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a b s t r a c t

In this paper, we start by studying the cooperative model of Hansen et al. (1998) which
describes folding and unfolding transitions of proteins. Analytical expressions for different
thermodynamic quantities are derived, including the degree of thermodynamic cooper-
ativity. This model is then extended to take into account proteins that can aggregate
forming amyloid-like fibril structures. Changes to the model were guided by our current
understanding of the thermodynamics of fibril formation. We provide analytical equations
for different thermodynamic quantities of the modified model and we study its phase
diagram as a function of temperature and the binding energy of the protein to the fibril
ε⋆. We find that for positive ε⋆ values, fibrils are the most stable state at low temperatures.
Moreover, the model predicts that fibrils can coexist with heat unfolded, native, or cold
unfolded states.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The different structures adopted by proteins at various conditions of temperature and solvation determine how these
biomolecules contribute to the survival of cells [1]. At physiological conditions, proteins adopt ordered conformations
known as native or folded state [2,3]. The adoption of these conformations is essential for proteins to function in the cell.
At conditions in which entropic effects play an important role, e.g., high temperature, the unfolded state which comprises a
large number of disordered conformations is favored [4,5]. Most proteins cannot function in the cell when unfolded. Proteins
can also aggregate and form amyloid-like fibril structures when subjected to the right conditions [6–8]. For some protein
sequences fibril-like structures have been associated with diseases [9]. A case in point are fibrils from the amyloid-β protein
which are a main constituent of plaques in the brain of patients afflicted with Alzheimer’s diseases [10,11]. Thus, a same
protein sequence can contribute to the survival of cells or be responsible for diseases depending on the conformations it
adopts [12]. The aim of this paper is to leverage on our thermodynamic understanding of proteins to provide insights into
phase diagrams that includes native, unfolded, and fibril structures—see Fig. 1.

The transition between folded and unfolded states of proteins resembles a first-order phase transition whereby order
parameters describing the degree of folding change abruptly as a function of external fields, e.g., temperature. This accounts
for bimodal distributions of the order parameter at the transition temperature implying that proteins spend most of their
time either in the native or in the unfolded state and almost no time at intermediate conformations [13]. This type of
transition is also known as cooperative and it arise when the binding energy of a ‘‘native bond’’ (i.e., a bond in the native
state) is reinforced by the existence of other native bonds in the system [14]. This scenario for the emergence of cooperativity
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Fig. 1. Cartoon-like representation of native, unfolded and fibril structures. Arrows represent possible transitions between these states.

is consistent with the instability of many secondary structure of proteins (e.g., α-helix and β-sheet) in isolation that become
stable when reinforced by non-local native contacts [15]. Thus, folding emerges from the concurrent formation of local
and non-local bonds that give rise to secondary and tertiary structures of proteins, respectively [15]. However, the atomic
origin of this reinforcement remains a question of debate [13]. Environmental-dependent hydrogen bonding [14], side-chain
packing [16], and desolvation effects [17–19] are likely to contribute to increase folding cooperativity.

Experimentally, the degree of cooperativity of folding/unfolding transitions can be quantified using calorimetric exper-
iments [13,20] whereby the heat capacity Cp of proteins is measured as a function of temperature [21]. These experiments
have also contributed to elucidate the main molecular forces driving protein folding [15]. In particular, the intrinsic increase
in heat capacity upon unfolding, i.e., ∆Cp = Cunfolded

p − Cnative
p > 0, is ascribed to the solvation of hydrophobic residues

that are buried in the native state and become exposed to the solvent [22,23]. Accordingly the magnitude of ∆Cp was
shown to increase proportionally to the number of non-polar residues in the protein [24]. This relation between ∆ Cp and
non-polar residues remains an important argument in favor of hydrophobic interactions being a main force driving protein
folding [15,22]. Calorimetric experiments can also be used to measure changes in enthalpy ∆Ho and entropy ∆So at the
transition temperature To. These quantities, i.e., ∆Cp, ∆Ho, ∆So, and To, can be used to compute changes in the Gibbs free-
energy upon unfolding, i.e., ∆G = Gunfolded

− Gnative [21,25–28]:

∆G(T ) = ∆Ho − T∆So + ∆Cp

[
(T − To) − T ln

( T
To

)]
. (1)

The curvature of the temperature dependence of ∆G in this equation is characterized by ∆Cp. Since ∆Cp is positive
for proteins, this implies that proteins undergo phase transitions (when ∆G is equal to zero) at both high and low
temperatures [29,30]. As a proof of concept, hydrophobic effects incorporated in coarse-grained models of proteins were
shown to reproduce these transitions [31–37]. The ‘‘cooperative model’’ that will be modified in this work to account for
fibrillization reproduces thermodynamic properties (∆Cp > 0) of folding/unfolding transitions as well as their high degree
of cooperativity [38,39].

Only recently have experiments shown that fibrils can be exist in equilibrium with dissolved proteins [40,41]. In this
equilibrium, proteins dissociate and are added to the fibril reversibly [40–43]. A few experiments have measured changes
in thermodynamic quantities associated with the addition/dissociation of proteins into/from a matured fibril [40,41,44].
These experiments reported both positive and negative ∆Cp [45–49]. Currently, it is unclear how the sign of ∆Cp relate to
the protein sequence, the structure of fibrils, and/or solvent condition. Recent all-atom molecular dynamics simulations
computed ∆Cp for the dissociation of a non-polar fragment of the Amyloid-β protein (residues 16–21) [50]. This quantity
was shown to be positive as expected for the solvation of non-polar residues but small (less than 1 kJ/mol/K). The latter is
consistent with the lesser sensitivity of fibrils to temperature compared to the native state. This greater stability of fibrils to
temperature can be related to increased hydrogen bonding formation in these structures compared to protein folding [51].
These hydrogen bonds form cooperatively in β-sheets structures and fibrils [52]. Cooperativity in amyloid-fibrils has also
been observed as a function of protein concentration. Increasing the concentration of proteins in solution accounts for a
cooperative increase in the average length of fibrils [53].

This work uses the cooperativemodel proposed by Hansen and co-workers [38,39] to describe protein folding transitions
and the realization that protein addition to fibrils may be cooperative [52]. Accordingly, in this paper we study the
cooperative model of protein folding and we provide analytical expressions for the temperature dependence of its different
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Fig. 2. Schematic representation of non-polar solvation during protein unfolding. (a) Native state wherein non-polar side chains (black circles) are buried
in the dry core of the protein. (b) Unfolded state where non-polar side chains are exposed to the solvent. Water molecules surrounding non-polar side
chains (red) adopt low entropic cage-like structures compared to bulk water (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

thermodynamic quantities. We also compute the degree of thermodynamic cooperativity of the model that is found to
be larger than for real proteins. In addition, our current understanding of the thermodynamics of fibril formation is used
to modify the model to allow proteins to adopt amyloid-like fibrils. Analytical expressions for different thermodynamic
quantities of the modified model are derived and its phase diagram is studied as a function of temperature and the fibril
binding energy ε⋆. We find that for ε⋆

≥ 0, fibrils are more stable at low temperatures. Moreover, by varying ε⋆, these
structures can be formed from heat unfolded, native, and cold unfolded states by decreasing the temperature.

This paper is organized as follow. In Section 2 we describe the cooperative model of protein folding and its modified
version in which proteins are allowed to adopt amyloid-like fibril structures. We refer to the latter as the cooperative fibril
model. Next, analytical solutions and results are presented for both models in Sections 3 and 4, respectively. At last, we
provide a conclusion to this work.

2. Model description

2.1. Cooperative model of protein folding

The cooperative model of Hansen et al. [38] provides insights into folding–unfolding transitions of proteins that can form
N bonds in the native state. The sequence of native bonds that are formed during folding is assumed to be known and bonds
are labeled according to the chronological order in which they form. The state φi of the ith bond can take values 1 or 0
dependent on whether it is formed or broken, respectively. Thus, the conformation of the protein is described by the set of
φi values of its N bonds.

Based on the observation that proteins fold cooperatively, the model posits that the formation of the ith native bond
will contribute to stabilize the protein structure only if bonds 1 to i − 1 have already been formed. This is expressed
mathematically in the Hamiltonian:

Hnative = −εo [φ1 + φ1φ2 + φ1φ2φ3 + · · · + φ1φ2φ3 · · · φk · · · φN ] . (2)

where εo is the binding energy of a native bond which for simplicity is assumed to be the same for all N bonds.
Another important contribution to the energy of the system comes from solvation of non-polar amino acids that are

initially buried in the dry core of the protein and become exposed to water as the protein unfolds. Non-polar solvation
accounts for a reduction in the entropy of the system as water molecules prefer to adopt a reduced set of ordered (cage-like)
conformations in the vicinity of non-polar molecules [31,32,54]—see Fig. 2. This effect is taken into account by a new set of
variables si representing the state of water molecules in the vicinity of the ith native bond. Water molecules can occupy a
discrete number g of states, i.e., 0 ≤ si ≤ g − 1, with equidistant energy from each other. In other words, the energy of
water molecules is given by wi = εmin + si ∆ε. In the model, water states are coupled to the conformation of the protein by
the Hamiltonian:

Hsolvation = (1 − φ1) w1 + (1 − φ1φ2) w2 + · · · + (1 − φ1φ2φ3 · · · φk) wk+

· · · + (1 − φ1φ2φ3 · · · φk · · · φN) wN .
(3)

Notice that when a new native bond is formed all the g water states associated with it contribute with the same zero
energy to Hsolvation—see Fig. 2. Thus, all g water states are equally likely to be adopted, e.g., the system will have a high
entropy. In contrast, when the ith native bond is broken, water states defined by a large si will be less likely to occur than
the ones defined by a small si. In this case, the system will have a lower entropy.

The hamiltonian defined by the sum of Eqs. (2) and (3) is known as the cooperative model for protein folding:

Hcooperative = Hnative + Hsolvation. (4)
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Table 1
Schematic representation of four states of a protein that can
form N = 5 bonds. The order parameter Ψ describing these
four states is shown.
Bounded sequence Protein state Ψ

1 1 1 1 1 Folded state 1
1 1 0 1 0 Folded/Unfolded 3/5
0 0 1 0 1 Fibril/Unfolded 2/5
0 0 0 0 0 Fibril state 0

It is defined by four parameters: N , εo, εmin, and ∆ε. As shown in the result section, it accounts qualitatively for the main
thermodynamic properties of folding and unfolding transitions.

2.2. Cooperative fibril model

The aim of this section is to modify the cooperative model, i.e., Eq. (4), to describe not only folding and unfolding
transitions but also transitions that lead to the fibril state. For simplicity, we assume that the total number of bonds N
formed by a protein in the native state is the same as the number of bonds formed in the fibril state. In the modified model,
each bond φi will contribute either to the native (φi = 1) or to the fibril (φi = 0) state. Moreover, the formation of both
native and fibril bonds will contribute to minimize the energy of the system in a cooperative manner. This can be described
using a Hamiltonian that contains two terms:

H = Hnative + Hfibril, (5)

where Hnative favors the native state as defined in Eq. (2) and Hfibril favors the fibril state. The latter can be written
mathematically as:

Hfibril = −ε⋆ [(1 − φ1) + (1 − φ1) (1 − φ2) + · · ·+

(1 − φ1) (1 − φ2) · · · (1 − φN)] ,
(6)

where ε⋆ is the binding energy of a bond between the protein and the fibril. This term of the Hamiltonian is minimized
whenever φi = 0, and the protein is added to the fibril in a cooperative manner. The magnitude of ε⋆ as well as εo in Eq.
(2) can increase or decrease depending on the condition of the solvent. In particular, conditions that are favorable to fibril
formation are less favorable to protein folding and vice versa. This accounts for a coupling between εo and ε⋆. For simplicity
we use εo = (1 − ε⋆/3) for this coupling.

A natural order parameter to describe protein conformations that emerge from Eq. (5) is:

Ψ =
1
2N

{[φ1 + φ1φ2 + · · · + φ1φ2 · · · φN ] − [(1 − φ1) + (1 − φ1) (1 − φ2) +

· · · + (1 − φ1) (1 − φ2) · · · (1 − φN)]} +
1
2

, (7)

=
1
2

(
⟨M⟩ − ⟨F⟩

)
+

1
2

,

where ⟨M⟩ and ⟨F⟩ are the fraction of bonds in native and fibril states, respectively. Using this definition, the different protein
states described by Ψ are:

Ψ =

{ 1 , native ;

1/2 , unfolded ;

0 , fibril .
(8)

Bonds of the protein that do not contribute toHnative orHfibril are considered to be unfolded as illustrated in Table 1. Unfolded
segments of the protein exhibit a high entropy, i.e., several permutations of the φi values in these segments correspond to
an unfolded segment. Conversely, only specific sequences of φi, i.e., consecutive ones or consecutive zeros, account for the
low entropic native and fibril states, respectively. As will be shown in the result section, under certain conditions folded
and fibril states can have the same free-energy implying that these states can coexist. However, transitions of a particular
protein from folded (described by sequences of ones in the model) to fibril (sequences of zero) states require it to unfold—as
expected experimentally [55,56].

In addition to Hnative and Hfibril, solvation of non-polar residues contribute significantly to protein folding/unfolding. This
effect is taken into accounted byHsolvation in Eq. (3). Non-polar residues are also known to play an important role accelerating
the kinetics of fibril formation [57]. However,we expect the effect of these residues to play a lesser role in the thermodynamic
stability of fibrils as the core of these structures are not necessarily filled with non-polar side chains [7,8]. Fibril cores can
be non-polar, polar or amphiphilic depending of the amino acid sequence of the protein forming the fibril. This implies that
while protein dissociation from fibrilsmay lead to the exposure of non-polar side chains towater this process is energetically
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less important than other changes in energy, e.g., breakage of hydrogen bonds and exposure of other chemical groups of the
protein to water.

Thus, we propose as a new Hamiltonian to describe a system where the protein can fold into the native state, be
incorporated into a fibril, or remain unfolded:

H⋆
= Hnative + Hfibril + Hsolvation . (9)

This model is defined by the number of bonds N , the binding energy in the fibril state ε⋆, and solvation terms (i.e., εmin, ∆ε,
and g). The state of the system is described by two sets of variables {φ1, φ2, . . . , φN} and {s1, s2, . . . , sN}. We refer to H⋆ as
the cooperative fibril model.

3. Analytical solution

3.1. Cooperative model of protein folding

The cooperative model of protein folding has been extensively studied and analytical solutions are available in the
literature [38,39]. For completeness, we showhere how to compute the partition functionZ fromwhichmeaningful physical
quantities can be obtained. To computeZ , notice that there are 2N−M−1 protein states with energy−Mεo for 0 < M < N −1
and there is 1 protein state with energy −Nεo. Moreover, for each protein state with energy −Mεo, water molecules around
the first M native bonds contribute zero energy to Hsolvation. This zero energy state is g times degenerate. The other N − M
water states contribute to the partition function with zw ≡

∑g
k=1 e

−βwk =

[
1−e(g+1)β∆ε

1−e∆βε

]
e−βεmin . The partition function is

obtained by adding all these contributions together:

Z =

N−1∑
M=0

2N−M−1e−MβεogM
(
zw

)N−M
+ e−NβεogN . (10)

Using x =
g

2 zw
eβεo , the average energy ⟨E⟩ = −

1
Z

dZ
dβ and themean fraction of native bonds ⟨M⟩ =

1
N x

∂ lnZ
∂x can be expressed

analytically as:
⟨E⟩

N
= −⟨M⟩ εo − [1 − ⟨M⟩]

1
zw

∂ zw
∂β

, (11)

with

⟨M⟩ =

[
xN +

1
2

∑N−1
M=0

M
N xM

]
[
xN +

1
2

∑N−1
M=0 xM

] =

[
(1 − x)2 −

1
2

]
xN +

1
2x

[(
1 −

1
N

)
xN +

1
N

]
(1 − x)

[( 1
2 − x

)
xN +

1
2

] , (12)

and

−
1
zw

∂zw
∂β

= εmin +
e−β△ε

(1 − e−β△ε)

[
1 −

g
zw

e−β(εmin+(g−1)△ε)

]
△ε . (13)

Using these quantities, we also compute the heat capacity of the system:

C = d⟨E⟩/dT . (14)

3.2. Cooperative fibril model

The properties of a protein described by Eq. (9) can be solved analytically by computing the partition function Z =∑
e−β(Hnative+Hfibril+Hsolvation) of the system. β is the inverse of the thermal energy and the sum in Z is performed over all the

possible states of the protein {φ1 , φ2, . . . , φN} and water molecules {s1, s2, . . . , sN}. To perform this sum, notice that the
different energy states E of the system can be written in terms of the number of native bondsM and fibril bonds F :

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− (N − F) ε⋆
+

N∑
k=1

(εmin + △ε sk) , for 0 ≤ F ≤ N − 1;M = 0 ,

−Mεo +

N∑
k=m+1

(εmin + △εsk) ; for 1 ≤ M ≤ N − 1 ,

−Nεo , for M = N .

(15)

Notice that there is only one permutation of the bond sequence (see Table 1) that accounts for an energy −Nεo. In this state,
water molecules around the protein contribute zero energy to Hsolvation which is gN times degenerate. Thus, this native state
contribute to Z with:

Znative = exp(βNεo) gN . (16)
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In the same vein, there are 2(N−M−1) permutations in the bond sequence that accounts for an energy −Mεo. Around the M
native bonds of these permutations, water molecules do not contribute to Hsolvation which is, therefore, gM times degenerate.
The other (N − M) water molecules account for a non-zero Hsolvation and they contribute to the partition function with:

zw =

g∑
k=0

e−(εmin+k∆ε)
=

[1 − egβ∆ε

1 − eβ∆ε

]
e−βεmin (17)

Thus, states withM native bonds contribute to Z with:

ZM = 2N−M−1 exp[β(N − M − 1)εo] gM zN−M
w . (18)

At last, there are 2(N−F−1) permutations in the bond sequence with energy −Fε⋆. In each of these states, water molecules
contribute zw to the partition function. Thus, protein conformations that forms F bonds with the fibril will contribute to Z
with:

ZF = 2N−F−1 exp[βFε⋆
] zNw . (19)

Using x =
g

2 zw
eβε⋆

o and y =
1
2 e

βε⋆
, the total partition function of the system reads:

Z = ZF + ZM + Znative ,

= (2zw)N
{[

yN +
1
2

N−2∑
F=0

yN−F−1

]
+

[
1
2

N−1∑
M=1

xM + xN
]}

.
(20)

From the partition function, we can compute the mean fraction of native bonds ⟨M⟩, the mean fraction of bonds in the
fibril state ⟨F⟩, and the mean energy of the system ⟨E⟩,

⟨M⟩ =

( 1
2 + x2

)
xN −

1
2x

[(
3 +

1
N

)
xN −

1
N

][( 1
2 − x

)
xN +

1
2x

]
(1 − y) +

[( 1
2 − y

)
yN +

1
2y

]
(1 − x)

(1 − y)
(1 − x)

,

⟨ F⟩ =

( 1
2 + y2

)
yN −

1
2y

[(
3 +

1
N

)
yN −

1
N

][( 1
2 − x

)
xN +

1
2x

]
(1 − y) +

[( 1
2 − y

)
yN +

1
2y

]
(1 − x)

(1 − x)
(1 − y)

,

(21)

and

⟨ E⟩

N = −⟨M⟩εo − [1 − ⟨M⟩]
1
zw

dzw
dβ

− ⟨F⟩ ε⋆ . (22)

The free-energy of the system F = −T ln(Z) and the entropic energy −TS = F − ⟨E⟩ are also readily available from the
partition function. An analytical expression for the heat capacity is provided in Appendix.

4. Results and discussion

4.1. Cooperative model of protein folding

The original cooperative model of protein folding described by Eq. (4) provides important insights into the thermody-
namic properties of this transitions. These insights are summarized in Fig. 3. In panel a, we show the mean fraction of native
bonds ⟨M⟩ (given by Eq. (12)) as a function of temperature. This figure indicates that the native state of the protein (when ⟨M⟩

is close to 1) is only stable at intermediate temperatures and it unfolds at both high and low temperatures. These transitions
are known as heat and cold denaturation, respectively [29,31]. They emerge from the temperature dependence of free energy
difference between foldedFf and unfoldedFu states, i.e.,∆F = Fu − Ff . This quantity can be computed from the partition
function at folded, i.e., Zf =

(
g eβεo

)N , and unfolded, i.e., Zu = (2 zw)N , states: ∆F/N = −T ln(Zu/Zf ) = εo − T ln
(
2 zw

g

)
.

This free energy difference is depicted by a black line in Fig. 3b. Folded and unfolded states are stablewhenever∆F is positive
and negative, respectively. Coexistence between these states are characterized by ∆F = 0 and they occur at both high and
low temperatures.

In Fig. 3bwe also show the difference in internal energy between folded and unfolded states ⟨∆E⟩/N =
(
Eu − Ef

)
/N =(

εo −
1
zw

dzw
dβ

)
as well as the difference in entropic energy between folded and unfolded states −T ∆S/N = −T

(
Su − Sf

)
/

N = ∆F/N − ⟨∆E⟩/N as a function of temperature. At high temperature, i.e., T > 4 in Fig. 3b, both ∆F and −T∆S are
negative while ⟨∆E⟩ is positive. This implies that the free-energy of the unfolded state is dominated by entropy while it is
opposed by ⟨∆E⟩. This entropic contribution can be ascribed to the increased number of states of the unfolded protein given
by Hnative. In contrast, protein unfolding at low temperature is dominated by enthalpy and this can be ascribed to ordering
of water molecules around non-polar residues given by Hsolvation.

In Fig. 3c, we show the dependence of C (see Eq. (14)) on temperature. C peaks at both high and low temperatures
characterizing heat and cold denaturation, respectively. An important feature of C is that its magnitude is smaller in the



160 J.S. Espinoza Ortiz, C.L. Dias / Physica A 511 (2018) 154–165

Fig. 3. Cooperative model of protein folding. Temperature dependence of (a) the fraction of native bonds (⟨M⟩), (b) changes in internal energy (⟨∆E⟩),
entropic energy (−T∆S) as well as free-energy (∆F) upon unfolding, and (c) heat capacity C . Shaded areas highlight folding and unfolding transitions.
Native and unfolded states are represented by the letters N and U. We used N = 500, εo = 1, εmin = −2.5, ∆ε = 0.207 and g = 53.

native state compared to the unfolded state at both heat and cold denaturations. This accounts for a positive change in heat
capacity upon unfolding ∆C = Cu − Cf . The rational behind this change is ascribed to the exposure of non-polar residues to
water upon unfolding that accounts a large increase in heat capacity [58]. This is consistent with the linear dependence of
∆C on the number of non-polar residues that was observed for various proteins [24].

In Fig. 4a we show ∆C upon heat denaturation. The peak in the heat capacity can be used to estimate the degree of
thermodynamic cooperativity of folding/unfolding transitions by comparing van’t Hoff and calorimetric enthalpies [20]. The
van’t Hoff enthalpy is given as ∆HvH = 2Tmax

√
kbCmax where Cmax and Tmax are the peak in the heat capacity value and the

transition temperature as shown in Fig. 4b. The calorimetric enthalpy is computed by integrating the heat capacity across
the transition region ∆Hcal =

∫
CbdT where Cb is the heat capacity after proper subtraction of the baseline—see Fig. 4. The

ratio of these quantities, i.e.,

∆HvH/∆Hcal = κ2 ≡
2Tmax

√
kbCmax

∆Hcal
, (23)

provides an estimate of how distributions of enthalpies at folded and unfolded states are separated at the coexistence
temperature. κ2 is approximately unity for many real systems accounting for bimodal distributions of enthalpy at the
coexistence temperature [20]. For the cooperative model of protein folding and the parameters used to generate Fig. 4, we
find that κ2 ≈ 10. Large values of κ2, i.e., κ2 ≫ 1, are expected to emerge from the functional form of Hnative independently
of model parameters.

4.2. Cooperative fibril model

The phase diagram of the cooperative fibril model is depicted in Fig. 5. Colors in this diagram represent the order
parameterΨ which is shown as a function of temperature and the fibril binding energy ε⋆. Transitions between the different
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Fig. 4. Cooperative model of protein folding. (a) Temperature dependence of the heat capacity C around heat denaturation. The baseline (red line) given
by 7 × 10−5/(1 + exp(−15(T − 3.978))) + 1 × 10−5 is shown as well as ∆C . (b) Heat capacity after baseline subtraction. Cmax = 3698.7 and Tmax = 3.978
are also shown. Data are for N = 500, εo = 1, εmin = −2.5, ∆ε = 0.207 and g = 53. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Phase diagram of the cooperative fibril model. The color scheme represents the order parameterΨ which is shown as a function of temperature and
the fibril binding energy ε⋆ . The fibril state (Ψ = 0) is represented in black, the unfolded state (Ψ = 0.5) is depicted in red and the folded state (Ψ = 1) is
shown in yellow. Data are for N = 500, εmin = −2.5, ∆ε = 0.207 and g = 53. Notice that we are using εo = 1 − ε⋆/3 for the coupling between εo and
ε⋆ (see Model Description). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

phases occur within a short range of temperatures and ε⋆ values which is the signature of thermodynamic cooperativity.
Native and fibril conformations in the model exhibit low energy and, therefore, they are singled out at low temperatures.
Similarly, theHsolvation term in Eq. (3) accounts for an unfolded state that has a low energy (lower than the energy of the native
state) at very low temperatures. Competition between these energetic terms provides the rational for the low temperature
behavior in Fig. 5. The behavior of the phase diagram at high temperature is determined by entropy which is higher for the
unfolded state.

To highlight the complexity of the phase diagram of the cooperative fibril model, we show in Fig. 6 the dependence of Ψ
(upper panels) and heat capacity (bottom panels) on temperature. These quantities were computed from Eqs. (7) and (A.1).
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Fig. 6. Cooperative fibrilmodel. Temperature dependence of (a–d) the order parameterΨ and (e–h) the heat capacity. Columns from left to right correspond
to ε⋆

= −1.56, 0.36, 1.06, and 1.62, respectively. Unfolded, native, and fibril states are represented by letters U, N, and F. Shaded areas highlight temperature
regions for which there is a phase transition. Data are for N = 500, εmin = −2.5, ∆ε = 0.207 and g = 53.

For ε⋆
= −1.56 (panels a and e), the protein undergoes two phase transitions: heat and cold denaturations. This behavior is

similar to the one in the original cooperative model (see Section 4.1) where fibrils are non existent. In this case, the protein
unfolds (Ψ = 1/2) at both low and high temperatures and the native state is stable at intermediate temperatures when
Ψ = 1 in panel a. These transitions are characterized by peaks in the heat capacity in panel e. For ε⋆

= 0.36 (panels b
and f ), in addition to heat and cold denaturation, the protein also forms fibrils at low temperature. Accordingly, the order
parameter exhibits plateau regions at Ψ = 1, 0.5, and 0, whereas the heat capacity peaks at the three values of temperature
where Ψ changes. Notice that for this ε⋆ value, fibrillization emerges from the cold unfolded state. The two transitions that
emerge for ε⋆

= 1.06 (panels c and g) are heat denaturation and fibrillization from the native state. Peaks in the heat
capacity associated with this transition are shown in panel g . At last, panels d and h show fibrillization emerging from the
unfolded stated for ε⋆

= 1.62 and its corresponding peak in the heat capacity.
Fig. 6 predicts that for some parameters of the model, fibrils can form from cold unfolded, native, or heat unfolded

states. Experimentally, equilibrium properties of fibrils are studiedwhen these structures exist in equilibriumwith unfolded
proteins (mostly at ambient temperature) [40]. However, tuning the content of secondary structures of a small peptide (from
mostly α-helix to mostly β-sheet) did not prevent fibrillization [56]. This suggests that the formation of fibrils is robust and
it does not depend significantly on the structure of the protein that is being added to it. Our results are consistent with these
experimental findings inasmuch as fibrils can form from different structures.

Another result that emerges from the model is that fibrils may exist in equilibrium with native protein structures close
to the fibrillization transition in Fig. 6 c and g . Coexistence between these two states is possible whenever the energy in the
fibril state is close to the energy in the native state, i.e., ε⋆

≈ εo. Thus, for the coupling between ε⋆ and εo used in this work
(i.e., εo = 1 − ε⋆/3), coexistence between native an fibril states will emerge close to ε⋆

= εo = 0.75. In Fig. 7, we show
the order parameter Ψ and the heat capacity for ε⋆ values close to 0.75, i.e., 0.70 (panels a and d), 0.80 (panels b and e), and
0.85 (panels c and f ). The temperature range ∆T ⋆ in which the unfolded state is stable becomes shorter as ε⋆ increases from
0.7 to 0.8, and it is zero at 0.85 when the unfolded state is not an equilibrium state. Notice that for a general coupling of the
form εo = 1 − A ε⋆ with A > 0, coexistence between native and fibril states will occur when εo = ε⋆

= 1/(1 + A). One
may speculate that under such conditions of ε⋆ and at the transition temperature, fibrils may be less toxic (i.e., they might
be more inert) as proteins in the solution may still exert their biological function.

5. Conclusion

In this paper we have studied the cooperative model of folding/unfolding transitions of proteins. We obtained analytical
expressions for various thermodynamic quantities as a function of temperature and we showed that the model exhibits a
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Fig. 7. Coexistence between fibril and native structures for the cooperative fibril model. Temperature dependence of (a–c) the order parameter Ψ and
(d–f) the heat capacity. Columns from left to right correspond to ε⋆

= 0.70, 0.80 and 0.85, respectively. Fibril, unfolded and native states are represented
by letters F, U and N. Notice that as ε⋆ increases, the temperature range ∆T ⋆ in which the unfolded state is stable becomes shorter. Data are for N = 500,
εmin = −2.5, ∆ε = 0.207 and g = 53.

degree of thermodynamic cooperativity that is larger than for real proteins. Changes in the functional formof theHamiltonian
may be needed to account for a degree of cooperativity that resembles more closely experimental data. In addition, we
modified the cooperative model to take into account amyloid-like fibrils. In this process, our current understanding of
the thermodynamic properties of amyloid fibrils was taken into account. The modified model was studied as a function
of temperature and the fibril binding energy ε⋆. The modified model incorporates a natural order parameter to describe
unfolded, fibril and folded states. Moreover, the model is exact in as much as the partition function and thermodynamic
quantities can be derived analytically.We find that for ε⋆

≥ 0, fibrils are themost stable state at low temperatures.Moreover,
by varying ε⋆, these structures can form from heat unfolded, native, and cold unfolded states by decreasing the temperature.
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Appendix. Analytic calculations

We focus on the cooperative fibril model developed in Section 2.2, to provide an expression for its heat capacity C:

1
N2 T
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1
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d2 lnZ
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1
N

∂⟨M⟩

∂β

(
εo −

1
zw

∂zw
∂β

)
+ [1 − ⟨M⟩]

1
N

∂

∂β

(
1
zw

∂zw
∂β

)
+

1
N

∂⟨F⟩

∂β
,

(A.1)

where ⟨M⟩ and ⟨F⟩ are the fraction of bonds in the native and fibril states, respectively. To compute these quantities and
their derivatives, we define:
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In term of these variables, ⟨M⟩ and ⟨F⟩ can be written:

⟨M⟩ =
px
q
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, ⟨F⟩ =
py
q
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, (A.4)

and their derivatives read,
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(A.5)

At last, we define r = e−β△ε , with β =
1
T , to compute from Eq. (17) the following quantities:
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(A.6)

Establishing that the coupling between εo and ε⋆ is given by εo = 1 − ε⋆/3, the heat capacity C can now be computed by
replacing Eqs. (A.4)–(A.6) into Eq. (A.1).
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