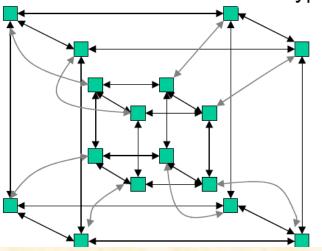
Distributed memory multiprocessors

- MPP: Massively Parallel Processing
 - Tightly integrated
- Constellations
 - **Clusters of supercomputers**


How are processors connected? Network Topologies

Goal


- Limited number of connections per node
- Small width
- Scalability


Topologies

- Mesh
- Ring
- Torus
- Hypercube
- ...

31

Type of Parallelization

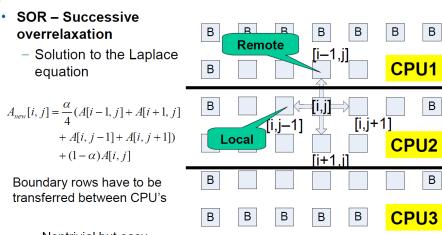
Trivial:

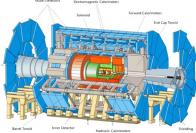
 Each CPU does a part of the work independently.

Nontrivial:

 Each CPU relies on its neighbor CPUs to complete the assigned work.

Parallel application example – HEP


- Detector Simulation
 - Simulate 10000 events with Geant4
 - One event (e.g.) 1 minute
 One week of computations!


Trivial parallelization – give parts of all the events to different CPUs

- Event analysis
 - Plot a quick histogram of 10000 events
 - One event (e.g.) 0.1s
 20 minutes This is not a quick histogram!

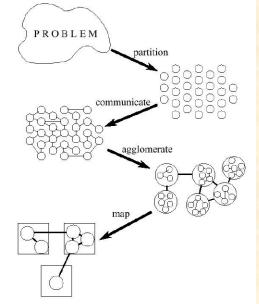
Trivial parallelization – each CPU analyzes a part of all the events. At the end histograms are added. But making it interactive and transparent is a challenge.

Nontrivial example – SOR

Nontrivial but easy

Designing a parallel application

Partitioning

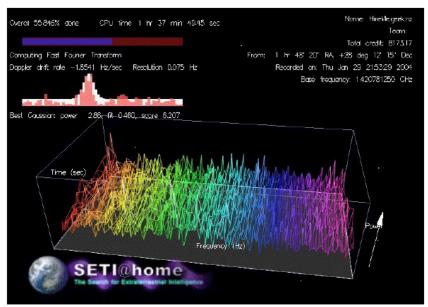

 decompose data and computations into small tasks

Communication

- Analyze communication required to coordinate tasks
- Agglomeration reduce communication
 - Increase granularity, improve locality

Mapping – map processors to tasks

- Concurrent tasks on different CPUs
- Frequently communicating tasks on the same CPU
- Minimize communication overhead
 - Data locality is important
- Load balancing
 - Make sure processors are never idle
 - Dynamic load balancing: divide work at runtime
- Take system architecture into account!
 - Fast local and slow remote memory for NUMA machines
 - Hardware for broadcasting, reduction
 - Faster access to neighboring nodes


Performance Metrics

- Execution time
 - Time when the last processor finishes its work
- Speedup
 - (time on 1CPU) / (time on P CPUs)
- Efficiency
 - Speedup / P

Seti@home-like computing

Idle computers can be used

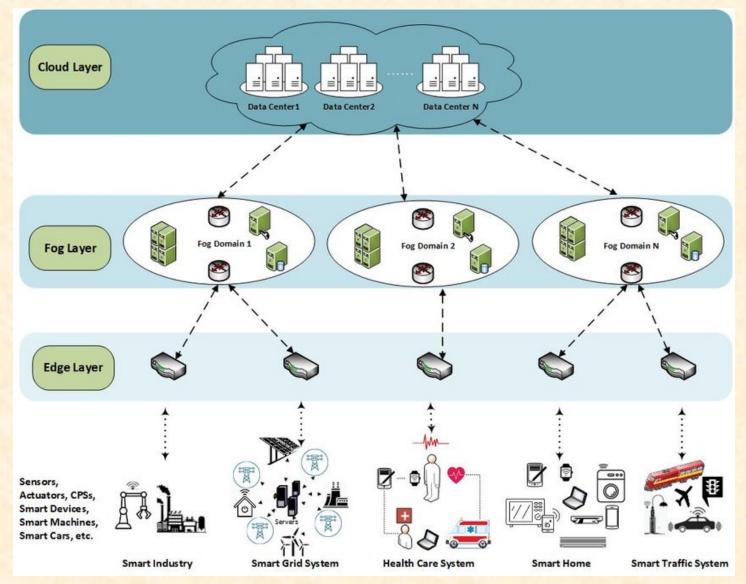
- Application running as a screen saver
- Only computational-intensive application
 - no communication while computing
- Very successful people are willing to share their computing power
- LHC@home started recently
 - Testing stability of the beam (60 particles 100k loops)

Grid Computing

Grid Computing

- Who needs grid computing?
 - Particular software capabilities
 - Modelling, simulation, etc.
 - High hardware/computing demands
 - Processing, storage, etc.
 - Large network bandwidth
 - Circuit provisioning to support large data transfer
- Problems, which are hard (or impossible) to solve at a single site, can be solved with the right kind of parallelization and distribution of the tasks involved.
- There are two primary types of grids
 - Computational grids
 - Open Science Grid (OSG)
 - Worldwide LHC Computing Grid (WLCG)
 - Data grids
 - Earth System Grid (ESG)

Requirements


Computational grids

- Manage a variety of computing resources
- Select computing resources capable of running a user's job
- Predict loads on grid resources
- Decide about resource availability
- Dynamic resource configuration and provisioning

Data grids

- Provide data virtualization service
- Support flexible data access, filtering, and transfer mechanisms
- Provide security and privacy mechanisms
- Grid computing environments are constructed upon three foundations
 - Coordinated resources
 - Open standard protocols and frameworks
 - Non-trivial QoS

Computing Continuum: from Edge to Fog to Cloud

Cloud Computing

- What is cloud computing?
 - The phrase originated from the cloud symbol used to symbolize the Internet
 - A model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction
 - Provide computation, software, data access, and storage services that do not require end-user knowledge of the physical location and configuration of the system that delivers the services

Cloud architecture

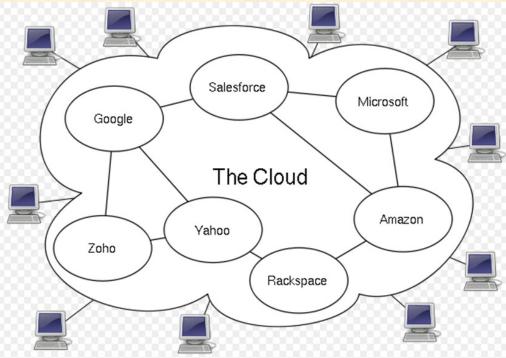
- Involve multiple *cloud components* communicating with each other over <u>application programming interfaces</u>, usually <u>web services</u> and <u>3-</u> <u>tier architecture</u>
 - Front end: seen by the user, such as a web browser
 - Back end: the cloud itself comprising computers, servers, data storage devices, etc.

Five Layers in Cloud Computing

Front and back ends:

- Client
 - A cloud client consists of <u>computer hardware</u> and/or <u>computer software</u> that relies on cloud computing for application delivery, or that is specifically designed for delivery of cloud services
- Server
 - The servers layer consists of <u>computer hardware</u> and/or <u>computer software</u> products that are specifically designed for the delivery of cloud services, including multi-core processors, cloud-specific operating systems and combined offerings

Three types of cloud computing services


- Application
 - Cloud application services or "<u>Software as a Service</u> (SaaS)" deliver <u>software</u> as a service over the Internet, eliminating the need to install and run the application on the customer's own computers and simplifying maintenance and support

Platform

- Cloud platform services or "<u>Platform as a Service</u> (PaaS)" deliver a <u>computing platform</u> and/or <u>solution stack</u> as a service, often consuming cloud infrastructure and sustaining cloud applications
- Infrastructure
 - Cloud infrastructure services, also known as "Infrastructure as a Service (<u>laaS</u>)", delivers computer infrastructure – typically a <u>platform virtualization</u> environment – as a service

Real-life Cloud Computing Environments

- Microsoft Windows Azure
- Google Gov Cloud
- Amazon EC2
- Alibaba Cloud
- Baidu Cloud
- Eucalyptus (first open-source platform for private clouds, 2008)
 - A software platform for the implementation of private <u>cloud computing</u> on <u>computer clusters</u>
- Many others

Managing Amazon EC2 instances

- AWS management console
 - Web-based, most powerful
 - http://aws.amazon.com/console/
 - Command line tools
 - <u>http://aws.amazon.com/developertools/351?_encoding=</u>
 <u>UTF8&jiveRedirect=1</u>
- Third-party UI tools
 - Example: ElasticFox browser add on

Login AWS management console

🥤 Services 🗸 Edit 🗸

jp238@njit.edu @ 934713874... 👻 Global 👻 Help 👻

Welcome

The AWS Management Console provides a graphical interface to Amazon Web Services. Learn more about how to use our services to meet your needs, or get started by selecting a service.

Getting started guides

Reference architectures

Free Usage Tier

Set Start Page

Console Home

AWS Marketplace Find & buy software, launch wit 1-Click and pay by the hour.

Compute & Networking	Deployment & Management
EDirect Connect	CloudFormation Templated AWS Resource Creation
EC2 Virtual Servers in the Cloud	LoudWatch Resource & Application Monitoring
Elastic MapReduce Managed Hadoop Framework	Data Pipeline NEW Orchestration for data-driven workflows
Route 53 Scalable Domain Name System	Elastic Beanstalk AWS Application Container
Isolated Cloud Resources	P IAM Secure AWS Access Control
Storage & Content Delivery	App Services
CloudFront Global Content Delivery Network	CloudSearch Managed Search Service
Glacier Archive Storage in the Cloud	Elastic Transcoder NEW Easy-to-use scalable media transcoding
📦 S3 Scalable Storage in the Cloud	Email Sending Service
Storage Gateway Integrates on-premises IT environments with Cloud storage	SNS Push Notification Service
Database	Message Queue Service
DynamoDB Predictable and Scalable NoSQL Data Store	Workflow Service for Coordinating Application Compon
ElastiCache In-Memory Cache	
RDS	

Managed Relational Database Service

Announcements

Amazon Simple Workflow in Seven Additional Regions and Extends IAM Support

Announcing Amazon Elastic Transcoder

Announcing High Memory Cluster Instances for Amazon EC2

More...

Service Health

Edit

Click Edit to add at least one service and at least one region to monitor.

Service Health Dashboard

Select AMI to create instance(s)

Create a New Instance

Select an option below:	Name Your Instance: e.g. Web Server Pick a meaningful name, e.g. Web Server
Classic Wizard Launch an On-Demand or Spot instance using the classic wizard with fine- grained control over how it is launched.	Choose a Key Pair: Public/private key pairs allow you to securely connect to your instance after it launches. Select Existing Create New None ec2-cristian
Quick Launch Wizard	Choose a Launch Configuration:
Launch an On-Demand instance using an editable, default configuration so that you can get started in the cloud as quickly as possible.	More Amazon Machine Images NEW! Search through public and AWS Marketplace AMIs or choose from your own custom AMIs.
AWS Marketplace	Amazon Linux AMI 2012.09 The Amazon Linux AMI 2012.09 is an EBS-backed, PV-GRUB image. 64 bit 32 bit It includes Linux 3.2, AWS tools, and repository access to multiple versions of MySQL, PostgreSQL, Python, Ruby, and Tomcat.
AWS Marketplace is an online store where you can find and buy software that runs on AWS. Launch with 1-Click	Red Hat Enterprise Linux 6.3 Red Hat Enterprise Linux version 6.3, EBS-boot. 64 bit © 32 bit ©
and pay by the hour.	SUSE Linux Enterprise Server 11 SUSE Linux Enterprise Server 11 Service Pack 2 basic install, EBS 64 bit 32 bit boot with Amazon EC2 AMI Tools preinstalled; Apache 2.2, MySQL 5.0, PHP 5.3, and Ruby 1.8.7 available
	Operation Ubuntu Server 12.04.1 LTS Ubuntu Server 12.04.1 LTS with support available from Canonical (http://www.ubuntu.com/cloud/services). 64 bit © 32 bit © Free tier eligible Free tier eligible
	Note: You can customize your settings in the next step.
Submit Feedback Getting Started Guide	

Assign instance to security group(s)

- A security group defines firewall rules for instances
- At launch time, instance can be assigned to multiple groups
 - Default group doesn't allow any network traffic
- Once an instance is running, it can't change to which security group(s) it belongs
- Can modify rules for a group at any time
- New rules automatically enforced for all running instances and instances launched in the future

Illustration of security group

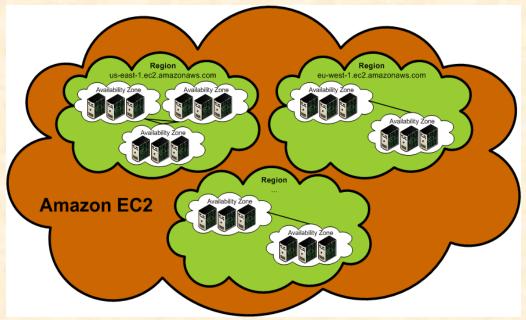
📔 Services 🗸 E	dit 🗸			jp238@njit.edu @ 934713874 `	• N. Virginia •	Help
EC2 Dashboard Events	Create Security Group	elete			୯ ¢	• 6
INSTANCES Instances	Viewing: EC2 Security Groups	Search)	< <	1 to 6 of 6 Items	>
Spot Requests	Name	VPC ID De	escription			
Reserved Instances	test-cluster	G	roup for Hadoop Slaves.			
	test-cluster-master	G	roup for Hadoop Master.			
IMAGES	default	de	efault group			
AMIs Bundle Tasks	mycluster1-master	G	roup for Hadoop Master.			
DUIIUIE TASKS	mycluster1		roup for Hadoop Slaves.			
ELASTIC BLOCK STO	Quicklaunch-1		uicklaunch-1			
Volumes		44				
Snapshots	 Security Group: test 	-cluster				
NETWORK & SECURI	Details Inbound					
Security Groups Elastic IPs	Create a Custom TCP rule	2	ІСМР			^
Placement Groups	new rule:	-	Port (Service)	Source	Action	
Load Balancers	Port range:		ALL	sg-7ff73516 (test-cluster-master)	Delete	-11
Key Pairs	(e.g., 80 or 4915)	2-65535)	ALL	sg-73f7351a (test-cluster)	Delete	=
Network Interfaces	Source: 0.0.0.0/0	104 47 1400	ТСР			-
Hourse interfaces	(e.g., 192.168.2.0 1234567890/defa)/24, sg-47ad482e, or ult)	Port (Service)	Source	Action	
		🕂 Ado	0 - 65535 1 Rule 0 - 65535	sg-7ff73516 (test-cluster-master) sg-73f7351a (test-cluster)	Delete	-11
		_	0 - 05535	sy-7317351a (test-cluster)	Delete	

© 2008 - 2013, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy Terms of Use

Feedback

Launch instance

ĺ	🎁 Services 🗸 Ec	lit 🗸							jp2	38@njit.edu @ 93	4713874 👻	N. Virginia 🔻	Help	*
*	EC2 Dashboard Events	Lau	unch Insta	Actions	*							୯	¢ 6	
		View	ing: All Inst	ances	 All Instance 	Types 💽 Se	arch	\supset			≪ ≪ 1 to	2 of 2 Instan	ces 📏	⊁
	Instances		Name 🖗	Instance	AMI ID	Root Device	Туре	State	Status Checks	Alarm Status	Monitoring	Security	Groups	Ke
	Spot Requests		empty	🍯 i-9ccf74ec	ami-08ba6861	instance store	m1.small	🥚 terminated		none	basic	default		te:
	Reserved Instances		empty	🥃 i-984df6e8	ami-1624987f	ebs	t1.micro	ending	🛣 initializing	none	basic	quicklaun	ich-1	ec
	IMAGES													
	AMIs													
Ξ	Bundle Tasks													
	ELASTIC BLOCK STOI													
	Volumes													
	Snapshots	NO	EC2 Instan	ces selected.									_	_
	NETWORK & SECURI'		Select an ii	nstance above										
	Security Groups													
	Elastic IPs													
	Placement Groups													
	Load Balancers													
	Key Pairs													
Ŧ	Network Interfaces													


Instance IP addresses

- Public IP and DNS
 - Public addresses are reachable from the Internet
- Private IP and DNS
 - Private addresses are only reachable from within the Amazon EC2 network
- Elastic IPs
 - Static IP addresses associated with account, not specific instances
 - If instance using elastic IP fails, this address can be quickly remapped to another instance
 - DNS propagation may take a long time if remapping the name to another IP address

Checking instance IP/DNS

EC2 Dashboard	Laun	ich Insta	nce Actions	5 v							C 🛊 🕻	2
Events	Viewin	g: All Inst	ances	 All Instance 	Types 💌 Sea	arch	\supset			≪ ≪ 1 to	2 of 2 Instances 📏	≽
Instances		Name 👎	Instance	AMI ID	Root Device	Туре	State	Status Checks	Alarm Status	Monitoring	Security Groups	Ke
Spot Requests Reserved Instances		empty	🥃 i-9ccf74ec	ami-08ba6861	instance store	m1.small	🥚 terminated		none	basic	default	te
Reserved instances		empty	🥃 i-984df6e8	ami-1624987f	ebs	t1.micro	running	🥝 2/2 checks p	none	basic	quicklaunch-1	ec
AMIS Bundle Tasks ELASTIC BLOCK STOI Volumes Snapshots	IA EE Bl	oot Devic M Role: 3S Optimi ock Devi etwork Ir ublic DNS	ized: ces: iterfaces:	ebs - false sda1 ec2-23-20-83-139	.compute-1.amaz	onaws.com	Tenancy: Lifecycle:		ault mal			^
 NETWORK & SECURI Security Groups Elastic IPs Placement Groups 	Pr	rivate DN rivate IPs econdary aunch Tim	: Private 1P5:	ip-10-196-102-134 10.196.102.134 2013-01-31 13:58		n hour)	Product Cod	les:				ш
Load Balancers Key Pairs Network Interfaces	St	ate Trans	sition Reason: n Protection:	Disabled	V							

Regions and availability zones

- Regions are located in separate geographic areas (US: Virginia & California, Ireland, Singapore, etc.)
 - Each Region is completely isolated
 - Failure independence and stability
- Availability Zones are distinct locations within a Region
 - Isolated, but connected through low-latency links
 - Failure resilience
- Current pricing: <u>http://aws.amazon.com/ec2/pricing/</u>

Connecting to instances

- Windows instance
 - Connect from your browser using the Java SSH Client
 - Connect using Remote Desktop
- Linux Instance
 - Connect from your browser using the Java SSH Client
 - Putty.exe/putty key generator
 - SSH command on linux machine
 - ssh -i key.pem ec2-user@ec2-23-20-83-139.compute-1.amazonaws.com

Connect to Linux instance

Connect to an instance	Cancel 🗙	🔮 ec2-user@domU-12-31-39-0B-6D-96:~ [80x24]
		File Edit Settings Plugins Tunnels Help
Instance: i-2ae8525a		·
Connect with a standalone SSH Client		
▼ <u>Connect from your browser using the Java SSH Client (Java Required)</u>		
Enter the required information in the fields below to connect to your instance. AWS		MindTerm home: C:\Users\Susan\Application Data\MindTerm\
automatically detects the key pair name, and public DNS for your instance. You need to enter location and name of the .pem file containing your private key.		Initializing random generator, please waitdone Connected to server running SSH-2.0-OpenSSH 5.3
Public DNS ec2-23-20-250-138.compute-1.amazonaws.com		Connected to server Funning 337-2.0-0pen337_3.3
User name: ec2-user		Server's hostkey (ssh-rsa) fingerprint:
Key name: tester1		openssh md5: fc:66:c6:97:30:04:04:a2:d8:c6:90:db:a0:e8:2e:15
Private key path: C:\Users\Susan\Desktop\cs643\tester1.pem		bubblebabble: xelof-fatag-kyrak-gadol-fegek-sumez-fecol-beson-mokuv-vysis-fexax
Example: C:\Users\username\Downloads\tester1.pem Save key location: Stored in browser cache.		Host key not found in 'C:\Users\Susan\Application Data\MindTerm\hostkeys\key_22_ ec2-23-20-250-138.compute-1.amazonaws.com.pub'
Launch SSH Client		_) _ (/ Amazon Linux AMI \
Close		https://aws.amazon.com/amazon-linux-ami/2012.09-release-notes/ There are 3 security update(s) out of 45 total update(s) available Run "sudo yum update" to apply all updates. [ec2-user@domU-12-31-39-0B-6D-96 ~]\$ 1s
		[ec2-user@domU-12-31-39-0B-6D-96 ~]\$

Connect to Windows instance: get administrator password

Console Connect - Remote Desktop Connection

Cancel X

Instance: i-34e55f44 Public DNS: ec2-54-242-92-134.compute-1.amazonaws.com

Log in with your credentials

Log in to your instance with your credentials:

 Public DNS:
 ec2-54-242-92-134.compute-1.amazonaws.com

 Username:
 Administrator

 Password:
 Retrieve Password

 *Click if you do not know your password.

You can download an RDP file for this instance which will launch Remote Desktop Connection and connect to your instance. You will need to note down your password because the Remote Desktop Connection software will open in a new window.

Ownload shortcut file

If you need help configuring your remote desktop software, click here.

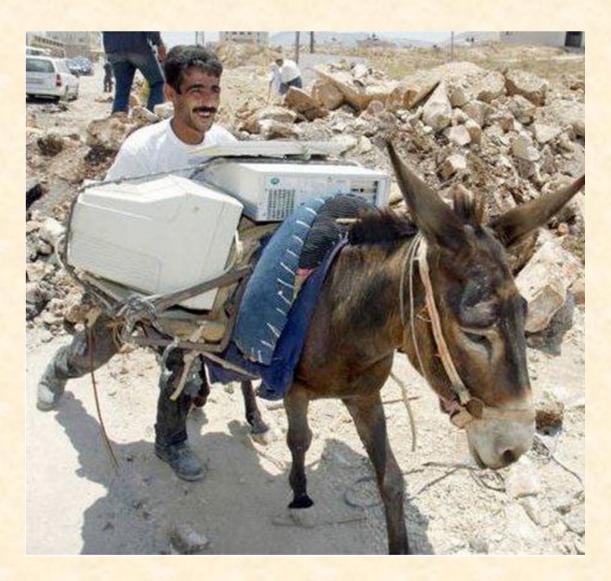
Retrieve Windows Administrator password

Need help configuring your remote access software?

Close

Connect to Windows instance

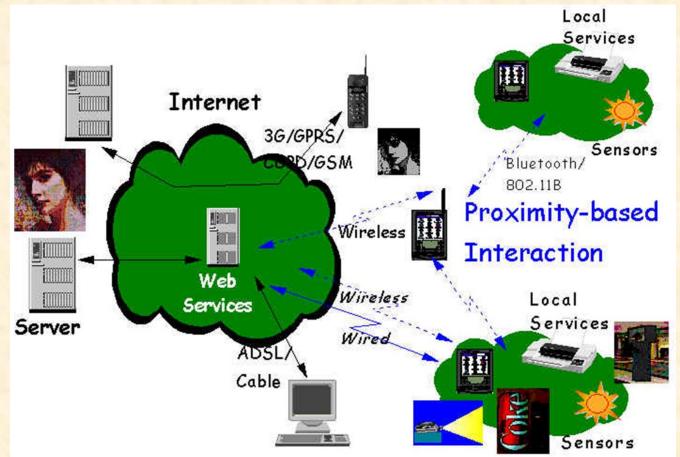
😽 Remote [Desktop Connection
-	Remote Desktop Connection
General D	isplay Local Resources Programs Experience Advanced
- Logon set	tings
	Enter the name of the remote computer.
	Computer: pws-Server2003R2-i386-SqlExpress-v108 -
	User name: administrator
	You will be asked for credentials when you connect.
	Allow me to save credentials
Connectio	n settings
	Save the current connection settings to an RDP file or open a saved connection.
	Save Save As Open
(Options	Connect <u>H</u> elp


• Type in public DNS name of instance

• Use the retrieved administrator password

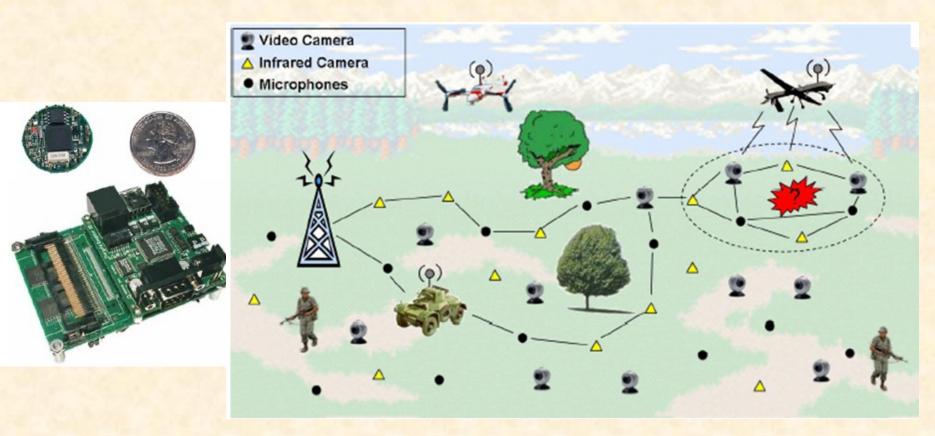
IAM – Identity Access Management

- "AWS Identity and Access Management (IAM) helps to securely control access to AWS resources
- IAM is used to control who can use your AWS resources (*authentication*) and what resources they can use and in what ways (*authorization*)."


Mobile and Ubiquitous Computing

Mobile and Ubiquitous Computing

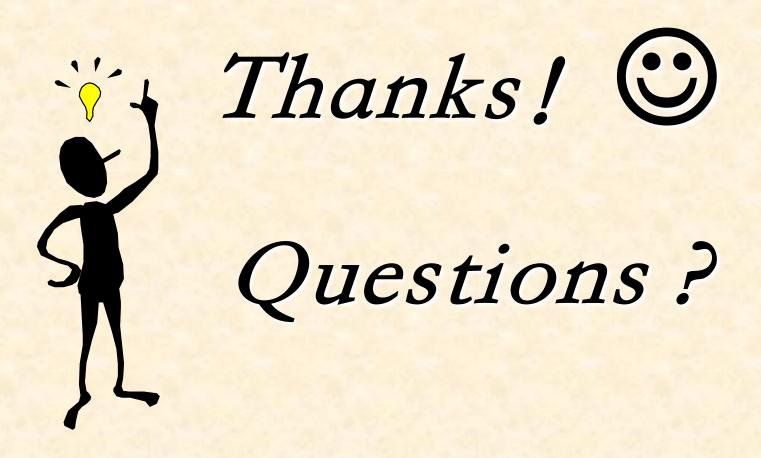
Mobile and Ubiquitous Computing Internet of Things (IoT)



- GPRS: General Packet Radio Service
- WTP: Wireless Transport Protocol
- WAP: Wireless Application Protocol with 2 components: WML and WMLScript
- WML: Wireless Markup Language
- cHTML: Compact HTML
- HDML: Handheld Device Markup Language

Wireless Sensor Networks

Pervasive applications


- Agricultural
- Military
- Industrial

Ongoing Research in Our Big Data Group

Data-intensive computing

- Big data ecosystem
- Al and ML
- Scientific Workflow optimization
 - Mapping, scheduling, modeling
- High-performance networking
 - Bandwidth scheduling
 - Transport control
 - Control plane design
- Distributed sensor networks
 - Deployment, routing, fusion
- Cyber security
 - Monitoring, game theory
- Visualization and image processing

