1. V_x is the velocity of a particle moving along the x axis as shown. If $x = 2.0$ m at $t = 1.0$ s, what is the position of the particle at $t = 6.0$ s?

 a. -2.0 m
 b. $+2.0$ m
 c. $+1.0$ m
 d. -1.0 m
 e. 6.0 m

2. A particle moving along the x axis has a position given by $x = (24t - 2.0t^3)$ m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero?

 a. 24 m/s^2
 b. zero
 c. 12 m/s^2
 d. 48 m/s^2
 e. 36 m/s^2

3. An automobile traveling along a straight road increases its speed from 30.0 m/s to 50.0 m/s in a distance of 180 m. If the acceleration is constant, how much time elapses while the auto moves this distance?

 a. 6.00 s
 b. 4.50 s
 c. 3.60 s
 d. 4.00 s
 e. 9.00 s

4. John throws a rock straight down with speed 12 m/s from the top of a tower. The rock hits the ground after 2.37 s. What is the height of the tower? (air resistance is negligible)

 a. 4.8 m
 b. 19.6 m
 c. 27.5 m
 d. 38.4 m
 e. 56.0 m

5. Two vectors \vec{A} and \vec{B} are given by $\vec{A} = 5\hat{i} + 6\hat{j} + 7\hat{k}$ and $\vec{B} = 3\hat{i} - 8\hat{j} + 2\hat{k}$. If these two vectors are drawn starting at the same point, what is the angle between them?

 a. 106°
 b. 102°
 c. 110°
 d. 113°
 e. 97°
6. Vectors \(\vec{A} \) and \(\vec{B} \) are shown. What is the magnitude of a vector \(\vec{C} \) if \(\vec{C} = \vec{A} - \vec{B} \)?

![Diagram](image)

- a. 46
- b. 10
- c. 30
- d. 78
- e. 90

7. The three forces shown act on a particle. What is the direction of the particle’s acceleration?

![Diagram](image)

- a. 35°
- b. 45°
- c. 65°
- d. 55°
- e. 85°

8. Two vectors \(\vec{A} \) and \(\vec{B} \) are given by \(\vec{A} = 5\hat{i} + 6\hat{j} + 7\hat{k} \) and \(\vec{B} = 3\hat{i} - 8\hat{j} + 2\hat{k} \). If these two vectors are drawn starting at the same point, what is the angle between them?

- a. 106°
- b. 102°
- c. 110°
- d. 113°
- e. 97°

9. At \(t = 0 \), a particle leaves the origin with a velocity of 12 m/s in the positive \(x \) direction and moves in the \(xy \) plane with a constant acceleration of \(\left(-2.0\hat{i} + 4.0\hat{j} \right) \text{ m/s}^2 \). At the instant the \(y \) coordinate of the particle is 18 m, what is the \(x \) coordinate of the particle?

- a. 30 m
- b. 21 m
- c. 27 m
- d. 24 m
- e. 45 m

10. In 2.0 s, a particle moving with constant acceleration along the \(x \) axis goes from \(x = 10 \) m to \(x = 50 \) m. The velocity at the end of this time interval is 10 m/s. What is the acceleration of the particle?

- a. +15 m/s\(^2\)
- b. +20 m/s\(^2\)
- c. −20 m/s\(^2\)
- d. −10 m/s\(^2\)
- e. −15 m/s\(^2\)
11. A ball is thrown horizontally from the top of a building 0.10 km high. The ball strikes the ground at a point 65 m horizontally away from and below the point of release. What is the speed of the ball just before it strikes the ground?

a. 43 m/s
 b. **47 m/s**
 c. 39 m/s
 d. 36 m/s
 e. 14 m/s

12. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 17 s. What is the final velocity after 11 s?

a. 0.19 m/s
 b. 1.6 m/s
 c. 3.3 m/s
 d. **2.1 m/s**
 e. 5.1 m/s

13. A ball is thrown at an angle of $\theta = 30$ deg from the top of a building 0.10 km high. If the magnitude of ball’s initial velocity is 20 m/s, how long is the ball in air?

a. 1.2 s
 b. 4.8 s
 c. **5.7 s**
 d. 12.6 s
 e. 18.0 s

14. The initial speed of a cannon ball is 200 m/s. If the ball is to strike a target that is at a horizontal distance of 3.0 km from the cannon, what is the minimum time of flight for the ball?

a. **16 s**
 b. 21 s
 c. 24 s
 d. 14 s
 e. 19 s

15. A 3.00-kg mass undergoes an acceleration given by $\mathbf{a} = (2\mathbf{i} + 5\mathbf{j})$ m/s2. The magnitude of the net force is

a. 2.0 N
 b. 4.0 N
 c. 6.0 N
 d. 12.0 N
 e. **16.0 N**

16. A 10-kg block on a horizontal plane is connected by a cord over a massless, frictionless pulley to a second block of mass m. What hanging mass m is needed so that the 10-kg block can move at acceleration of 2.8 m/s2?

a. 1 kg
 b. 2 kg
 c. 3 kg
 d. **4 kg**
 e. 5 kg
17. The horizontal surface on which the block slides is frictionless. If $F = 20 \text{ N}$ and $M = 5.0 \text{ kg}$, what is the magnitude of the resulting acceleration of the block?

\[a. \ 5.3 \text{ m/s}^2 \]
\[b. \ 6.2 \text{ m/s}^2 \]
\[c. \ 7.5 \text{ m/s}^2 \]
\[d. \ 4.7 \text{ m/s}^2 \]
\[e. \ 3.2 \text{ m/s}^2 \]

18. At an instant when a 4.0-kg object has an acceleration equal to $\left(5\hat{i} + 3\hat{j} \right) \text{ m/s}^2$, one of the two forces acting on the object is known to be $\left(12\hat{i} + 22\hat{j} \right) \text{ N}$. Determine the magnitude of the other force acting on the object.

\[a. \ 2.0 \text{ N} \]
\[b. \ 13 \text{ N} \]
\[c. \ 18 \text{ N} \]
\[d. \ 1.7 \text{ N} \]
\[e. \ 20 \text{ N} \]

19. The tension in a string from which a 4.0-kg object is suspended in an elevator is equal to 28 N. What is the acceleration of the elevator?

\[a. \ 11 \text{ m/s}^2 \text{ upward} \]
\[b. \ 1.2 \text{ m/s}^2 \text{ upward} \]
\[c. \ 1.2 \text{ m/s}^2 \text{ downward} \]
\[d. \ 10 \text{ m/s}^2 \text{ upward} \]
\[e. \ 2.8 \text{ m/s}^2 \text{ downward} \]