CS408 Cryptography & Internet Security

Lecture 2:

Types of attacks,

Models to evaluate security,

Classical cryptosystems
(shift cipher, substitution cipher)

Reza Curtmola

Department of Computer Science / NJIT

Breaking Ciphers...

- There are different methods of breaking a cipher, depending on:
 - the type of information available to the attacker
 - the interaction with the cipher machine
 - the computational power available to the attacker

CS 408

Lecture 2 / Spring 2015

Breaking Ciphers...

- Ciphertext-only attack:
 - The cryptanalyst knows only the ciphertext.
 - The goal is to find the plaintext and the key.
- NOTE: any encryption scheme vulnerable to this type of attack is considered to be completely insecure.

CS 408

Lecture 2 / Spring 2015

3

Breaking Ciphers (2)

- Known-plaintext attack:
 - The cryptanalyst knows one or several pairs of ciphertext and the corresponding plaintext.
 - The goal is to find the key used to encrypt these messages or a way to decrypt any new messages that use that key.
 - How does the cryptanalyst get the pairs of ciphertext and plaintext?

CS 408

Lecture 2 / Spring 2015

Breaking Ciphers (3)

- Chosen-plaintext attack
 - The cryptanalyst can choose a number of plaintext messages and obtain the ciphertexts for them
 - The goal is to deduce the key used in the other encrypted messages or decrypt any new messages using that key.
- It can be adaptive, the choice of plaintext depends on the ciphertext received from previous requests.

CS 408

Lecture 2 / Spring 2015

5

Breaking Ciphers (4)

- Chosen-ciphertext attack
 Similar to the chosen-plaintext attack, but the
 cryptanalyst can choose a number
 of ciphertexts and obtain the
 plaintexts.
- It can also be adaptive The choice of ciphertext may depend on the plaintext received from previous requests.

CS 408

Lecture 2 / Spring 2015

How Do You Know a Cipher is Secure?

- Show that under the considered attack model, security goals are NOT achieved (break it)
- Show that under the considered attack model, security goals are achieved (evaluate/prove)

CS 408

Lecture 2 / Spring 2015

7

Models for Evaluating Security

- Provable security:
 - Prove security properties based on assumptions that it is difficult to solve a well-known and supposedly difficult problem (example: computation of discrete logarithms, factoring).
 - Reduce the security of a cryptographic scheme to the difficulty of solving a difficult problem
- Ad-hoc security:
 - Variety of convincing arguments that every successful attack requires more resources than the ones available to an attacker.
 - Unforeseen attacks remain a threat.
 - THIS IS NOT A PROOF
 - Many symmetric-key ciphers have obscure design principles, and their security is not fully understood
 - Such ciphers are considered secure if they withstand the proof of time!

CS 408

Lecture 2 / Spring 2015

Provable Security

- Unconditional (information-theoretic) security
 - Assumes that the adversary has unlimited computational resources.
 - Plaintext and ciphertext modeled by their distribution
 - Analysis is made by using probability theory.
 - For encryption systems: perfect secrecy, observation of the ciphertext provides no information to an adversary (besides the length of the plaintext)
 - It is usually expensive and impractical

CS 408

Lecture 2 / Spring 2015

9

Provable Security (2)

- Computational security (practical security)
 - In practice, it is enough to achieve security against adversaries which are computationally bounded
 - Security of a cryptographic scheme is reduced to the difficulty of solving a hard mathematical problem
 - Hard means computationally hard for all adversaries modeled as algorithms that run in polynomial time

CS 408

Lecture 2 / Spring 2015

Recommended Reading

- Trappe & Washington
 - Chapter 1

CS 408

Lecture 2 / Spring 2015

11

Classical cryptosystems

- People have been using secret communication long before the invention of computers
- Encryption scheme (cipher) ensures confidentiality (secrecy) of a message

Symmetric-key cipher

- A symmetric-key encryption scheme is a collection of three algorithms (G, E, D)
 - K (key space), P (plaintext space), C (ciphertext space)
 - Key generation algorithm G generates a key k
 - Encryption algorithm E : K×P → C
 we use notation: c = E_k(p)
 - Decryption algorithm D : K×C→ P
 we use notation: p = D_k(c)
- The following should always hold true (correctness):
 - $D_k(E_k(p)) = p$, for all k and p

CS 408

Lecture 2 / Spring 2015

13

Shift Cipher

- A substitution cipher
- The Key Space:
 - **•** [0 .. 25]
- Encryption given a key K:
 - each letter in the plaintext P is replaced with the K'th letter following the corresponding number (shift right):

 $x = x + K \pmod{26}$

- Decryption given K:
 - shift left: x = x K (mod 26)

History: K = 3, Caesar's cipher

CS 408

Lecture 2 / Spring 2015

Shift Cipher: An Example

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P = CRYPTOGRAPHYISFUN
K = 11
C = NCJAVZRCLASJTDQFY
```

```
C \rightarrow 2; 2+11 mod 26 = 13 \rightarrow N

R \rightarrow 17; 17+11 mod 26 = 2 \rightarrow C

...

N \rightarrow 13; 13+11 mod 26 = 24 \rightarrow Y
```

CS 408

Lecture 2 / Spring 2015

15

Shift Cipher: Cryptanalysis

- Can an attacker find K?
 - YES: exhaustive search, key space is small (<= 26 possible keys).
- · Once K is found, very easy to decrypt

CS 408

Lecture 2 / Spring 2015

General Mono-alphabetic Substitution Cipher

- The key space: all permutations of alphabet $\Sigma = \{A, B, C, ..., Z\}$
- Encryption given a key π :
 - each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π :
 - each letter Y in the cipherext P is replaced with $\pi^{-1}(Y)$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z π = B A D C Z H W Y G O Q X L V T R N M S K J I P F E U BECAUSE \rightarrow AZDBJSZ

CS 408

Lecture 2 / Spring 2015

17

Strength of the General Substitution Cipher

- Exhaustive search is infeasible
 - key space size is 26! ≈ 4*10²⁶
- Dominates the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then

CS 408

Lecture 2 / Spring 2015

Cryptanalysis of Substitution Ciphers: Frequency Analysis

- Basic ideas:
 - Each language has certain features:
 - Frequency of individual letters, or
 - Frequency of groups of two or more letters
 - Substitution ciphers preserve the language features.
 - Substitution ciphers are vulnerable to frequency analysis attacks.

CS 408 Lecture 2 / Spring 2015

Other Frequency Features of English

- Vowels, which constitute 40% of plaintext, are often separated by consonants.
- Letter A is often found in the beginning of a word or second from last.
- Letter I is often third from the end of a word.
- Letter Q is followed only by U
- And more ...

CS 408

Lecture 2 / Spring 2015

21

Substitution Ciphers: Cryptanalysis

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
- The cipher text is examined for patterns, repeated series, and common combinations.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics.

CS 408

Lecture 2 / Spring 2015

Frequency Analysis History

- · Discovered by the Arabs
 - earliest known description of frequency analysis is in a book by the ninth-century scientist Al-Kindi
- Widely used in Europe during the Renaissance period (14th-17th centuries)
- Frequency analysis made substitution cipher insecure

CS 408

Lecture 2 / Spring 2015

23

Summary

- Shift ciphers are easy to break using brute force attacks, they have small key space.
- Substitution ciphers preserve language features and are vulnerable to frequency analysis attacks.

CS 408

Lecture 2 / Spring 2015

Recommended Reading

• Chapter 2.1, 2.3, 2.4

CS 408

Lecture 2 / Spring 2015