CS 444: Big Data Systems Chapter 7. Big Data Visualization

Chase Wu New Jersey Institute of Technology

Outline

- Introduction to Computer Graphics
	- Images and Displays
	- Ray Tracing
- Big Data Visualization
	- Scientific (3D Volume) Visualization
		- Ray Casting
		- Marching Cubes
	- Information Visualization
	- Challenges and Techniques

What is Computer Graphics (CG)? What can we do with CG?

• Video games

• Cartoons and animated films

• CAD/CAM

• Visualization

Size of each Cell: Stock Market Value Color: Stock Change

What is an image?

- There are two ways to represent an image in a computer
	- Vector Image
		- Use instructions to describe the shapes (lines or curves) with no reference to any particular pixel grid
			- A simple line segment: Start (0,0), End (5,3)
		- Advantage
			- Resolution independent, so can be displayed well on very high resolution devices
			- Require very little memory
			- No aliasing of lines/curves
		- Disadvantage
			- Can only draw line segments
				- » More lines, more time needed
			- Must be rasterized before they can be displayed
				- » Rasterization: converting a vector image (shapes) to a raster image (dots)
				- » Virtually all displays used today are raster displays
				- » Dots are the only things modern displays can understand
		- Used for
			- Text, diagrams, mechanical drawings (use eps figures in a technical paper)
			- Other applications
				- » Crispness and precision are important
				- » Photographic images and complex shading are not needed

- Raster image
	- A 2D distribution of intensity or color (pixel?)
	- A function defined on a 2D plane

$$
I:\mathbb{R}^2\to\ldots
$$

- To do graphics, we must
	- Represent images: encode them numerically
		- Vector or raster
	- Display images: realize them as actual intensity distributions
		- Various display devices

Representative Display Technologies

- Computer displays
	- Raster CRT display
	- LCD display
- Printers
	- Laser printer
	- Inkjet printer

Color Displays

Raster Image Representation

- All these devices suggest 2D arrays of numbers
- Big advantage: represent arbitrary images
	- Approximate arbitrary functions by increasing resolution
		- Just need more memory for more pixels
	- Works because memory is cheap (brute force approach!)

Raster Image Representation

- **Disadvantage**
	- Memory demand
		- Draw the whole screen "at once"
		- Need a framebuffer to hold the information for the whole image
	- Aliasing
		- This is what causes "jaggies"
		- The incoming signal (the desired image) can only be sampled at pixel centers on the display
			- Image is a sampled representation (image reconstruction)
		- Pixel means "this is the intensity around here"
			- LCD: intensity is constant over square regions
			- CRT: intensity varies smoothly across pixel grid

How do we draw an image in a computer?

- The physical world (real-life objects) is 3D
- The display is, virtually always, only 2D
- Projection: transform 3D model into 2D model

Rendering Process

- Start
	- Original 3D geometric model
- Shading
	- Compute color of original geometry
		- Based on lighting and surface color
- Projection
	- Project original 3D geometry to 2D model
- Clipping
	- Clip original geometry outside FOV
- Rasterization
	- Generate fragments from projected 2D model
- Fragment processing
	- Compute pixel colors from fragments
- End
	- Display pixels

Data Types for Raster Images

• Bitmaps: **boolean** per pixel (1 bpp): $I : \mathbb{R}^2 \to \{0, 1\}$

– black and white; e.g., fax

- Grayscale: integer per pixel: $I: \mathbb{R}^2 \to [0,1]$
	- shades of gray; e.g., black-and-white print
	- precision: usually **byte** (8 bpp); sometimes 10, 12, or 16 bpp
- Color: 3 integers (RGB) per pixel: $I: \mathbb{R}^2 \to [0,1]^3$
	- full range of displayable color; e.g., color print
	- precision: usually **byte[3]** (24 bpp)
	- sometimes 16 (5+6+5), 30, 36, 48 bpp

Data Types for Raster Images

- Floating point: $I: \mathbb{R}^2 \to \mathbb{R}_+$ or $I: \mathbb{R}^2 \to \mathbb{R}_+^3$
	- more abstract, because no output device has infinite range
	- provides *high dynamic range* (HDR)
	- represent real scenes independent of display
	- becoming the standard intermediate format in graphics processors
- Clipping
	- first compute floating point (FP), then convert to integer
	- full range of values may not "fit" in display's output range
	- simplest solution: choose a maximum value, scale so that value becomes full intensity (2*n*–1 in an *n*-bit integer image)

Data Types for Raster Images

- For color or grayscale, sometimes add *alpha* channel
	- describe transparency of images

Storage Requirements for Images

- 1024 x 1024 image (1 megapixel, resolution)
	- $-$ bitmap 1bpp:
	- $-$ grayscale 8bpp:
	- $-$ grayscale 16bpp:
	- $-$ color 24bpp:

– floating-point HDR color:

• What is the resolution of your camera? How much storage is needed for each picture?

Converting Pixel Formats

- Color to gray
	- could take one channel (blue, say)
		- leads to odd choices of gray value
	- combination of channels is better
		- but different colors contribute differently to lightness
		- which is lighter, full blue or full green?

• good choice: $gray = 0.2 R + 0.7 G + 0.1 B$

Intensity Encoding in Images

- What do the numbers in images (pixel values) mean?
	- they determine how bright that pixel is
	- bigger numbers are (usually) brighter
- *Transfer function*: function that maps input pixel value to luminance (intensity) of a displayed image
 $I = f(n)$ $f : [0, N] \rightarrow [I_{\min}, I_{\max}]$
- What determines this function?
	- physical constraints of display device or medium
	- $-$ desired visual characteristics 24

• Transfer function:

Constraints on Transfer Function

- Maximum displayable intensity, I_{max}
	- how much power can be channeled into a pixel?
		- LCD: backlight intensity, transmission efficiency (<10%)
		- projector: lamp power, efficiency of imager and optics
- Minimum displayable intensity, I_{\min}
	- light emitted by the display in its "off" state
		- LCD: polarizer quality
		- CRT: stray electron flux
- Viewing flare *k*: light reflected by the display
	- very important factor determining image contrast in practice
		- 5% of I_{max} is typical in a normal office environment
		- requires much effort to make very black CRT and LCD screens

Dynamic Range

• Dynamic range:

$$
R_d = I_{\text{max}} / I_{\text{min}} \quad \text{or} \quad (I_{\text{max}} + k) / (I_{\text{min}} + k)
$$

- determines the degree of image contrast that can be achieved
- a major factor in image quality!
- Ballpark values of common display devices
	- Desktop display in typical conditions: 20:1
	- Photographic print: 30:1
	- Desktop display in good conditions: 100:1
	- Photographic transparency (directly viewed): 1000:1
	- High Dynamic Range (HDR) display: 10,000:1

Converting Pixel Precision

• Up is easy; down loses information—be careful

Banding : noticeable intensity change between neighboring pixels

- Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
	- Otherwise, smooth areas of images will show visible bands
- What contrasts are visible?
	- rule of thumb: under good conditions we can notice a **2%** change in intensity
	- we generally need smaller quantization steps in the darker tones than in the lighter tones (why?)
		- Darker tones have a lower intensity value
		- A smaller denominator leads to a higher percentage change
	- most efficient quantization is logarithmic

an image with severe *banding*

How many levels (pixel value range) are needed?

- Depends on dynamic range
	- 2% steps are most efficient:

 $0 \mapsto I_{\min}; 1 \mapsto 1.02I_{\min}; 2 \mapsto (1.02)^2I_{\min}; \dots \quad N \to (1.02)^N I_{\min}$

– How many steps (levels) needed per decade (10:1) of dynamic range?

$$
R_d = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(1.02)^N I_{\text{min}}}{I_{\text{min}}} = (1.02)^N = \frac{10}{1} = 10
$$

log(1.02)^N = N log(1.02) = log 10 = 1

$$
N = \frac{1}{log(1.02)} = \frac{1}{1/120} = 120
$$

- 240 for desktop display with R_d 100:1
- 360 to print to film with R_d 1000:1
- 480 to drive HDR display with R_d 10,000:1

How many levels (pixel value range) are needed?

- If we want to use linear quantization (equal steps), how many levels are needed for $Ra=10$?
	- $-$ one step must be < 2% (1/50) of I_{min}
	- need to get from \sim 0 to $I_{\min} \cdot R_d$, so need about 50 R_d levels

$$
\frac{I_{\text{max}} - I_{\text{min}}}{step \ size} = \frac{I_{\text{min}} \cdot R_d - 0}{2\% \cdot I_{\text{min}}} = 50R_d
$$

- 1500 for a print with R_d 30:1
- 5000 for desktop display with R_d 100:1
- 500,000 for HDR display with R_d 10,000:1
- Moral: 8 bits (256 levels) is just barely enough for low-end applications
	- $-$ but only if we are careful about quantization $\overline{}_{31}$

How do we view the world?

• From the perspective of the graphics pipeline

- Light, surface, and camera
	- Light
		- determines the color of the surface
	- Surface
		- represents the 3D geometry in the scene
	- Camera
		- projects the 3D geometry onto the 2D view plane $\frac{32}{32}$

A Model of the Universe

• Implement a straightforward algorithm based on this model

- What's the biggest issue with this model?
	- Inefficient
		- Many (probably most) light rays in a scene would never hit the image plane

{

}

Big Data Visualization

- Scientific (Volume) Visualization
- Information Visualization
Scientific Visualization

Terascale Supernova Initiative (TSI)

- **Collaborative project**
	- **Supernova explosion**
- **TSI simulation**
	- **1 terabyte a day with a small portion of parameters**
	- **From TSI to PSI**
- **Transfer to remote sites**
	- **Interactive distributed visualization**
	- **Collaborative data analysis**
	- **Computation monitoring**
	- **Computation steering**

Client Supercomputer or Cluster

A Prototype System: Distributed Remote Intelligent Visualization Environment (DRIVE)

Two Examples in the Visualization of Large-scale Scientific Applications

Volume Rendering Samples in a volume dataset

Voxel with samples at vertices.

Voxel with sample at center.

Voxels are for any data representation: temperature, density, pressure, etc.

• Pixels are just for colors

Volume Dataset

A: Typical Voxel

B: Voxel Set

C: Voxel Grid

Volume Rendering Process

Ray Casting

Ray Casting and Sample Collection

Sampling distance is a user-defined value

• More sampling results in a more clear, well approximated surface In general, the sampling distance should be less than the size of a voxel $\overline{a_{44}}$

3D Linear Interpolation

Transfer Function

Transfer functions are used to convert sampled values to color and alpha values to describe the surface

• Transfer functions are entirely user defined and are manipulated to make the surface coherent

Alpha Combination of Sample Color

The combining of the samples is performed in such a way that the samples nearer to the observer (eye) obscure those behind it according to the surface alpha values.

Examples (without and with transparency)

Using different transfer functions

Marching Cubes

The "Marching Cubes" Algorithm Lorenson & Cline 1987

The "Marching Cubes" Algorithm

The "Marching Cubes" (Marching Square) Algorithm Possible Vertex States

The "Marching Cubes" Algorithm Generated contour

Generation of contour from subcontours

Marching Cubes Algorithm in 3D Isosurface generation

Marching Cubes

Triangulation Examples

Information Visualization

"... finding the artificial memory that best supports our natural means of perception.'' (Bertin, 1983)

"The use of computer-supported, interactive, visual representations of abstract data to amplify cognition." (Card, Mackinlay, Shneiderman, 1999)

Visual Thinking: Example 1

• Counting the number of 3s in the following Text:

Visual Thinking: Example 2

• Identify the groups of dots in the following figures

Law of Proximity we tend to group elements that are closest to each other

Pre-Attentive Visual Attributes

Added surround box

Shape

Sharpness

Cast shadow

Convex and concave

Sharp vertex

Filled

Misalignment

Blinking

Phase of motion

Big Data Era: Data, Data, and Data How do we make sense of the data?

Examples: Visualizing Numerical Data

S&P 500 ALIG 29 2008 04:00 PM

El finviz.com

Size of each cell: Stock Market Value Color: Stock Change

Sources: Baseline StudioSystems; Box Office Mojo

Mathew Bloch, Lee Byron, Shan

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.

Example: Multi-Dimensional Data

Examples: Visualizing Structured Data

Examples: Visualizing Unstructured Data

Visualization of Text Documents

Examples: Geospatial

Larger cinema markets support stronger domestic film industries.

Countries sized by relative share of worldwide box office revenue, 2009

Example : Visualizing Spatial Temporal Data

Pulse of the Nation: U.S. Mood Throughout the Day inferred from Twitter Less Happy More Happy http://www.ccs.neu.edu/home/amislove/twittermood
Examples: Visualizing Spatial Temporal Data

wind map

Dec. 3, 2014 11:35 am EST (time of forecast download)

top speed: 31.5 mph average: 8.2 mph

1 mph

 3 mph

 5 mph

 \equiv 15 mph

 $\frac{1}{2}$ 10 mph

 $\frac{1}{30}$ mph

ŕ

An Interdisciplinary Field

VISUALIZATION IS NOT JUST ABOUT PRODUCING A BEAUTIFUL PICTURE

The purpose of visualization is to reveal the insight of the data!

Visualization & Visual Analysis Reference Model

Functions of Visualization

- **Record Information (Store & Summarize):**
	- Photographs, blueprints, ... ලි
- **Explore information (analyze):**
	- **Process and calculate** දබ
	- Reason about data 8
	- Feedback and interaction දඹු
- **Explain Information (present):**
	- convey information to others ₩
	- **Share and persuade** දන
	- **Collaborate and revise** දඹු
	- Emphasize important aspect of data ⊛

Big Data Visualization

- **Challenges**
- **Techniques**

Big Data Visualization

Tree of Life by Dr. Yifan Hu

14.8 million tweets

The information diffusion graph of the death of Osama bin Laden by Gilad Lotan 500 million users

Facebook friendship graph by Paul Butler

Challenging Task:

Squeezing millions and even billions of records into million pixels (1600 X $1200 = 2$ million pixels)

Challenges

Visual clutter

How can we avoid visual clutters like overlaps and crossings?

How can we render the huge datasets in real time with rich interactions?

Performance issues

Limited cognition

How can users understand the visual representation when the information is overwhelming?

A multidimensional data item contains 6 attributes \bullet

Technique(1) : Pixel Oriented Visualization

• Database visualization (10,000 items, 6 dimensions)

Techniques (1) : Pixel Oriented Visualization

Different Ways for splitting the display region

⁽Yang et al., 2006)

Building a tree for aggregating data items in either a bottom-up or top-down approach

Technique (2) : Aggregation & LOD

Techniques (2) : Aggregation & LOD

Scatter Plots (Elmqvist & Fekete, 2010) (Yang et al., 2003b)

Technique (3) : Distortion

Techniques (3) : Distortion

Technique (4) : Clutter Reduction

Sampling

Reordering

Technique (4): Clutter Reduction

Technique (4): Clutter Reduction

Technique (5): Query-based Visualization

Case Study

ContexTour: Multifaceted Visuailzation of Research Communities

Context Tour Data Transformation & Analysis

