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Outline

• Introduction to Computer Graphics
– Images and Displays

– Ray Tracing

• Big Data Visualization
– Scientific (3D Volume) Visualization

• Ray Casting

• Marching Cubes

– Information Visualization

– Challenges and Techniques
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What is Computer Graphics (CG)?
What can we do with CG?
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• Video games
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• Cartoons and animated films
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• CAD/CAM
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• Artworks
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• Visualization

Size of each Cell: Stock Market Value 
Color: Stock Change
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What is an image?
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• There are two ways to represent an image in a computer
– Vector Image

• Use instructions to describe the shapes (lines or curves) with no 
reference to any particular pixel grid

– A simple line segment: Start (0,0), End (5,3)

• Advantage
– Resolution independent, so can be displayed well on very high-resolution devices
– Require very little memory
– No aliasing of lines/curves

• Disadvantage
– Can only draw line segments

» More lines, more time needed
– Must be rasterized before they can be displayed

» Rasterization: converting a vector image (shapes) to a raster image (dots)
» Virtually all displays used today are raster displays
» Dots are the only things modern displays can understand

• Used for
– Text, diagrams, mechanical drawings (use eps figures in a technical paper)
– Other applications

» Crispness and precision are important
» Photographic images and complex shading are not needed
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– Raster image
• A 2D distribution of intensity or color (pixel?)

• A function defined on a 2D plane

• A natural representation

• To do graphics, we must
– Represent images: encode them numerically

• Vector or raster

– Display images: realize them as actual intensity 
distributions
• Various display devices



Representative Display Technologies

• Computer displays

– Raster CRT display

– LCD display

• Printers

– Laser printer

– Inkjet printer
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Color Displays
• CRT

– Phosphor dot to produce finely interleaved 
color images

• LCD
– Interleaved R,G,B pixels
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Raster Image Representation

• All these devices suggest 2D arrays of numbers

• Big advantage: represent arbitrary images
– Approximate arbitrary functions by increasing resolution

• Just need more memory for more pixels

– Works because memory is cheap (brute force approach!)
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Raster Image Representation
• Disadvantage

– Memory demand
• Draw the whole screen “at once”
• Need a framebuffer to hold the information for the whole image

– Aliasing
• This is what causes “jaggies”
• The incoming signal (the desired image) can only be sampled at pixel centers 

on the display
– Image is a sampled representation (image reconstruction)

• Pixel means “this is the intensity around here”
– LCD: intensity is constant over square regions
– CRT: intensity varies smoothly across pixel grid
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How do we draw an image in a computer?

• The physical world (real-life objects) is 3D

• The display is, virtually always, only 2D

• Projection: transform 3D model into 2D model
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Rendering Process

• Start
– Original 3D geometric model

• Shading
– Compute color of original geometry

• Based on lighting and surface color

• Projection
– Project original 3D geometry to 2D model

• Clipping
– Clip original geometry outside FOV

• Rasterization
– Generate fragments from projected 2D model

• Fragment processing
– Compute pixel colors from fragments

• End
– Display pixels
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Data Types for Raster Images

• Bitmaps: boolean per pixel (1 bpp):
– black and white; e.g., fax

• Grayscale: integer per pixel:
– shades of gray; e.g., black-and-white print

– precision: usually byte (8 bpp); sometimes 10, 12, or 
16 bpp

• Color: 3 integers (RGB) per pixel:
– full range of displayable color; e.g., color print

– precision: usually byte[3] (24 bpp)

– sometimes 16 (5+6+5), 30, 36, 48 bpp

19



Data Types for Raster Images

• Floating point:           or
– more abstract, because no output device has infinite range
– provides high dynamic range (HDR)
– represent real scenes independent of display
– becoming the standard intermediate format in graphics 

processors

• Clipping
– first compute floating point (FP), then convert to integer
– full range of values may not “fit” in display’s output range
– simplest solution: choose a maximum value, scale so that value 

becomes full intensity (2n–1 in an n-bit integer image)

20



without
and
with
alpha

Data Types for Raster Images

• For color or grayscale, sometimes add 
alpha channel

– describe transparency of images
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Storage Requirements for Images

• 1024 x 1024 image (1 megapixel, resolution)

– bitmap 1bpp: 128KB

– grayscale 8bpp: 1MB

– grayscale 16bpp: 2MB

– color 24bpp: 3MB

– floating-point HDR color: 12MB

• What is the resolution of your camera? How 
much storage is needed for each picture?
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Converting Pixel Formats

• Color to gray
– could take one channel (blue, say)

• leads to odd choices of gray value

– combination of channels is better
• but different colors contribute 

differently to lightness

• which is lighter, full blue or full green?

• good choice: gray = 0.2 R + 0.7 G + 0.1 B

COLOR

BLUE ONLY

GRAYSame pixel values.

Same luminance?
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Intensity Encoding in Images

• What do the numbers in images (pixel values) 
mean?
– they determine how bright that pixel is

– bigger numbers are (usually) brighter

• Transfer function: function that maps input pixel 
value to luminance (intensity) of a displayed image

• What determines this function?
– physical constraints of display device or medium

– desired visual characteristics 24



• Transfer function:
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Constraints on Transfer Function

• Maximum displayable intensity, Imax

– how much power can be channeled into a pixel?
• LCD: backlight intensity, transmission efficiency (<10%)

• projector: lamp power, efficiency of imager and optics

• Minimum displayable intensity, Imin

– light emitted by the display in its “off” state
• LCD: polarizer quality

• CRT: stray electron flux

• Viewing flare k: light reflected by the display
– very important factor determining image contrast in 

practice
• 5% of Imax is typical in a normal office environment

• requires much effort to make very black CRT and LCD screens
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Dynamic Range

• Dynamic range:
  Rd = Imax  / Imin    or   (Imax + k) / (Imin + k)
– determines the degree of image contrast that can be 

achieved
– a major factor in image quality!

• Ballpark values of common display devices
– Desktop display in typical conditions: 20:1
– Photographic print: 30:1
– Desktop display in good conditions: 100:1
– Photographic transparency (directly viewed): 1000:1
– High Dynamic Range (HDR) display: 10,000:1
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8 bpp (256 grays)7 bpp (128 grays)6 bpp (64 grays)5 bpp (32 grays)4 bpp (16 grays)3 bpp (8 grays)2 bpp (4 grays)1 bpp (2 grays)

Converting Pixel Precision
• Up is easy; down loses information—be careful
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Banding : noticeable intensity change 
between neighboring pixels

• Desirable property: the change from 
one pixel value to the next highest 
pixel value should not produce a 
visible contrast
– Otherwise, smooth areas of images will 

show visible bands

• What contrasts are visible?
– rule of thumb: under good conditions 

we can notice a 2% change in intensity
– we generally need smaller quantization 

steps in the darker tones than in the 
lighter tones (why?)
• Darker tones have a lower intensity value
• A smaller denominator leads to a higher 

percentage change

– most efficient quantization is 
logarithmic

an image with severe banding
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How many levels (pixel value range) are needed?

• Depends on dynamic range
– 2% steps are most efficient:

– How many steps (levels) needed per decade (10:1) of 
dynamic range?

• 240 for desktop display with Rd 100:1

• 360 to print to film with Rd 1000:1

• 480 to drive HDR display with Rd 10,000:1
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How many levels (pixel value range) are needed?

• If we want to use linear quantization (equal steps), 
how many levels are needed for Rd=10?
– one step must be < 2% (1/50) of Imin

– need to get from ~0 to Imin ∙Rd, so need about 50 Rd levels

• 1500 for a print with Rd 30:1

• 5000 for desktop display with Rd 100:1

• 500,000 for HDR display with Rd 10,000:1

• Moral: 8 bits (256 levels) is just barely enough for 
low-end applications
– but only if we are careful about quantization
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How do we view the world?

• From the perspective of the graphics pipeline

• Light, surface, and camera
– Light

• determines the color of the surface

– Surface
• represents the 3D geometry in the scene

– Camera
• projects the 3D geometry onto the 2D view plane 32
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A Model of the Universe
• Implement a straightforward algorithm based 

on this model

• What’s the biggest issue with this model?
– Inefficient

• Many (probably most) light rays in a scene would never 
hit the image plane
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A Solution: Ray Tracing!
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Ray Tracing



Ray Tracing Algorithm

35

for each pixel in the 2D view plane

{

    1. compute a viewing ray

    2. intersect ray with scene and find a visible point

    3. compute illumination at the visible point

    4. put result into image

}



Big Data Visualization

• Scientific (Volume) Visualization

• Information Visualization
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Scientific Visualization
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Astrophysics
Computational biology

Climate research

Flow dynamics

Computational materials

Fusion simulation

Neutron sciences

Nanoscience



Terascale Supernova Initiative (TSI)
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Visualization channel

Visualization control channel

Computation steering channel

• Collaborative project
− Supernova explosion

• TSI simulation
− 1 terabyte a day with a 

small portion of parameters
− From TSI to PSI

• Transfer to remote sites
− Interactive distributed 

visualization
− Collaborative data analysis
− Computation monitoring
− Computation steering

Supercomputer or ClusterClient
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Jet air flow dynamics 

(pressure, raycasting)

TSI explosion 

(density, raycasting)

A Prototype System:

Distributed Remote Intelligent Visualization 

Environment (DRIVE)

Two Examples in the Visualization of Large-scale Scientific Applications 



Volume Rendering

Samples in a volume dataset

Voxel with samples

at vertices.
Voxel with sample

at center.

Voxels are for any data representation: temperature, density, pressure, etc.

• Pixels are just for colors
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Volume Dataset
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Volume Rendering Process

V x y z( , , )

V x y z( , , )

Structured 3D Model

(Geometric Data)
3D Scalar Field

3D Scalar Field

2D Scalar Image
Ray Casting

Marching 

Cubes Rendering
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Ray Casting
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Ray Casting and Sample Collection

Sampling distance is a user-defined value

• More sampling results in a more clear, well approximated surface

In general, the sampling distance should be less than the size of a voxel 44



3D Linear Interpolation
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Transfer Function

Transfer functions are used to convert sampled values to color and alpha 

values to describe the surface

• Transfer functions are entirely user defined and are manipulated to make 

the surface coherent
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Alpha Combination of 

Sample Color

The combining of the samples is performed in such a way that the samples nearer to the 
observer (eye) obscure those behind it according to the surface alpha values. 
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Examples

(without and with transparency)
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Using different transfer functions
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Marching Cubes
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The “Marching Cubes” Algorithm

Lorenson & Cline 1987

Inside

Outside
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The “Marching Cubes” Algorithm

V x y z k( , , ) =

V x y z k( , , ) 

V x y z k( , , ) 
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The “Marching Cubes” (Marching Square) Algorithm

Possible Vertex States
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The “Marching Cubes” Algorithm

Generated contour
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Generation of contour from 

subcontours
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Marching Cubes Algorithm in 3D

Isosurface generation
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15 Cases
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Marching Cubes

Direction of march

Current cube Previously dealt with

New vertex
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Triangulation Examples
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Information Visualization

“... finding the artificial memory that best supports 
our natural means of perception.'‘ (Bertin, 1983)

“The use of computer-supported, interactive, visual 
representations of abstract data to amplify 
cognition.” (Card, Mackinlay, Shneiderman, 1999)
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Visual Thinking: Example 1

• Counting the number of 3s in the following Text:

1235693234870452973467
0378937043679709102539

1235693234870452973467
0378937043679709102539
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Visual Thinking: Example 2

• Identify the groups of dots in the following figures

Law of Proximity
we tend to group elements that are closest to each other
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Pre-Attentive Visual Attributes
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Big Data Era: Data, Data, and Data
How do we make sense of the data?
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Examples: Visualizing Numerical Data
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Examples: 2D Data

Size of each cell: Stock Market Value 
Color: Stock Change
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Example : Visualizing Ordinal Data

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html
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Example：Multi-Dimensional Data
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Examples: Visualizing Structured Data
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Examples: Visualizing Unstructured Data

Visualization of 

Text Documents
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Examples: Geospatial
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Example : Visualizing Spatial Temporal Data
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Examples: Visualizing Spatial Temporal Data
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An Interdisciplinary Field
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VISUALIZATION IS NOT JUST ABOUT 
PRODUCING A BEAUTIFUL PICTURE

The purpose of visualization is to reveal the insight of the data!
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Visualization & Visual Analysis Reference Model

Rendering

rendering
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Functions of Visualization
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Big Data Visualization
• Challenges

• Techniques
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Big Data Visualization

Challenging Task: 

Squeezing millions and even billions of records into million pixels (1600 X 
1200 = 2 million pixels)
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Challenges
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Techniques (1) : Pixel Oriented Visualization
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Technique(1) : Pixel Oriented Visualization
• Database visualization (10,000 items, 6 dimensions)
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Techniques (1) : Pixel Oriented Visualization

• Different Ways for splitting the display region
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Techniques (2): Aggregation & Level of Details (LOD)

Building a tree for aggregating data items in either a 
bottom-up or top-down approach
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Technique (2) : Aggregation & LOD
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Techniques (2) : Aggregation & LOD



87

Technique (3) : Distortion
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Techniques (3) : Distortion
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Technique (4) : Clutter Reduction
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Technique (4): Clutter Reduction

Edge Bundling
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Technique (4): Clutter Reduction
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Technique (5): Query-based Visualization
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Case Study

ContexTour:
Multifaceted Visuailzation of  Research 

Communities
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Context Tour Data Transformation & Analysis

Conference

Author

Keyword

1

2 3
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