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CS 444: Big Data Systems

Chapter 5. Big Data Computing and Processing
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Remind -- Apache Hadoop 

The Apache™ Hadoop® project develops open-source software for reliable, scalable, 
distributed computing. 

The project includes these modules: 
• Hadoop Common: The common utilities that support the other Hadoop modules. 
• Hadoop Distributed File System (HDFS™): A distributed file system that provides high-

throughput access to application data. 
• Hadoop YARN: A framework for job scheduling and cluster resource management. 
• Hadoop MapReduce: A YARN-based system for parallel processing of large data sets. 

http://hadoop.apache.org
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Remind -- Hadoop-related Apache Projects

• Ambari™: A web-based tool for provisioning, managing, and monitoring Hadoop 
clusters.It also provides a dashboard for viewing cluster health and ability to view 
MapReduce, Pig and Hive applications visually. 

• Avro™: A data serialization system. 
• Cassandra™: A scalable multi-master database with no single points of failure. 
• Chukwa™: A data collection system for managing large distributed systems. 
• HBase™: A scalable, distributed database that supports structured data storage 

for large tables. 
• Hive™: A data warehouse infrastructure that provides data summarization and ad 

hoc querying. 
• Mahout™: A Scalable machine learning and data mining library. 
• Pig™: A high-level data-flow language and execution framework for parallel 

computation. 
• Spark™: A fast and general compute engine for Hadoop data. Spark provides a 

simple and expressive programming model that supports a wide range of 
applications, including ETL, machine learning, stream processing, and graph 
computation. 

• Tez™: A generalized data-flow programming framework, built on Hadoop YARN, 
which provides a powerful and flexible engine to execute an arbitrary DAG of 
tasks to process data for both batch and interactive use-cases. 

• ZooKeeper™: A high-performance coordination service for distributed 
applications. 

http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/
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Four distinctive layers of Hadoop 1
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Haoop 1 execution 

1. The client application submits an application request to the JobTracker.
2. The JobTracker determines how many processing resources are needed to execute the entire 

application.
3. The JobTracker looks at the state of the slave nodes and queues all the map tasks and reduce tasks 

for execution.
4. As processing slots become available on the slave nodes, map tasks are deployed to the slave nodes. 

Map tasks are assigned to nodes where the same data is stored.
5. The TaskTracker monitors task progress. If failure, the task is restarted on the next available slot.
6. After the map tasks are finished, reduce tasks process the interim results sets from the map tasks.
7. The result set is returned to the client application.
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Limitation of Hadoop 1

• MapReduce is a successful batch-oriented programming model.

• A glass ceiling in terms of wider use:
– Exclusive tie to MapReduce, which means it could be used only for batch-style 

workloads and for general-purpose analysis.

• Triggered demands for additional processing modes:
– Stream data processing (Storm)
– Message passing (MPI)
– Graph analysis

è Demand is growing for real-time and ad-hoc analysis
è Analysts ask many smaller questions against subsets of data
     and need a near-instant response.
è Some analysts are more used to SQL & Relational databases 

YARN was created to move beyond the limitation 
of a Hadoop 1 / MapReduce world.
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YARN: Resource Management to Support Parallel Computing

• YARN – Yet Another Resource Negotiator

– A resource management tool that enables the other parallel processing frameworks to 
run on Hadoop.

– A general-purpose resource management facility that can schedule and assign CPU 
cycles and memory (and in the future, other resources, such as network bandwidth) 
from the Hadoop cluster to waiting applications.

èStarting from Hadoop 2, YARN has converted Hadoop from simply a batch 
processing engine into a platform for many different modes of data 
processing

• From traditional batch to interactive queries to streaming analysis.
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Hadoop 2 Data Processing Architecture
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YARN’s application execution

• The client submits an application to the Resource Manager.
• The Resource Manager asks a Node Manager to create an Application Master Instance (AMI) and 

starts up.
• Application Master initializes itself and register with the Resource Manager
• Application Master figures out how many resources are needed to execute the application.
• Application Master then requests the necessary resources from the Resource Manager. It sends 

heartbeat message to the Resource Manager throughout its lifetime.
• The Resource Manager accepts the request and queue up.
• As the requested resources become available on the slave nodes, the Resource Manager grants the 

Application Master leases for containers on specific slave nodes.
• ….  è only need to decide on how much memory tasks can have.



MapReduce WordCount revisit

http://www.alex-hanna.com
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MapReduce Data Flow (Hadoop 1)

http://www.ibm.com/developerworks/cloud/library/cl-openstack-deployhadoop/
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Spark

Fast, Interactive, Language-Integrated 
Cluster Computing

Download source release:
www.spark-project.org 
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Spark Goals

Extend the MapReduce model to better support 
two common classes of analytics applications:

• Iterative algorithms (machine learning, graphs)
• Interactive data mining (user query)

Enhance programmability:
• Integrate into Scala programming language
• Allow interactive use from Scala interpreter
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Motivation

Most current cluster programming models 
are based on acyclic data flow from stable 
storage to stable storage

Map

Map

Map

Reduce

Reduce

Input Output
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Motivation

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide 
where to run tasks and can automatically 

recover from failures

Most current cluster programming models are based 
on acyclic data flow from stable storage to stable 
storage
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Motivation

Acyclic data flow is inefficient for applications that 
repeatedly reuse a working set of data:

• Iterative algorithms (machine learning, graphs)
• Interactive data mining tools (R, Excel, Python)

With current frameworks, applications must reload 
data from stable storage on each query, which is 
time consuming!
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Solution:
Resilient Distributed Datasets (RDDs)

• Allow apps to keep working sets in memory for 
efficient reuse

• Retain the attractive properties of MapReduce
• Fault tolerance, data locality, scalability

• Support a wide range of applications
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Programming Model
Two stages: transformations followed by actions
• Core structure: Resilient distributed datasets (RDDs)

• Immutable, partitioned collections of objects
• Created through parallel transformations (map, 

filter, groupBy, join, …) on data in stable storage
• Can be cached for efficient reuse

• Perform multiple various Actions on RDDs
• Count, reduce, collect, save, …

Note that
• Before Spark 2.0, the main programming interface of Spark was the 

Resilient Distributed Dataset (RDD)
• After Spark 2.0, RDDs are replaced by Dataset

• Strongly-typed like a RDD, but with richer optimizations
• The RDD interface is still supported 18



Example: Log Mining

Load error messages from a log into memory, then 
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of 
Wikipedia in <1 sec (vs 20 sec 

for on-disk data)
Result: scaled to 1 TB data in 5-7 sec

(vs 170 sec for on-disk data)

19

Scala



RDD Fault Tolerance

RDDs maintain lineage information that can be used to reconstruct 
lost partitions

Ex:

messages = textFile(...).filter(_.startsWith(“ERROR”))
                        .map(_.split(‘\t’)(2))

HDFS File Filtered RDD Mapped RDD

filter
(func = _.contains(...))

map
(func = _.split(...))
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Example: Logistic Regression

Goal: find the best line separating two sets of points

The found line can be used to classify new points.
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Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
  val gradient = data.map(p =>
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)
  w -= gradient
}

println("Final w: " + w)
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Scala



Logistic Regression Performance

127 s / iteration

first iteration 174 s
further iterations 6 s
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Spark Applications

In-memory data mining on Hive data (Conviva)
Predictive analytics (Quantifind)
City traffic prediction (Mobile Millennium)
Twitter spam classification (Monarch)
Collaborative filtering via matrix factorization
…
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Data Processing Frameworks Built on Spark

Pregel on Spark (Bagel)
Google message passing model for graph computation
200 lines of code

Hive on Spark (Shark)
3000 lines of code
Compatible with Apache Hive
ML operators in Scala
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Implementation

• Runs on Apache 
Mesos to share 
resources with 
Hadoop & other apps

• Can read from any 
Hadoop input source 
(e.g. HDFS)

• No changes to Scala 
compiler

Spark Hadoop MPI

Mesos

Node Node Node Node

…
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Spark Scheduler

• Dryad-like DAGs
• Pipelines functions

within a stage
• Cache-aware work

reuse & locality
• Partitioning-aware

to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition
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Interactive Spark

Modified Scala interpreter to allow Spark to be 
used interactively from the command line
Required two changes:

• Modified wrapper code generation so that 
each line typed has references to objects for 
its dependencies

• Distribute generated classes over the network

28



Spark Operations

Transformations
(define a new 

RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to 
driver program)

collect
reduce
count
save

lookupKey

29
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Apache Tez

The Apache TEZ® project is aimed at building an application framework 
which allows for a complex directed-acyclic-graph (DAG) of tasks for 
processing data. It is currently built atop Apache Hadoop YARN.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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Tez’s characteristics

• Dataflow graph with 
vertices to express, 
model, and execute 
data processing logic

• Performance via 
Dynamic Graph 
Reconfiguration

• Flexible Input-
Processor-Output task 
model

• Optimal Resource 
Management
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By allowing projects like Apache Hive and Apache Pig to run 
a complex DAG of tasks, Tez can be used to process data, 
that earlier took multiple MR jobs, now in a single Tez job as 
shown below.
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Apache Storm
Stream Processing
-- On Hadoop, you run MapReduce jobs; On Storm, you run Topologies.
-- Two kinds of nodes on a Storm cluster:
   -- the master node runs “Nimbus”
   -- the worker nodes called the Supervisor.
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How Storm processes data?
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Storm’s Goals and Plans
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Oozie Workflow Scheduler for Hadoop

• Oozie supports a wide range of job types, including Pig, Hive, and MapReduce, as well 
as jobs coming from Java programs and Shell scripts.

Sample Oozie XML file

firstJob
(Pig)

secondJob 
(MapReduce)

OK end

kill

start
OK

error

error



Action and Control Nodes

• Control Flow
– start, end, kill
– decision
– fork, join

• Actions
– MapReduce
– Java
– Pig
– Hive
– HDFS commands

37

START MapReduce

KILL

ER
R

O
R

ENDOK

Control Node

Action

<workflow-app name="foo-wf"..
<start to="[NODE-NAME]"/>
<map-reduce>
...
...
</map-reduce>
<kill name="[NODE-NAME]">
<message>Error occurred</message
</kill>
<end name="[NODE-NAME]"/>

</workflow-app>

• Oozie Coordination Engine can trigger workflows by
– Time (Periodically)
– Data Availability (Data appears in a directory)

• Workflows begin with START node
• Workflows succeed with END node
• Workflows fail with KILL node
• Several actions support JSP Expression Language 

(EL)



38

Schedule Workflow by Time
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Schedule Workflow by Time and Data Availability



Install Oozie
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• $ mkdir <OOZIE_HOME>/libext
• Download ExtJS and place under
<OOZIE_HOME>/libext

– ext-2.2.zip
• Place Hadoop libs under libext

– $ cd <OOZIE_HOME>
– $ tar xvf oozie-hadooplibs-3.1.3-cdh4.0.0.tar.gz
– $ cp oozie-3.1.3-cdh4.0.0/hadooplibs/hadooplib-2.0.0-  cdh4.0.0/*.jar libext/

• Configure Oozie with components under libext
– $ bin/oozie-setup.sh

• Create environment variable for default url
– export OOZIE_URL=http://localhost:11000/oozie
– This allows you to use $oozie command without providing url

• Update oozie-site.xml to point to Hadoop configuration
<property>
<name>oozie.service.HadoopAccessorService.hadoop.configurations</name>
<value>*=/home/hadoop/Training/CDH4/hadoop-2.0.0-cdh4.0.0/conf</value>
</property>

• Setup Oozie database
– $./bin/ooziedb.sh create -sqlfile oozie.sql -run DB  Connection.



Install Oozie
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•Update core-site.xml to allow Oozie become “hadoop” and for that user to connect 
from any host
<property>
<name>hadoop.proxyuser.hadoop.groups</name>
<value>*</value>
<description>Allow the superuser oozie to impersonate any members of the group group1 and 
group2</description>
</property>
<property>
<name>hadoop.proxyuser.hadoop.hosts</name>
<value>*</value>
<description>The superuser can connect only from host1 and host2 to impersonate a 
user</description>
</property>



Start Oozie
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$ oozie-start.sh

Setting OOZIE_HOME:  
Setting OOZIE_CONFIG:

/home/hadoop/Training/CDH4/oozie-3.1.3-cdh4.0.0
/home/hadoop/Training/CDH4/oozie-3.1.3-cdh4.0.0/conf

Sourcing: /home/hadoop/Training/CDH4/oozie-3.1.3-cdh4.0.0/conf/oozie-env.sh  
setting OOZIE_LOG=/home/hadoop/Training/logs/oozie

setting CATALINA_PID=/home/hadoop/Training/hadoop_work/pids/oozie.pid
Setting OOZIE_CONFIG_FILE:   oozie-site.xml
Setting OOZIE_DATA: /home/hadoop/Training/CDH4/oozie-3.1.3-cdh4.0.0/data  Using   
OOZIE_LOG: /home/hadoop/Training/logs/oozie

Setting OOZIE_LOG4J_FILE: oozie-log4j.properties  Setting OOZIE_LOG4J_RELOAD: 
10

Setting OOZIE_HTTP_HOSTNAME: localhost  Setting OOZIE_HTTP_PORT: 11000
Setting OOZIE_ADMIN_PORT: 11001
...
...
...

$ oozie admin -status  
System mode: NORMAL

http://localhost:11000/oozie/

15



Running Oozie Examples
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• Extract examples packaged with Oozie
– $ cd $OOZIE_HOME
– $ tar xvf oozie-examples.tar.gz

• Copy examples to HDFS from user’s home directory
– $ hdfs dfs -put examples examples

• Run an example
– $ oozie job -config examples/apps/map-reduce/job.properties -  run

• Check Web Console
– http://localhost:11000/oozie/



An example workflow

44

START Count Each Letter  
MapReduce

KILL

Clean Up

END

OK Find Max Letter
MapReduce

OK

ER
R

O
R

Count Each Letter  
MapReduce -  Action Node

-  Control Flow Node

This source is in HadoopSamples
project under
/src/main/resources/mr/workflows

-  Control NodeEND



Workflow definition
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<workflow-app xmlns="uri:oozie:workflow:0.2" name="most-seen-letter">
<start to="count-each-letter"/>
<action name="count-each-letter">

<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<prepare>

<delete path="${nameNode}${outputDir}"/>
<delete path="${nameNode}${intermediateDir}"/>

</prepare>
<configuration>

...
<property>

<name>mapreduce.job.map.class</name>
<value>mr.wordcount.StartsWithCountMapper</value>
</property>

...
</configuration>
</map-reduce>

<ok to="find-max-letter"/>
<error to="fail"/>

</action>
...

START Action Node  
to count-each-letter  
MapReduce action

MapReduce  
have optional  
Prepare  
section

Pass property that will be  
set on MapReduce job’s  
Configuration object

In case of success, go to the  
next job; in case of failure, go to  
fail node



Package and Run Your  Workflow
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1. Create application directory structure with  
workflow definitions and resources
– Workflow.xml, jars, etc..

2. Copy application directory to HDFS
3. Create application configuration file

– specify location of the application directory on HDFS
– specify location of the namenode and resource manager

4. Submit workflow to Oozie
– Utilize oozie command line

5. Monitor running workflow(s)
• Two options

– Command line ($oozie)
– Web Interface (http://localhost:11000/oozie)

Oozie Application 
Directory
• Must comply to directory 

structure spec

mostSeenLetter-oozieWorkflow
|--lib/
| |--HadoopSamples.jar

Application  
Workflow Root

|--workflow.xml

Libraries should be placed  under lib directory

Workflow.xml  defines workflow
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Public datasets available from Statistical Computing

http://stat-computing.org/dataexpo/
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Airline On-time Performance Dataset

• Data Source: Airline On-time Performance data set (flight 
data set).
– All the logs of domestic flights from the period of 

October 1987 to April 2008.
– Each record represents an individual flight where 

various details are captured:
• Time and date of arrival and departure
• Originating and destination airports
• Amount of time taken to taxi from the runway to the 

gate.

– Download it from:
– http://stat-computing.org/dataexpo/2009/
– https://dataverse.harvard.edu/dataset.xhtml?persist

entId=doi:10.7910/DVN/HG7NV7

http://stat-computing.org/dataexpo/2009/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HG7NV7
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HG7NV7
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Flight Data Schema
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MapReduce Use Case Example – flight data

• Problem: count the number of flights for each carrier

• Solution using a serial approach (not MapReduce):
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MapReduce Use Case Example – flight data
• Problem: count the number of flights for each carrier
• Solution using MapReduce (parallel way):
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MapReduce steps for 
flight data computation
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FlightsByCarrier application
Create FlightsByCarrier.java:
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FlightsByCarrier application
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FlightsByCarrier Mapper
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FlightsByCarrier Reducer
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Run the code
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See Result
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Using Pig Script for fast application development

• Problem: calculate the total miles flown for all flights flown in one year 
• How much work is needed using MapReduce?
• What if we use Pig?

• totalmiles.pig

          

• Execute it: pig totalmiles.pig
• See result:  hdfs dfs –cat /user/root/totalmiles/part-r-00000
  è 775009272
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Pig: a data flow language

Data flow language
• Define a data stream

• Typically using “LOAD …”
• Apply a series of transformations to the data

• FILTER, GROUP, COUNT, DUMP, etc.
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Pig example for WordCount



62

Characteristics of Pig
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Pig vs. SQL

In comparison to SQL, Pig
1. uses lazy evaluation, 
2. uses ETL (Extract-Transform-Load), 
3. is able to store data at any point during a pipeline, 
4. declares execution plans, 
5. supports pipeline splits.

On the other hand, it has been argued DBMSs are substantially faster than the MapReduce 
system once the data is loaded, but that loading the data takes considerably longer in the 
database systems. It has also been argued RDBMSs offer out of the box support for 
column-storage, working with compressed data, indexes for efficient random data 
access, and transaction-level fault tolerance.

Pig Latin is procedural and fits very naturally in the pipeline paradigm while SQL is instead 
declarative. In SQL users can specify that data from two tables must be joined, but not 
what join implementation to use. Pig Latin allows users to specify an implementation or 
aspects of an implementation to be used in executing a script in several ways. 

Pig Latin programming is similar to specifying a query execution plan.

http://en.wikipedia.org/wiki/Lazy_evaluation
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://en.wikipedia.org/wiki/Pipeline_(software)
http://en.wikipedia.org/wiki/DBMS
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Declarative_programming
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Pig Data Types and Syntax

Atom: An atom is any single value, such as a string or number
Tuple: A tuple is a record that consists of a sequence of fields. Each field can be of any type.
Bag: A bag is a collection of non-unique tuples.
Map: A map is a collection of key value pairs.
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Pig Latin Operators
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Pig Latin Expressions
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Pig User-Defined Functions (UDFs)

The .java contains UPPER

Command to run the script.

https://pig.apache.org/docs/r0.7.0/udf.html
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Apache Hive
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Using Hive to Create a Table
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Another Hive Example
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Exercises

http://stat-computing.org/dataexpo/

1. Download Airline Data and one of your own selected datasets 
from Stat-Computing.org

3. Learn to use PIG. You can try the example in the reference
4. Use Oozie to schedule a few jobs
5. Try HBase. Use your own example
6. Try Hive. Use your own example
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Questions?


