
1 

CS408 
Cryptography & Internet Security 

Lecture 9: 
AES 

CS 408 Lecture 9 / Spring 2015 2 

Admin stuff 

l  Assignment #1 has been posted and is due on Feb 24, 
2015, in the beginning of class (4pm) 

l  Course webpage (general information): 
  http://web.njit.edu/~crix/CS.408 

l  Course material (lecture slides, assignments etc): 

  http://web.njit.edu/~crix/CS.408/content 



2 

CS 408 Lecture 9 / Spring 2015 3 

Advanced Encryption Standard (AES) - History 

l  1997: NIST call for candidates to replace DES 
§  Requirements: 

•  Key sizes of 128, 192, and 256 bits 
•  Blocks of 128 bits 
•  Should work on a variety of different hardware 
•  Fast 
•  Cryptographically strong 

l  2 rounds: 
§  1st round: 5 finalists were chosen from 15 candidates 
§  2nd round: Rijndael was chosen from the 5 finalists (MARS, 

RC6, Rijndael, Serpent, Twofish) 
l  Rijndael was developed by two Belgian cryptographers (Joan 

Daemen, Vincent Rijmen) 
l  In 2001, NIST announced AES as a standard (FIPS 197), and 

in 2002 AES became a US Federal Government standard 

CS 408 Lecture 9 / Spring 2015 4 

AES: Evaluation Criteria 

l  Security 
l  Costs 
l  Intellectual property 
l  Implementation and execution 
l  Versatility 
l  Key agility 
l  Simplicity 

 
l  As a side note, on my laptop: 

§  AES-128 encryption: 142 MB/s 
§  DES encryption: 48 MB/s 
§  DES3 (EDE): 18 MB/s 



3 

CS 408 Lecture 9 / Spring 2015 5 

Rijndael: Overview 

l  Block cipher with block length of 128 bits 
l  Three key sizes: 128, 192, or 256 bits 
l  Number of rounds: 10, 12, or 14 (for keys of size 

128, 192, and 256 bits, respectively) 
l  Decryption does not use the same algorithm as 

encryption 
l  Can be used in several modes of operation (ECB, 

CBC, CFB, OFC, CTR, etc.) 
l  Is based on a substitution-permutation network 

(similar to a Feistel network, but has more “inherent 
parallelism”) 

l  Resistant to all known attacks (including linear and 
differential cryptanalysis) 

CS 408 Lecture 9 / Spring 2015 6 

Rijndael: Round Structure 
l  Each round uses several basic steps, one of which depends on 

the round key 
§  Like in DES, for each round there is a round key derived from 

the original key 
§  We’ll study the version with 10 rounds (128 bit key) 
§  There are 10 round keys (each of 128 bits), for rounds 1-10 
§  The original key is considered as 0th round key 

l  The basic steps: 
§  ByteSub transformation (BS): non-linear step which provides 

resistance against differential and linear cryptanalysis 
§  ShiftRow transformation (SR): linear mixing step causes 

diffusion of the bits over multiple rounds 
§  MixColumn transformation (MC): similar purpose to SR 
§  AddRoundKey (ARK): the round key is XOR-ed with the 

result of the previous step 
l  A round consists of: 

 BS ⇒ SR ⇒ MC ⇒ ARK 



4 

CS 408 Lecture 9 / Spring 2015 7 

Rijndael Encryption: The Basic Algorithm 

1.  AddRoundKey, using round key 0 
2.  Nine rounds, each consists of:    

 ByteSub       
 ShiftRow       
 MixColumn       
 AddRoundKey          

using round keys 1 to 9 
3.  A final round (round 10) consisting of:   

 ByteSub       
 ShiftRow       
 AddRoundKey          

using round key 10 

 

CS 408 Lecture 9 / Spring 2015 8 

The Input for Encryption 

l  The plaintext input for encryption is a block of 128 bits, 
which are grouped into 16 bytes (each of 8 bits): 
 a0,0, a1,0, a2,0, a3,0, a0,1, a1,1 , …, a3,3 

l  These 16 bytes are arranged into a 4x4 matrix: 

! 

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 



5 

CS 408 Lecture 9 / Spring 2015 9 

The ByteSub Transformation 

l  Each byte is substituted to another byte, according to 
the S-Box (a 16 x 16 substitution matrix) 
§  If byte a = a1a2a3a4a5a6a7a8, then byte a is substituted with 

the byte in S-Box at row a1a2a3a4 and column a5a6a7a8 
§  S-Box implements a non-linear substitution  

CS 408 Lecture 9 / Spring 2015 10 

Rijndael S-Box 

l  How is Rijndael S-Box different than DES S-Box? 
§  Only one S-Box 
§  S-Box is based on modular arithmetic with 

polynomials, which can be defined algebraically and 
are not random 

§  Easy to analyze, prove attacks fail 



6 

CS 408 Lecture 9 / Spring 2015 11 

! 

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

The ShiftRow Transformation 

l  The four rows of the matrix are shifted cyclically to 
the left by the offsets of 0, 1, 2, and 3, respectively 

! 

c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

b0,0 b0,1 b0,2 b0,3
b1,1 b1,2 b1,3 b1,0
b2,2 b2,3 b2,0 b2,1
b3,3 b3,0 b3,1 b3,2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

CS 408 Lecture 9 / Spring 2015 12 

The MixColumn Transformation 

l  Regard (ci,j) as a 4x4 matrix with entries in GF(28) and 
multiply it by another fixed matrix, again with entries in        
GF(28), to obtain (di,j) 
§  GF(28) is a finite field, in which addition and multiplication 

follow special rules 
• Elements in GF(28) are polynomials of degree at most 7 

whose coefficients are 0 or 1 
§  Each byte is seen as element of GF(28) as follows: 
Byte B=B7B6B5B4B3B2B1B0 is B7x7+B6x6+…B1x1+B0 

! 

d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 



7 

CS 408 Lecture 9 / Spring 2015 13 

The AddRoundKey Transformation 

l  The round key is derived from the original main key 
l  The round key has 128 bits, arranged in a 4x4 matrix 

(ki,j) consisting of bytes 
l  The matrix (ki,j) is XOR-ed with the output of the 

previous step 

! 

e0,0 e0,1 e0,2 e0,3
e1,0 e1,1 e1,2 e1,3
e2,0 e2,1 e2,2 e2,3
e3,0 e3,1 e3,2 e3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

CS 408 Lecture 9 / Spring 2015 14 

Rijndael Encryption: The Basic Algorithm 

1.  AddRoundKey, using round key 0 
2.  Nine rounds, each consists of:    

 ByteSub       
 ShiftRow       
 MixColumn       
 AddRoundKey          

using round keys 1 to 9 
3.  A final round (round 10) consisting of:   

 ByteSub       
 ShiftRow       
 AddRoundKey          

using round key 10 

 



8 

CS 408 Lecture 9 / Spring 2015 15 
! 

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

The Key Schedule 

l  The original key has 128 bits, viewed as a 4x4 matrix 
of bytes (or 4 columns W(0), W(1), W(2), W(3)) 
§  This is known as round key 0  

l  We compute 40 more columns recursively,  
 W(4), …, W(43), which are the round keys 

W(0) W(1) W(2) W(3) 

Round key 0 
(original key) 

W(4) W(5) W(42) W(43) 

Round key 1 Round key 10 

… 

CS 408 Lecture 9 / Spring 2015 16 

The Key Schedule (continued) 

•  For i=4..43: 

  if  i mod 4 = 0 then  

   W(i) = W(i-4) ⊕ T(W(i-1)) 

  else 

   W(i) = W(i-4) ⊕ W(i-1) 

•  The round key for round i consists of the columns:  
W(4i), W(4i+1), W(4i+2), W(4i+3) 



9 

CS 408 Lecture 9 / Spring 2015 17 

The Design of the S-Box 

l  The S-Box is implemented as a lookup table, but it 
has a mathematical description 

CS 408 Lecture 9 / Spring 2015 18 

The Design of the S-Box (continued) 
l  Given a byte X = x7x6x5x4x3x2x1x0, how is the corresponding S-Box 

value computed? (used for substitution in the ByteSub step) 
§  Compute its multiplicative inverse Y = y7y6y5y4y3y2y1y0 in       

GF(28) (i.e., XY=1) 
§  Then apply the following affine transformation: 

§  The byte Z = z7z6z5z4z3z2z1z0 is the entry in the S-Box 

! 

z0
z1
z2
z3
z4
z5
z6
z7

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 

y0
y1
y2
y3
y4
y5
y6
y7

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 

+

1
1
0
0
1
1
0
0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 



10 

CS 408 Lecture 9 / Spring 2015 19 

The Design of the S-Box (continued) 

l  Example: byte X = 11001011 
l  The inverse of X in GF(28) is Y=00000100 
l  After the affine transformation, we get Z=00011111 

(this is 1F in hexadecimal) 
l  Indeed, in the S-Box, at row 12 and column 11, we 

find the value 1F 

CS 408 Lecture 9 / Spring 2015 20 

The Design of the S-Box (continued) 

l  The use of the inverse is to achieve non-linearity and 
provide resistance against differential and linear 
cryptanalysis 

l  The multiplication by the matrix and the addition of 
the vector (affine transformation) was used to 
provide resistance against algebraic attacks 
§  The matrix was chosen because of its simple form 
§  The vector was chosen so that no input ever equals its 

S-Box output or the bitwise complement of its S-Box 
output 
• S-Box[x]  ⊕ x ≠ {00} 
• S-Box[x]  ⊕ x ≠ {FF} 



11 

CS 408 Lecture 9 / Spring 2015 21 

Rijndael Decryption 

l  Each of the steps ByteSub, ShiftRow, MixColumn, and 
AddRoundKey is invertible: 
§  The inverse of ByteSub is another lookup table called 

InvByteSub 
§  The inverse of ShiftRow is obtained by shifting the rows 

to the right instead of to the left, called InvShiftRow 
§  The inverse of MixColumn exists because the matrix 

used in MixColumn is invertible. The step is called 
InvMixColumn 

§  AddRoundKey is its own inverse (why?) 

l  Decryption is not as fast as encryption 

CS 408 Lecture 9 / Spring 2015 22 

Rijndael Encryption: The Basic Algorithm 

1.  AddRoundKey, using round key 0 
2.  Nine rounds, each consists of:    

 ByteSub       
 ShiftRow       
 MixColumn       
 AddRoundKey     
 using round keys 1 to 9 

3.  A final round (round 10) consisting of:   
 ByteSub       
 ShiftRow       
 AddRoundKey          

using round key 10 

 



12 

CS 408 Lecture 9 / Spring 2015 23 

Rijndael Decryption 
l  To decrypt, we run through the 10 rounds in reverse order 

§  The decryption algorithm is not the same as the encryption 
algorithm, but the key schedule is the same (keys are used 
in reverse order);     
 what does this imply about existence of weak keys? 

1.  A first round consisting of:      
 AddRoundKey       
 InvShiftRow       
 InvByteSub      
 using round key 10 

2.  Nine rounds, each consists of:     
 AddRoundKey       
 InvMixColumn       
 InvShiftRow       
 InvByteSub      
 using round keys 9 to 1 

3.  AddRoundKey, using round key 0 

Encryption and Decryption 

Encryption 
1. AddRoundKey, using round key 0 

2. Nine rounds, each consists of: 
 ByteSub    
 ShiftRow    
 MixColumn   
 AddRoundKey       

using round keys 1 to 9 

3. A final round (round 10) consisting of:
 ByteSub    
 ShiftRow    
 AddRoundKey                      

using round key 10 

Decryption 
1.  A first round consisting of:  

 AddRoundKey   
 InvShiftRow   
 InvByteSub      

using round key 10 

2.  Nine rounds, each consists of:
 AddRoundKey   
 InvMixColumn   
 InvShiftRow   
 InvByteSub       

using round keys 9 to 1 

3.  AddRoundKey, using round key 0 

CS 408 Lecture 9 / Spring 2015 24 



13 

CS 408 Lecture 9 / Spring 2015 25 

Rijndael Cryptanalysis 

l  Resistant to differential and linear cryptanalysis 
l  Theoretical break on weaker version of the cipher, 

which only has 9 rounds 
§  Requires 2224 computation and 285 chosen related-key 

plaintexts 
§  Attack is not practical 

l  You can read more about attacks against AES: 
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard#Security 
 

CS 408 Lecture 9 / Spring 2015 26 

Recommended Reading 

l  Chapter 5 
§  You can read more about design considerations in 

Chapter 5.4 


