CS 444: Big Data Systems

Chapter 5. Big Data Computing and Processing

Chase Wu
New Jersey Institute of Technology

Some of the slides were provided through the courtesy of Dr.
Ching-Yung Lin at Columbia University

~ O — 'a[ag_:}

The Apache™ Hadoop® project develops open-source software for reliable, scalable,

distributed computing.

The project includes these modules:

Hadoop Common: The common utilities that support the other Hadoop modules.

Hadoop Distributed File System (HDFS™): A distributed file system that provides high-
throughput access to application data.

Hadoop YARN: A framework for job scheduling and cluster resource management.
Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

http://hadoop.apache.org

Remind -- Hadoop-related Apache Projects

: A web-based tool for provisioning, managing, and monitoring Hadoop
clusters.lIt also provides a dashboard for viewing cluster health and ability to view
MapReduce, Pig and Hive applications visually.

. A data serialization system.

. A scalable multi-master database with no single points of failure.
. A data collection system for managing large distributed systems.

. A scalable, distributed database that supports structured data storage
for large tables.

. A data warehouse infrastructure that provides data summarization and ad
hoc querying.
. A Scalable machine learning and data mining library.

. A high-level data-flow language and execution framework for parallel
computation.

. A fast and general compute engine for Hadoop data. Spark provides a
simple and expressive programming model that supports a wide range of
applications, including ETL, machine learning, stream processing, and graph
computation.

. A generalized data-flow programming framework, built on Hadoop YARN,
which provides a powerful and flexible engine to execute an arbitrary DAG of
tasks to process data for both batch and interactive use-cases.

. A high-performance coordination service for distributed
applications. 3

http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/

Four distinctive layers of Hadoop 1

Distributed Storage [HDFS]

Distributed storage: The Hadoop Distributed File System (HDFS) is the storage layer where the data,
interim results, and final result sets are stored.

Resource management: In addition to disk space, all slave nodes in the Hadoop cluster have CPU
cycles, RAM, and network bandwidth. A system such as Hadoop needs to be able to parcel out these
resources so that multiple applications and users can share the cluster in predictable and tunable ways. This
job is done by the JobTracker daemon.

Processing framework: The MapReduce process flow defines the execution of all applications in
Hadoop 1. As we saw in Chapter 6, this begins with the map phase; continues with aggregation with shuffle,
sort, or merge; and ends with the reduce phase. In Hadoop 1, this is also managed by the JobTracker
daemon, with local execution being managed by TaskTracker daemons running on the slave nodes.

Application Programming Interface (API): Applications developed for Hadoop 1 needed to be coded
using the MapReduce API. In Hadoop 1, the Hive and Pig projects provide programmers with easier
interfaces for writing Hadoop applications, and underneath the hood, their code compiles down to
MapReduce.

Haoop 1 execution

& Y
[Ciiont }‘ b [JobTracker]
(__progresswracking | | |
| feuRtolerance |
~AF ' [resource management |
[TaskTracker } Lo [TaskTracker] [TaskTracker] N\ - f
l iEE l { ﬁ:E } I ag l Master Node
[WspTosk ' : I :
s O e
Slave Node1 ' ' Slave Node 2 . Slave Node n

1. The client application submits an application request to the JobTracker.

2. The JobTracker determines how many processing resources are needed to execute the entire
application.

3. The JobTracker looks at the state of the slave nodes and queues all the map tasks and reduce tasks
for execution.

4. As processing slots become available on the slave nodes, map tasks are deployed to the slave nodes.
Map tasks are assigned to nodes where the same data is stored.

5. The TaskTracker monitors task progress. If failure, the task is restarted on the next available slot.
6. After the map tasks are finished, reduce tasks process the interim results sets from the map tasks.
7. The result set is returned to the client application.

Limitation of Hadoop 1

« MapReduce is a successful batch-oriented programming model.

« A glass ceiling in terms of wider use:

— Exclusive tie to MapReduce, which means it could be used only for batch-style
workloads and for general-purpose analysis.

« Triggered demands for additional processing modes:
— Stream data processing (Storm)
— Message passing (MPI)
— Graph analysis

=» Demand is growing for real-time and ad-hoc analysis

=» Analysts ask many smaller questions against subsets of data
and need a near-instant response.

=» Some analysts are more used to SQL & Relational databases

YARN was created to move beyond the limitation
of a Hadoop 1 / MapReduce world.

YARN: Resource Management to Support Parallel Computing

* YARN - Yet Another Resource Negotiator

— Aresource management tool that enables the other parallel processing frameworks to
run on Hadoop.

— A general-purpose resource management facility that can schedule and assign CPU
cycles and memory (and in the future, other resources, such as network bandwidth)

from the Hadoop cluster to waiting applications.

=» Starting from Hadoop 2, YARN has converted Hadoop from simply a batch
processing engine into a platform for many different modes of data

processing
* From traditional batch to interactive queries to streaming analysis.

Hadoop 2 Data Processing Architecture

Toz

_YARN'’s application execution

- (B G
[Client { 4 .. | Resource Manager | |
J [hedhng]
'] | resosrce masagement | '
\ v/
- y |
E . - Job History Server | |
: \ J :
(Nodo Manager] ; [Node Manager} [Node Manager] i
Rpphcaton master }——ip{ Conmtmoer | Contaner] | Master Node :
[Cortainer Contaner | Containes] SR T
Containgr (IQBQEwuu A
f ASPi aT0n ;g ster
Cortaingr Container
Slave Node 1 Slave Node2 '@ - Siave Node n

* The client submits an application to the Resource Manager.

. Tth?tResource Manager asks a Node Manager to create an Application Master Instance (AMI) and
starts up.

« Application Master initializes itself and register with the Resource Manager
« Application Master figures out how many resources are needed to execute the application.

« Application Master then requests the necessary resources from the Resource Manager. It sends
heartbeat message to the Resource Manager throughout its lifetime.

« The Resource Manager accepts the request and queue up.

« As the requested resources become available on the slave nodes, the Resource Manager grants the
Application Master leases for containers on specific slave nodes.

* = only need to decide on how much memory tasks can have.

MapReduce WordCount revisit

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

http://www.alex-hanna.com

10

MapReduce Data Flow (Hadoop 1)

Client — Job
M1
Assign task trackers
Task Coordinate map and reduce phases
map() tracker Provide iob progress b
InputFormat i
/ R1 DFS
SE Spiitt Sombine() || Regiont |1—— wacker || 0
_ul.__‘l“ :: Region2 o)
Input -
| e | i
M2
Task tr:?er
tracker / Sort
' DFS
- Read| |reduce() | [Gupu
1 / file 2
tT&Sk Region1 Outputl f
Region2

Map phase Reduce phase
http://www.ibm.com/developerworks/cloud/library/cl-openstack-deployhadoop/
11

Spark

Fast, Interactive, Language-Integrated
Cluster Computing

Download source release:
www.spark-project.org

12

Spark Goals

Extend the MapReduce model to better support
two common classes of analytics applications:
« lterative algorithms (machine learning, graphs)
« Interactive data mining (user query)

Enhance programmability:
* Integrate into Scala programming language
« Allow interactive use from Scala interpreter

13

Motivation

Most current cluster programming models
are based on acyclic data flow from stable
storage to stable storage

i Reduce
Input — Output

< Reduce

14

Motivation

Most current cluster programming models are based
on acyclic data flow from stable storage to stable

storage

I I

4 . : : T
Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures

| [

15

Motivation

Acyclic data flow is inefficient for applications that
repeatedly reuse a working set of data:

« lterative algorithms (machine learning, graphs)
* Interactive data mining tools (R, Excel, Python)

With current frameworks, applications must reload
data from stable storage on each query, which is
time consuming!

16

Solution:

Resilient Distributed Datasets (RDDs)

« Allow apps to keep working sets in memory for
efficient reuse

« Retain the attractive properties of MapReduce
« Fault tolerance, data locality, scalability

« Support a wide range of applications

17

Programming Model

Two stages: transformations followed by actions
« Core structure: Resilient distributed datasets (RDDs)
« Immutable, partitioned collections of objects

« Created through parallel transformations (map,
filter, groupBYy, join, ...) on data in stable storage

« (Can be cached for efficient reuse
* Perform multiple various Actions on RDDs
« Count, reduce, collect, save, ...

Note that

« Before Spark 2.0, the main programming interface of Spark was the
Resilient Distributed Dataset (RDD)

« After Spark 2.0, RDDs are replaced by Dataset
« Strongly-typed like a RDD, but with richer optimizations
« The RDD interface is still supported

18

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

Scala

Tines = spark.textFile(“hdfs://...”)
errors = lines. (

messages = errors. (

cachedMsgs = messages. @)

cachedMsgs.
cachedMsgs.

Result: scaled to 1 TB data in 5-7 sec

(vs 170 sec for on-disk data) Block 3
. J S [P

19

RDD Fault Tolerance

RDDs maintain /ineage information that can be used to reconstruct
lost partitions

EXx:

messages = textFile(...).

[HDFS File } {Filtered RDD} {Mapped RDDJ

filter map

(func = _.contains(...)) (func = _.split(...))

20

Example: Logistic Regression

Goal: find the best line separating two sets of points

The found line can be used to classify new points.

21

Example: Logistic Regression

Scala

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>
1/ (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)

22

Logistic Regression Performance

4500
si
£ 3000 /
= 2500
5000 : Hadoop
E 1500 Spark
é 1000

500 first iteration 174 s
0 - further iterations 6 s

5 10 20
Number of Iterations

23

Spark Applications

In-memory data mining on Hive data (Conviva)
Predictive analytics (Quantifind)

City traffic prediction (Mobile Millennium)
Twitter spam classification (Monarch)
Collaborative filtering via matrix factorization

24

Data Processing Frameworks Built on Spark

Pregel on Spark (Bagel)
Google message passing model for graph computation
200 lines of code

Hive on Spark (Shark)

3000 lines of code
Compatible with Apache Hive
ML operators in Scala

25

Implementation

Runs on Apache
Mesos to share
resources with

Hadoop & other apps
Can read from any

Hadoop input source
(e.g. HDFS)

No changes to Scala
compiler

. Mesos

26

Spark Scheduler

* Dryad-like DAGs

* Pipelines functions
within a stage

 Cache-aware work
reuse & locality

e Partitioning-aware
to avoid shuffles

W = cached data partition

27

Interactive Spark

Modified Scala interpreter to allow Spark to be
used interactively from the command line

Required two changes:

* Modified wrapper code generation so that
each line typed has references to objects for
its dependencies

 Distribute generated classes over the network

28

Spark Operations

map flatl\/lap
filter union
Transformations L
define a new sample Jomn
(RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey

29

Apache Tez

The Apache TEZ® project is aimed at building an application framework
which allows for a complex directed-acyclic-graph (DAG) of tasks for
processing data. It is currently built atop

Hadoop 1 Hadoop 2 w/ 28
+ Silos & Largely batch * Multiple Engines, Single Data Set
» Single Processing engine * Batch, Interactive & Real-Time

Script sQL | Java Engines = Others Others

Cascading HBase Engines ISV
Accumulo, Engines

Storm, Solr,
Spare

Script SQL Real-time Others

Pig Hive HBase Storm,
Solr, etc.
MapReduce YARN: Data Operating System
(Cluster Resource Management & Data Processing) (Cluster Resource Management)
HDFS HDFS
(Hadoop Distributed File System) (Hadoop Distributed File System)

s

30

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Tez’s characteristics

Dataflow graph with
vertices to express,
model, and execute
data processing logic
Performance via
Dynamic Graph
Reconfiguration

Flexible Input-
Processor-Output task
model

Optimal Resource
Management

31

By allowing projects like Apache Hive and Apache Pig to run
a complex DAG of tasks, Tez can be used to process data,
that earlier took multiple MR jobs, now in a single Tez job as

shown below.

Pig/MHive - Tez

Pig/Hive - MR

32

Apache Storm

Stream Processing
-- On Hadoop, you run MapReduce jobs; On Storm, you run Topologies.
-- Two kinds of nodes on a Storm cluster:

-- the master node runs “Nimbus”

-- the worker nodes called the Supervisor.

-

/\ O\

w
@
w

How Storm processes data?

e Tuples— an ordered list of elements. For example, a “4-tuple” might be (7, 1, 3,

7)

e Streams — an unbounded sequence of tuples.

e Spouts —sources of streams in a computation (e.g. a Twitter API)

e Bolts — process input streams and produce output streams. They can: run
functions; filter, aggregate, or join data; or talk to databases.

e Topologies — the overall calculation, represented visually as a network of
spouts and bolts (as in the following diagram)

-
=

34

Storm’s Goals and Plans

Initiative Goals

Streams in HDP

Bringing stream data
processing to
enterprise Apache
Hadoop and
Hortonworks Data
Platform.

Storm on YARN

Use the YARN
Hadoop operating
system to allow
multiple workloads to
be applied to Hadoop
data simutaneously.

Enterprise
Readiness

Bring baseline high
availability,
management,
authentication and
advanced scheduling
to Storm.

Phase 1

Delivered

» Manage & Monitor via Am| Sto 1, 0.9.1

o Kafka, HBase & HDFS
Connectors
* Windows Support

Phase 2

¢ Storm-on-YARN

RDBMS’

User Authorization for
Topologies

(HDP 2.1)

Ingest & Notification for JMS
Data Persistance: EDWs &

Kerberos Support for Nimbus

« Hive Connector for Hive Table

Updates

Phase 3

e Nimbus HA Management &

Setup w/ Ambari
e Advanced Scheduler
e Ambari for Topology

Management & Monitoring

o Simplified topology
development

35

Oozie Workflow Scheduler for Hadoop

« Oozie supports a wide range of job types, including Pig, Hive, and MapReduce, as well
as jobs coming from Java programs and Shell scripts.

k 00 Z=NNE
Corporate networ <workflow-app name="SampleWorkflow

""""""f{_ S G R S S ey xmlns="uri:oozie:workflow:0.1">

§ | <start to="firstJob" />

. @ E i <action name="firstJob">

g E § <pig>...</pig>

[— E § e] <ok to="se::o.n<"1Job"/ >

5 ¢ (NameNode) <error to="kill"/>

E E ; MapReduce } </action>

' i e <action name="secondJob">

Edge node ' : Master nodes <map-reduce>...</map-reduce>
<ok to="end" />
<error to="kill" />

</action>

<end name="end"/>

<kill name="kill">

secondJob <message>"Killed job."</message>

firstlob (MapReduce) </kill>

< /workflow-app>

Sample Oozie XML file

36

Action and Control Nodes

% VN <workflow-app name="foo-wf"..
‘«‘ \ [] ‘,f 1 <start to="[NODE-NAME]"/>
v/ \ V <map-reduce>
\ </map-reduce>
. <kill name="[NODE-NAME]">
Action <message>Error occurred</message
PN </kill>
Control NOde.\) , <end name="[NODE-NAME]"/>
U </workflow-app>
« Control Flow L
« Workflows begin with START node

— start, end, kill

Workflows succeed with END node

— decision
~ fork, join « Workflows fail with KILL node

. Actions - Several actions support JSP Expression Language
— MapReduce (EL)
— Java
- I;i_g * Oozie Coordination Engine can trigger workflows by
— H1ve

— Time (Periodically)

— HDFS commands — Data Availability (Data appears in a directory)

37

Schedule Workflow by Time

<coordinator-app name="sampleCoordinator"
frequency="${coord:days(1)}"
start="2014-06-01T00:01Z "
end="2014-06-01T01:00Z "
timezone="UTC"
xmlns="uri:oozie:coordinator:0.1">

<controls>...</controls>
<action>

<workflow>
<app-path>${workflowAppPath}</app-path>
< /workflow>
</action>
</coordinator-app>

38

Schedule Workflow by Time and Data Availability

<coordinator-app name="sampleCoordinator"
frequency="${coord:days(1)}"
start="${startTime}"
end="${endTime}"
timezone="${timeZoneDef}"
xmlns="uri:oozie:coordinator:0.1">
<controls>...</controls>
<datasets>

<dataset name="input" frequency="%{coord:days(1)}" initial-instance="${startTime}" timezone="3${timeZoneDef}">

<uri-template> ${triggerDatasetDir}</uri-template>
</dataset>
</datasets>
<input-events>
<data-in name="sampleInput” dataset="input">
<instance>${startTime}</instance>
</data-in>
</input-events>
<action>

<workflow>
<app-path>${workflowAppPath}</app-path>
< /workflow>
</action>
</coordinator-app>

39

* $ mkdir <OOZIE_HOME>/libext

 Download ExtJS and place under

<OOZIE_HOME>/libext

— ext-2.2.zip

Place Hadoop libs under libext

— $ ¢d <OOZIE _HOME>

— $ tar xvf oozie-hadooplibs-3.1.3-cdh4.0.0.tar.gz

— $ cp oozie-3.1.3-cdh4.0.0/hadooplibs/hadooplib-2.0.0- cdh4.0.0/* jar libext/

Configure Oozie with components under libext
— $ bin/oozie-setup.sh

Create environment variable for default url
— export OOZIE URL=http://localhost:11000/00zie

— This allows you to use $0ozie command without providing url

Update oozie-site.xml to point to Hadoop configuration

<property>
<name>oozie.service.HadoopAccessorService.hadoop.configurations</name>
<value>*=/home/hadoop/Training/CDH4/hadoop-2.0.0-cdh4.0.0/conf</value>
</property>

» Setup Oozie database
— $./bin/ooziedb.sh create -sqlfile oozie.sql -run DB Connection.

40

‘Update core-site.xml to allow Oozie become “hadoop” and for that user to connect
from any host

<property>

<name>hadoop.proxyuser.hadoop.groups</name>

<value>*</value>

<description>Allow the superuser oozie to impersonate any members of the group groupl and
group2</description>

</property>

<property>

<name>hadoop.proxyuser.hadoop.hosts</name>

<value>*</value>

<description>The superuser can connect only from hostl and host2 to impersonate a
user</description>

</property>

41

Start Oozie

$ oozie-start.sh

Setting OOZIE_HOME: /home/hadoop/Training/CDH4/o0ozie-3.1.3-cdh4.0.0

Setting OOZIE_CONFIG: /home/hadoop/Training/CDH4/o0ozie-3.1.3-cdh4.0.0/conf

Sourcing: /home/hadoop/Training/CDH4/oozie-3.1.3-cdh4.0.0/conf/oozie-env.sh
setting OOZIE_LOG=/home/hadoop/Training/logs/oozie

setting CATALINA_PID=/home/hadoop/Training/hadoop_work/pids/oozie.pid

Setting OOZIE_CONFIG_FILE: oozie-site.xml

Setting OOZIE_DATA: /home/hadoop/Training/CDH4/oozie-3.1.3-cdh4.0.0/data Using
OOZIE_LOG: /home/hadoop/Training/logs/oozie

Setting OOZIE_LOG4J_FILE: oozie-log4j.properties Setting OOZIE_LOG4J_RELOAD:
10

Setting OOZIE_HTTP_HOSTNAME: localhost Setting OOZIE_HTTP_PORT: 11000

Setting OOZIE_ADMIN_PORT: 11001

v oozie admin -status http://localhost: 11000/00zie/
System mode: NORMAL -

£ © ® Oozie Web Console - Mozilla Firefox

« v 2Y G | hitp/focalhost:11000/c0ziensia!

[Most Visited v [ggResources v

[3 Oozie Web Console o
©OGEE Documentation [}
Oozie Web Console

Workflow Jobs | Coordimator Jobs | Bundie Jobs | Systeminfo | Instrumentation

@& AlJobs Actve Jobs Done Jobs Custom Fiter v Status - Normal [3.1.3-cdh4.0.0)

Job Id Name Status Run User Group Created Started Last Modited

1 0000026-12062320072322200zic- mostseendetier SUCCEEDE 0 hadoop Sun, 24 Jun 2012 04:31:58 GM Sun, 24 Jun 2012 04:31:58 GM Sun, 24 Jun 2012 04:32:51 C
2 0000025-120623200723222-00zie- mostseendetier SUCCEEDE 0 hadoop Sun, 24 Jun 2012 04:23:32 GM Sun, 24 Jun 2012 04:23:32 GM Sun, 24 Jun 2012 04:24:27
3| 0000024-120623200723222-00zie- mostseendetter KILLED 0 hadoop Sun, 24 Jun 2012 04:20:32 GM Sun, 24 Jun 2012 04:20:32 GM Sun, 24 Jun 2012 04:20:45 C
4 0000023-120623200723222-00zie- mostseendetter KILLED 0 hadoop Sun, 24 Jun 2012 04:17:42 GM Sun, 24 Jun 2012 04:17:42 GM Sun, 24 Jun 2012 04:17:55
5 0000022-120623200723222-00z%e- mostseendetier SUCCEEDE 0 hadoop Sun, 24 Jun 2012 04:12:05 GM Sun, 24 Jun 2012 04:12:05 GM Sun, 24 Jun 2012 04:13.01 €
6 0000021.120623200723222-00z%¢- mostseendetter KILLED 0 hadoop Sun, 24 Jun 2012 04:04:29 GM Sun, 24 Jun 2012 04:04:29 GM Sun, 24 Jun 2012 04:05:44 €
7 0000020-120623200723222-00zie- mostseendetier SUCCEEDE 0 hadoop Sun, 24 Jun 2012 03:17:13 GM Sun, 24 Jun 2012 03:17:13 GM Sun, 24 Jun 2012 03:17:44 €
8 0000019-120623200723222- 002« mostseendetter KILLED [hadoop Sun, 24 Jun 2012 03:12:14 GM Sun, 24 Jun 2012 03:12:14 GM Sun, 24 Jun 2012 03:12:55 C
9 0000018-120623200723222.00zie- mostseendetter KILLED O hadoop Sun, 24 Jun 2012 03:09:11 GM Sun, 24 Jun 2012 03:09:11 GM Sun, 24 Jun 2012 03:09:49
0 0000017-120623200723222.00zie- mostseendetter SUCCEEDE 0 hadoop Sun, 24 Jun 2012 03:05:51 GM Sun, 24 Jun 2012 03:05:51 GM Sun, 24 Jun 2012 03:06:22

11 0000016-120623200723222-00zie- mostseendetter KILLED O hadoop Sun, 24 Jun 2012 03:02:14 GM Sun, 24 Jun 2012 03:02:14 GM Sun, 24 Jun 2012 03:02:53 C

12 0000015-120623200723222.00zie- mostseendetier KILLED 0 hadoop Sun, 24 Jun 2012 02:58:26 GM Sun, 24 Jun 2012 02:58:26 GM Sun, 24 Jun 2012 02:59:15 €

13 0000014-120623200723222-00zie- mostseendetter KILLED 0 hadoop Sun, 24 Jun 2012 02:56:39 GM Sun, 24 Jun 2012 02:56:39 GM Sun, 24 Jun 2012 02:57:18 C

14 0000013-12062320072322200zie mostseendetier KILLED 0 hadoop Sun, 24 Jun 2012 02:52:49 GM Sun, 24 Jun 2012 02:52:49 GM Sun, 24 Jun 2012 02:53:27 C

Extract examples packaged with Oozie
— $ cd SOOZIE HOME
— § tar xvf oozie-examples.tar.gz

Copy examples to HDFS from user’s home directory
— $ hdfs dfs -put examples examples

Run an example
— $ oozie job -config examples/apps/map-reduce/job.properties - run

Check Web Console
— http://localhost:11000/00zie/

43

An example workflow

/ o,
|
START .| Count Each Letter OK | Find Max Letter OK Clean U
t MapReduce MapReduce J : P
m P - v‘
% e S S
& &
A P

“Vapreace | - Action Node

- Control Flow Node

- Control Node

This source is in HadoopSamples

project under
/src/main/resources/mr/workflows

44

Workflow definition

<workflow-app xmlns="uri:ocozie:workflow:0.2" name="most-seen-letter">
<start to="count-each-letter"/>
<action name="count-each-letter"> START Action Node
<maP‘?egu§e> Korsg (fobTracker)</ on-track to count-each-letter
<job-tracker>${jobTracker}</job-tracker> .
<name-node>$ {nameNode } </name-node> MapReduce action
<prepare>
<delete path="${nameNode}${outputDir}"/>
<delete path="${nameNode}S${intermediateDir}"/>

MapReduce

. </prepare> .
have optional £ v ations Pass property that will be
Prepare - set on MapReduce job’ s
section <property> Configuration object

<name>mapreduce.job.map.class</name>
<value>mr.wordcount.StartsWithCountMapper</value>
</property>

</configuration>

</map-reduce> | f o th
<ok to="find-max-letter"/> n case of success, go to the

<error to="fail"/> next job; in case of failure, go to
</action> fail node

45

Package and Run Your Workflow

1. Create application directory structure with
workflow definitions and resources
— Workflow.xml, jars, etc..

2. Copy application directory to HDFS

3. Create application configuration file
— specify location of the application directory on HDFS
— specify location of the namenode and resource manager
4. Submit workflow to Oozie
— Utilize oozie command line
5. Monitor running workflow(s)
 Two options

— Command line ($oozie)
— Web Interface (http://localhost:11000/00zi¢)

mostSeenletter-ocoozieWorkflow

|--1ib/

Oozie Application |
DireCtory | -——workflow.xml

Application

| -—HadoopSamples.jar Workflow Root

¢ MUSt COmply tO direCtory Libraries should be placed under lib directory

structure spec

Workflow.xml defines workflow

Public datasets available from Statistical Computing

Bi-Annual Data Exposition

Every other year, at the Joint Statistical Meetings, the Graphics Section and the Computing
Section join in sponsoring a special Poster Session called The Data Exposition , but more
commonly known as The Data Expo. All of the papers presented in this Poster Session are
reports of analyses of a common data set provided for the occasion. In addition, all papers
presented in the session are encouraged to report the use of graphical methods employed
during the development of their analysis and to use graphics to convey their findings.

Data sets
e 2013: Soul of the Community
e 2011: Deepwater horizon oil spill
e 2009: Airline on time data
e 2006: NASA meteorological data. Electronic copy of entries
e 1997: Hospital Report Cards
e 1995: U.S. Colleges and Universities

e 1993: Oscillator time series & Breakfast Cereals

e 1991: Disease Data for Public Health Surveillance

e 1990: King Crab Data

* 1988: Baseball http://stat-computing.org/dataexpo/
e 1986: Geometric Features of Pollen Grains

e 1983: Automobiles 47

Airline On-time Performance Dataset

Data Source: Airline On-time Performance data set (flight
data set).

— All the logs of domestic flights from the period of
October 1987 to April 2008.

— Each record represents an individual flight where
various details are captured:

« Time and date of arrival and departure
 Originating and destination airports

« Amount of time taken to taxi from the runway to the
gate.

— Download it from:

I i i i

)

1987.csv.bz2
Unknown - 12.1 MB
Published Oct 6, 2008
643,212 Downloads
MD5: e5c...34e ¥

1988.csv.bz2
Unknown - 47.2 MB
Published Oct 6, 2008
7,901 Downloads
MDS5: Obe...a9¢c 8

1989.csv.bz2
Unknown - 46.9 MB
Published Oct 6, 2008
7,469 Downloads
MD5: 614...7fc &

2. Data

1990.csv.bz2
Unknown - 49.6 MB
Published Oct 6, 2008
7,180 Downloads
MD5: cbd...392 8

1991.csv.bz2
Unknown - 47.6 MB
Published Oct 6, 2008
6,831 Downloads
MD5: 854...cff ¥

1009 Ao =N

48

http://stat-computing.org/dataexpo/2009/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HG7NV7
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HG7NV7

Flight Data Schema

Name Description
1 Year 1987-2008
2 Month 1-12
3 DayofMonth 1-31
4 DayOfWeek 1 (Monday) - 7 (Sunday) 17 Origin origin |ATA airport code
5 DepTime actual departure time (local, hhmm) 18 Dest destination |ATA airport code
6 CRSDepTime scheduled departure time (local, hhmm) 19 Distance in miles
rrTime actual arrival time (local, hhmm 20 Taxiln taxi in time, in minutes

SArrTime scheduled arrival time (local, hhm#r 21 TaxiOut taxi out time in minutes
9 UniqueCarrier unique carrier code 22 Cancelled was the flight cancelled?
10 FlightNum flight number reason for cancellation
11 TailNum plane tail number 24 Diverted 1=vyes,0=no
12 ActualElapsedTime in minutes 25 CarrierDelay in minutes
13 CRSElapsedTime in minutes 26 WeatherDelay in minutes
14 AirTime in minutes 27 NASDelay in minutes
15 ArrDelay arrival delay, in minutes 28 SecurityDelay in minutes
16 DepDelay departure delay, in minutes 29 LateAircraftDelay in minutes

49

MapReduce Use Case Example — flight data

Problem: count the number of flights for each carrier

Solution using a serial approach (not MapReduce):

Listing 6-1: Pseudocode for Calculating The Number of Flights By
Carrier Serially

create a two-dimensional array

create a row for every airline carrier
populate the first column with the carrier code
populate the second column with the integer zero

for each line of flight data
read the airline carrier code
find the row in the array that matches the carrier code
increment the counter in the second column by one

print the totals for each row in the two-dimensional array

50

MapReduce Use Case Example — flight data

Problem: count the number of flights for each carrier
Solution using MapReduce (parallel way):

Listing 6-2: Pesudocode for Calculating The Number of Flights By
Carrier in Parallel

Map Phase:
for each line of flight data
read the current record and extract the airline carrier code
output the airline carrier code and the number one as a key/value pair

Shuffle and Sort Phase:
read the list of key/value pairs from the map phase
group all the values for each key together
each key has a corresponding array of values
sort the data by key
output each key and its array of values

Reduce Phase:
read the list of carriers and arrays of values from the shuffle and sort phase
for each carrier code
add the total number of ones in the carrier code's array of values together

print the totals for each row in the two-dimensional array

51

UMD TR0 AET S48 P 185 NATE PANA, -2, 1 SANCSFO 64T
.npm ﬁl. PR ETTRII0I0 MRS 1S T NASE PINA M- 1 SANSIO M

FT002,107, 100 1400 1445, 12,00 ASENA 10 1 KINA, L.0.000 £
flight-data.csv

MapReduce steps for Ingut splits 1
calculated

flight data computation [m B T A AN O

N0 VS0 000 B PSS NASE PR NA L -0 SANCSFO 84T,)
140 mmrwmmmmnmo.w

X
X

= Y

Mapper function (K1, V1)

Map Phase —<
listlK2, V2)

3
1

~—~——
po—

AL
Shuffle and Sort — K2, List{v2)| 45 B

OWN, [L101D
Reducer function (K2, list{V2))

V

(AA, 165121)
list(K3, v3) | As.21e
(WN, 5197%)

AA, 165121] map: (K1, V1) —> list(K2, V2)

Final output [‘_‘* e reduce: (K2, list(V2)) — list(K3, V3)
WK, 61975 52

Mapper output is
sorted and partitioned

Reduce Phase =<

FlightsByCarrier application

Create FlightsByCarrier.java:

Listing 6-3: The FlightsByCarrier Driver Application

@@1
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;

import org.apache. hadoop.mapreduce.lib.input. TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class FlightsByCarrier {

public static void main(String[] args) throws Exception

@@z
Job job = new Job();
job.setJarByClass(FlightsByCarrier.class);

job.setJobName("FlightsByCarrier");

list(K2, V2)

7S,
PS,

0.1
0,1

=0
Ea
B o
Map Phase
1

Mapper output is

Shuffle and Sort 1o
sorted and partitioned

Reduce Phase

map: (K1, V1) — list(K2, V2)

Final output | AS- 21408 reduce: (K2, list{V2)) — list(K3, V3)

53

FlightsByCarrier application

@@3
TextInputFormat.addInputPath(job, new Path(args[0]));

job.setInputFormatClass(TextInputFormat.class);

@@4
job.setMapperClass(FlightsByCarrierMapper.class);

job.setReducerClass(FlightsByCarrierReducer.class);

@@5
TextOutputFormat.setOutputPath(job, new Path(args[1]));

job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

@@6
job.waitForCompletion(true);

h

I THIACT S PSS NATLTANA, -2, SAN S50 87
I ZATIOICNM PS8 NASTANA M- SAN SO 407

91002107, M0 VAN 14 HED.C0 AN, 1A TIINA, 0.0.000 £WR.
flight-data.csv

Input file

Input splits

000, 20113810261 TISIDAANPS. 1481 NASI HANAZS 1 SAN SO0,)
095 . 291198.55,0 77710903 4LV, 1451 NASA ZANA 1. -1 SANCSFO4T,)
=) LTI 005 PANAZ 1 SAN “

2
BRI SA0PS. 105 NAS TANAZS AN 0400,)

Map Phase

PS.1
listtk2,v2) | B
c0.1

Mapper output is

Shuffle and Sort 1S
sorted and partitioned

4

Reduce Phase
AA, 168121 map: (K1, V1) —> list(K2, V2)
Final output | AS- 2148 reduce: (K2, list{V2)) — list(K3, V3)
W, 61975

54

FlightsByCarrier Mapper

Listing 6-4: The FlightsByCarrier Mapper Code

@@1
import java.io.IOException;
import au.com.bytecode.opencsv.CSVParser;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;

@@2
public class FlightsByCarrierMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {
@Override
@@3
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
@@4
if (key.get() > 0) {
String[] lines = new
CSVParser().parseLine(value.toString());

@@5
context.write(new Text(lines[8]), new IntWritable(1));

¥

Map Phase —

Shuffle and Sort r output is
sorted and partitioned

Reduce Phase —

map: (K1, V1) —> list(K2, V2)
reduce: (K2, list{V2)) — list(K3, V3)

55

FlightsByCarrier Reducer

Listing 6-5: The FlightsByCarrier Reducer Code

i [)
import java.io.IOException;
import org.apache.hadoop.io.*; EEE
import org.apache.hadoop.mapreduce.Reducer; - !
—Mlppm function (K1, V1)
Map Phase — '
@@2 L !
public class FlightsByCarrierReducer extends smmm,sm{ ——
sorted and partitione:
Reducer<Text, IntWritable, Text, IntWritable> { - |
:
@ Ovel'rlde Reduce Phase —
@ @3 list(K3, V3)
protected void reduce(Text token, Iterable<IntWritable> counts, _ h a1, V) > 10212
Final output | AS- 21405 reduce: (K2, list{V2)) —- list(K3, V3)

Context context) throws IOException, Interrupted Exception {
int sum = 0;

@@4

for (IntWritable count : counts) {
sum+= count.get();

)
@@5

context.write(token, new IntWritable(sum));

56

Run the code

To run the FlightsByCarrier application, follow these steps:

Go to the directory with your Java code and compile it using the

following command:
javac -classpath SCLASSPATH MapRed/FlightsByCarrier/*.java

Build a JAR file for the application by using this command:
jar evf FlightsByCarrier.jar *.class

Run the driver application by using this command:
hadoop jar FlightsByCarrier.jar FlightsByCarrier /user/root/airline-data/2008.csv /user/root/output/flightsCount

57

See Result

Show the job’s output file from HDFS by running the

command
hadoop fs -cat /user/root/output/flightsCount/part-r-ooooo

You see the total counts of all flights completed for each of the carriers in 2008:

AA 165121
AS 21406
CO 123002
DL 185813
EA 108776
HP 45399
NW 108273
PA (1) 16785
PI 116482
PS 41706
™ 69650
UA 152624
US 04814
WN 61975

58

Using Pig Script for fast application development

* Problem: calculate the total miles flown for all flights flown in one year
« How much work is needed using MapReduce?
* What if we use Pig?
« totalmiles.pig
records = LOAD '2013_subset.csv' USING PigStorage(',") AS
(Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,\
CRSArrTime,UniqueCarrier,FlightNum, TailNum, Actual ElapsedTime,\
CRSElapsedTime,AirTime ArrDelay, DepDelay,Origin,Dest,\
Distance:int, Taxiln, TaxiOut,Cancelled,CancellationCode,\
Diverted,CarrierDelay, WeatherDelay, NASDelay,SecurityDelay,\
LateAircraftDelay);
milage_recs = GROUP records ALL;
tot_miles = FOREACH milage_recs GENERATE SUM(records.Distance);

STORE tot_miles INTO /user/root/totalmiles;

e Execute it: pig totalmiles.pig
* See result: hdfs dfs —cat /user/root/totalmiles/part-r-00000

=>» 775009272
59

Pig: a data flow language

Pig L Pig Latin Compiler] ;
Processing Framework rMapReduce VZJL Tez &) |

L J |
it B e e e e] MapReduce v1 ‘
Resource Management i YARN ks)
Distributed Storage g HOFS J '

At its core, Pig Latin is a dataflow language, where you define a data stream and a series of transformations that
are applied to the data as it flows through your application. This is in contrast to a control flow language (like C or
Java), where you write a series of instructions. In control flow languages, we use constructs like loops and
conditional logic (like an if statement). You won't find loops and if statements in Pig Latin.
Data flow language
* Define a data stream
e Typically using “LOAD ...”
* Apply a series of transformations to the data
* FILTER, GROUP, COUNT, DUMP, etc. -

Pig example for WordCount

input lines = LOAD '/tmp/my-copy-of-all-pages-on-internet' AS (line:chararray):

-— Extract words from each line and put them into a pig bag
-— datatype, then flatten the bag to get one word on each row
words = FOREACH input lines GENERATE FLATTEN (TOKENIZE (line)) AS word;

-— filter out any words that are just white spaces
filtered words = FILTER words BY word MATCHES '\\w+';

-— create a group for each word
word groups = GROUP filtered words BY word;

-— count the entries in each group
word count = FOREACH word groups GENERATE COUNT (filtered words) AS count, group AS word;

—-— order the records by count

ordered word count = ORDER word count BY count DESC;
STORE ordered word count INTO '/tmp/number-of-words-on-internet';

61

Characteristics of Pig

Most Pig scripts start with the LOAD statement to read data from
HDFS. In this case, we're loading data from a .csv file. Pig has a data model it
uses, so next we need to map the file’s data model to the Pig data mode. This
is accomplished with the help of the USING statement. (More on the Pig data
model in the next section.) We then specify that it is a comma-delimited file
with the PigStorage(',") statement followed by the AS statement defining the
name of each of the columns.

Aggregations are commonly used in Pig to summarize data sets.
The GROUP statement is used to aggregate the records into a single record
mileage recs. The ALL statement is used to aggregate all tuples into a single
group. Note that some statements — including the following SUM statement
— requires a preceding GROUP ALL statement for global sums.

FOREACH ... GENERATE statements are used here to transform
columns data. In this case, we want to count the miles traveled in the
records_ Distance column. The SUM statement computes the sum of the
record_ Distance column into a single-column collection total miles.

The DUMP operator is used to execute the Pig Latin statement and
display the results on the screen.DUMP is used in interactive mode,
which means that the statements are executable immediately and the results
are not saved. Typically, you will either use the DUMP or STORE operators at
the end of your Pig script.

62

In comparison to SQL, Pig

1. uses ;

2. uses (Extract-Transform-Load),

3. is able to store data at any point during a ,
4. declares execution plans,

5. supports pipeline splits.

On the other hand, it has been argued are substantially faster than the MapReduce
system once the data is loaded, but that loading the data takes considerably longer in the
database systems. It has also been argued offer out of the box support for
column-storage, working with compressed data, indexes for efficient random data
access, and transaction-level fault tolerance.

Pig Latin is and fits very naturally in the pipeline paradigm while SQL is instead

. In SQL users can specify that data from two tables must be joined, but not

what join implementation to use. Pig Latin allows users to specify an implementation or
aspects of an implementation to be used in executing a script in several ways.

Pig Latin programming is similar to specifying a query execution plan.

63

http://en.wikipedia.org/wiki/Lazy_evaluation
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Pipeline_(software)
http://en.wikipedia.org/wiki/DBMS
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Declarative_programming

Pig Data Types and Syntax

...

i Atom (int) Atom (chararray) Key Value
| 2013| 10 | 18 | .. |SAN/|SFO P AA (165121 |
| 23| 10 [15 | .. [saN[sFo] .. | AS ies] |
| Bag . | Bag i
2013[12 [13 | .. [ORD[EWR] .. | ! wN 61975 |
| .)i \ J i
| A e 3 3 !
| Tuple - Map :

Atom: An atom is any single value, such as a string or number

Tuple: A tuple is a record that consists of a sequence of fields. Each field can be of any type.
Bag: A bag is a collection of non-unique tuples.

Map: A map is a collection of key value pairs.

Pig Latin Operators

Operation Operator Explanation
Data Access LOAD/STORE Read and Write data to file system
DUMP Write output to standard output (stdout)
STREAM Send all records through external binary
FOREACH Apply expression to each record and output one or more
records
FILTER Apply Predicate and remove records that don't meet
condition
GROUP/COGROUP ;A;lgpglffsgate records with the same key from one or more
JOIN Join two or more records based on a condition
Transformations CROSS Cartesian product of two or more inputs
ORDER Sort records based on key
DISTINCT Remove duplicate records
UNION Merge two data sets
SPLIT Divide data into two or more bags based on predicate
LIMIT subset the number of records

65

Pig Latin Expressions

Expressions

In Pig Latin, expressions are language constructs used with the FILTER, FOREACH, GROUP, and SPLIT operators as
well as the eval functions.

Expressions are written in conventional mathematical infix notation and are adapted to the UTF-8 character set.
Depending on the context, expressions can include:

e Any Pig data type (simple data types, complex data types)

e Any Pig operator (arithmetic, comparison, null, boolean, dereference, sign, and cast)
e Any Pig built-in function.

e Any user-defined function (UDF) written in Java.

In Pig Latin,

e An arithmetic expression could look like this:

X = GROUP A BY f2*f£f3;

e A string expression could look like this, where a and b are both chararrays:

X = FOREACH A GENERATE CONCAT (a,b):;

¢ A boolean expression could look like this:

X = FILTER A BY (f1==8) OR (NOT (f2+f3 > f1)):;

66

Pig User-Defined Functions (UDFs)

-— myscript.pig

REGISTER myudfs.jar;

A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float):;
B = FOREACH A GENERATE myudfs.UPPER (name) ;

DUMP B;

Command to run the script.

java -cp pig.jar org.apache.pig.Main -x local myscript.pig

The .java contains UPPER

package myudfs;

import java.io.IOException;

import org.apache.pig.EvalFunc;

import org.apache.pig.data.Tuple;

import org.apache.pig.impl.util.WrappedIOException;

public class UPPER extends EvalFunc (String)

{
public String exec (Tuple input) throws IOException {

if (input == null || input.size() == 0)
return null;

try{
String str = (String)input.get(0):;

return str.toUpperCase():;
}catch (Exception e) {
throw WrappedIOException.wrap ("Caught exception processing input row ", e);

}

https://pig.apache.org/docs/r0.7.0/udf.htm|l 67

Apache Hive

Hive CU

Hive Web Interface

lllllll

Hive 0DBC Driver

lllllllllllllllll

Tez

Squirrel SQL

Hive JOBC Oriver

Hive Theift Server

Metastore

Hive Thrift Client

Hive Driver

e

-

TEmE W E T TR TEER -

MapRedice v2

YARN

MapReduce vi

HOFS

68

Using Hive to Create a Table

(A) $ SHIVE_HOME/bin hive --service cli
(B) hive> set hive.cli.print.current.db=true;
(C) hive (default)> CREATE DATABASE ourfirstdatabase;
OK
Time taken: 3.756 seconds
(D) hive (default)> USE ourfirstdatabase;
OK
Time taken: 0.039 seconds
(E) hive (ourfirstdatabase)> CREATE TABLE our_first table (
> FirstName = STRING,
> LastName STRING,
> Employeeld INT);
OK
Time taken: 0.043 seconds
hive (ourfirstdatabase)> quit;
(F) $ 1s /home/biadmin/Hive/warehouse/ourfirstdatabase.db
our_ first table

69

Another Hive Example

(A) CREATE TABLE IF NOT EXISTS FlightInfo2007 (
Year SMALLINT, Month TINYINT, DayofMonth TINYINT, DayOfWeek TINYINT,
DepTime SMALLINT, CRSDepTime SMALLINT, ArrTime SMALLINT, CRSArrTime SMALLINT,
UniqueCarrier STRING, FlightNum STRING, TailNum STRING,
ActualElapsedTime SMALLINT, CRSElapsedTime SMALLINT,
AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,
Origin STRING, Dest STRING,Distance INT,
Taxiln SMALLINT, TaxiOut SMALLINT, Cancelled SMALLINT,
CancellationCode STRING, Diverted SMALLINT,
CarrierDelay SMALLINT, WeatherDelay SMALLINT,
NASDelay SMALLINT, SecurityDelay SMALLINT, LateAircraftDelay SMALLINT)
COMMENT 'Flight InfoTable'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ')’
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES (‘creator'='Bruce Brown', 'created_at'="Thu Sep 19 10:58:00 EDT 2013');

70

1. Download Airline Data and one of your own selected datasets
from Stat-Computing.org

3. Learn to use PIG. You can try the example in the reference

4. Use Oozie to schedule a few jobs

5. Try HBase. Use your own example

6. Try Hive. Use your own example

Bi-Annual Data Exposition

Every other year, at the Joint Statistical Meetings, the Graphics Section and the Computing
Section join in sponsoring a special Poster Session called The Data Exposition , but more
commonly known as The Data Expo. All of the papers presented in this Poster Session are
reports of analyses of a common data set provided for the occasion. In addition, all papers
presented in the session are encouraged to report the use of graphical methods employed
during the development of their analysis and to use graphics to convey their findings.

Data sets
e 2013: Soul of the Community
2011: Deepwater horizon oil spill
009: Airline on time data

1997: Hospital Report Cards
199

1993: Oscillator time series & Breakfast Cereals

(]

.
.
e 2006: NASA meteorological data. Electronic copy of entries
.
. : U.S. Colleges and Universities

.

« 1991: Disease Data for Public Health Surveillance .

« 1990: King Crab Data http://stat-computing.org/dataexpo/
* 1988: Baseball

o 1986: Geometric Features of Pollen Grains

e 1983: Automobiles 7 1

Questions?

72

