CS408
Cryptography & Internet Security

Lectures 11, 12, 13, 14
Basic notions of number theory

Last Time

« Randomness
Pseudo-randomness
« PRFs, PRPs
Security of block ciphers
= Semantic security
= Ciphertext indinstinguishability
= IND-CPA security was defined in terms of a game

= If a block cipher is a PRP, then using the cipher under
the CBC or CTR modes of operation achieves
semantic security
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RSA Public Key Cryptosystem

Key generation:

« Select 2 large prime numbers of about the same
size, pand q

o Compute n = pq, and ¢(n) = (g-1)(p-1)

« Select arandom integere, 1 <e <¢(n), s.t.
ged(e, ¢(n)) = 1

o Compute d, 1<d< ¢(n) s.t. ed =1 mod ¢(n)

Public key: (e, n)
Private key: d

Note: p and q must remain secret
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RSA Public Key Cryptosystem

Encryption

« Obtain the recipient’ s public key (n,e)

Represent the message as an integer M, 0 <M <n
Compute C = Me mod n

Send ciphertext C to recipient

Decryption
« Given a ciphertext C, use private key d to recover M:
M = Cdmod n
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RSA Public Key Cryptosystem

WHY IS THIS TRUE?
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WHO CARES,
IT WORKS!
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IT”S MAGIC!

CS 408
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IT"S NOT MAGIC,

IT”S MATH!

CS 408
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Divisibility

Definition
Given integers a and b, with a = 0, a divides b (denoted
alb) if 3 integer k, s.t. b = ak
« ais called a divisor of b, and b a multiple of a

Propositions:

1. Ifa =0, then a|0 and ala. Also, 1|b for every b.

2. If alb and b|c, then a|c

3. If alb and a|c, then a | (sb + tc) for all integers s and
t. (We say if a divides b and c, then it divides any
linear combination of b and c)
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Divisibility (cont.)

Theorem
Given integers a, b such that a>0, a<b then there exist
two unique integersqandr,0<r<as.t.b=aq+r
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Prime and Composite Numbers

Definition
An integer n > 1 is called a prime number if its only
positive divisors are 1 and n

Definition
Any integer number n > 1 that is not prime, is called a
composite number

Example

Prime numbers: 2, 3, 5,7, 11,13, 17, ...
Composite numbers: 4, 6, 25, 900, 17778, ...
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Decomposition in Product of Primes

Theorem (Fundamental Theorem of Arithmetic)

Any integer number n > 1 can be written as a product of

prime numbers (>1), and the product is unique if the
numbers are written in increasing order.

ek

n= plelpzez---pk

Example: 84 =22x3x7
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Number of Prime Numbers

Theorem
The number of prime numbers is infinite.

(for the proof, | recommend reading:
http://en.wikipedia.org/wiki/Euclid's_theorem

The proof given by Euclid is educational and quite
interesting!)
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Distribution of Prime Numbers

Theorem (prime number theorem)
For any real number x, the number of primes
smaller than x is given by:

(x) =~ ——

Example
We can estimate that the number of 100-digit primes is:
m(10799) - 7(10%9) = 101%/In 10190 - 1099/In 10%° =~ 3.9 x 1097
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Greatest Common Divisor (GCD)

Definition
The greatest common divisor (gcd) of two positive
integers a and b is the largest positive integer that
divides both aand b

*  We use the notation gcd(a,b)

Example
gcd(125, 200) = 25
ged (5,7)=1

Definition
Two integers a > 0 and b > 0 are relatively prime if
gcd(a, b) =1

Example
49 and 100 are relatively prime
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GCD as a Linear Combination

Theorem
Given positive integers a, b, with a > b, let d = gcd(a,b).
Then there exist integers x, y such that ax + by = d

* In fact, d is the least positive integer that can be
represented as ax + by

« If a and b are relatively prime, then there exist integers
X, ¥y such that ax + by =1

Example
gcd(100, 36) = 4
gcd (7,4)=1=3

=4 x 100 + (-11) x 36 = 400 - 396
x7 +(-5)x4=21-20
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GCD and Multiplication

Theorem
Let a, b, and m be integers greater than 1.
If gcd(a, m) = gcd(b, m) = 1, then gcd(ab, m) = 1

(if a and m are relatively prime, b and m are relatively
prime, then also ab and m are relatively prime)
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GCD and Multiplication

Theorem
If a prime p divides a product of integers ab, then
either p|a or p|b

Proof:

Assume p does not | a.

Then gcd(a,p) = 1, so there exists x and y such
that ax + py = 1.

We multiply by b and get bax + bpy = b.

Since p | bax and p | pby, we have that

p | (abx + bpy).
So p|b

Similarly, if we assume that p does not | b, we can
show that p|a
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GCD and Division

Theorem
Given integers a>0, b, q, r, such that b=aq +r,
then gcd(b, a) = gcd(a, r)
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Finding GCD

Using the Theorem: Given integers a>0, b, q, r, such
that b =aq +r, then gcd(b, a) = gcd(a, r)

gcd is the last nonzero remainder:

Euclidian Algorithm
Find gcd (b, a)

while a =0 do
r<—bmoda l”
b<a ’
aer \

return b
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Euclidian Algorithm Example

Find gcd(143, 110)
b= axq +r

143 =110x 1+ 33
110 =33 x 3 + 11
33 =11x 3+0

gcd(143, 110) = 11
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Euclidian Algorithm Example

gcd(482, 1180)

1180 =482 x 2 + 216
482=216x2+ 50
216= 50x4 + 16
50= 16x3+ 2
16= 2x8+ 0

gcd (482, 1180) = 2
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Towards Extended Euclidian Algorithm

Theorem
Given positive integers a, b, with a > b, let d = gcd(a,b).
Then there exist integers x, y such that ax + by = d

How to find such x and y?

Hint: use a modified version of the Euclidian algorithm
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lterative method

1180 =2 x 482 + 216 q,=2

482 =2x216 + 50 G =2
216 =4 x 50 + 16 B3
50=3x16 + 2 4
g5=8
16=8x2+0
ged (482, 1180) = 2 X=0,¥,=1

. Y; = -G;.1Y;
How to write 2 as a Jx + ba;n Z gcd(a b)

function of )
Xy = -Qq Xq + Xg = -
X4 =-Q3 X3+ Xp = -4 x5+ (-2) =-22
X5=-Qq X4 + X3 =-3x(-22) +5=71
Compute y; = -29
482 x 71 + 1180 x (-29) = 2 = gcd(482, 1180)
CS 408 Lectures 11, 12, 13, 14/ Spring 2015 24
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Extended Euclidian Algorithm

x=1; y=0; d=a; r=0; s=1; t=b;
while (t>0) {
q=dit]
u=x-qr; v=y-gs; w=d-qt
X=r; y=S8; d=t
r=u; S=V; t=w
}
return (d, X, y)

Invariants:
ax+by=d
ar+bs=t
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Are we there yet?
« Solving linear equations
« CRT
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Modulo Operation

Definition:
Given two integers a and n:
amodn=r<3dq,st. a=gxn+r

where O<sr<sn-1

(so, the modulo operation finds the remainder of dividing
a by n; division is done over integers)

Example:
7mod3=1, 7=3x2+1
-Tmod3=2, -7=-3x3+2
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Congruence modulo n

Definition

Let a, b, n be integers with n=0. Then:
a=bmodn < amodn=>bmodn

(we read a=b mod n as a is congruent to b mod n)

Another formulation is that a - b is a multiple of n.
n | (a-b)
Or, a =nk + b, for some k

Example
29 =14 mod 3
16 =51 mod 5
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Congruence Relation

Theorem
Congruence mod n is an equivalence relation:

Reflexive: a=a (mod n)
Symmetric:a=b (mod n)iffb=amodn
Transitive: if a=b (mod n)and b = ¢ (mod n), then

CS 408

a =c (mod n)

Lectures 11, 12, 13, 14/ Spring 2015
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Congruence Relation Properties

1.

CS 408

If a=b (mod n)and c= d(mod n), then:
a+c=b+d(modn)
a-c=b-d(modn)

ac = bd (mod n)

If a=b (modn)andd | n then:
a=b (mod d)

If a=b (mod n), a=b (mod m)and gcd(m, n)=1, then
a =b (mod mn)

Lectures 11, 12, 13, 14/ Spring 2015
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Operations modulo n

For positive integers, a, b, n, how do we compute
aop b (mod n)? (where op is +, -, X)

1. We compute a op b as integers

2. Ifaopbis<n, we stop
3. Ifaopb=n, we divide by n and take the remainder
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Operations modulo n

What about division modulo n?

Proposition

Let a, b, ¢, n be integers with n = 0.

If ab = ac (mod n) and gcd(a, n) =1, then b = ¢ (mod n).
(In other words, if a and n are relatively prime, we can
divide both sides of the congruence by a)

Example

Solve 2x + 7 = 3 (mod 17).

We have 2x = -4 (mod 17)

We can divide both sides by 2, since gcd(2, 17)=1
We get x =-2 = 15 (mod 17)
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Linear Equation Modulo n

If ged(a, n) =1, then the equation

ax=1modn

has a unique solution for x, with 0< x < n.

This solution is often represented as a' mod n
(the multiplicative inverse of a).
(note that the solution is unique up to the modulo operation)

Proof: Assume there are two solutions x; and x, s.t.
ax, = 1 (mod n) and ax, = 1 (mod n)

= a(x4-X,) = 0 (mod n) = n | a(x4-Xy) =n | (X4-Xp)

= X-X,=0

How to compute x?

Using Extended Euclidian algorithm, find s and t s.t.:
as+nt=1

Then, as = -t*n +1 = 1 (mod n), so s is the solution
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Examples

Solve

2x=1mod3 => 2(,5,8,...)
3x=1mod7 => 5(, 12,19, .
4x=1mod5 => 4(,9, 14, ...)
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Linear Equation Modulo n (cont.)

Let gcd(a, n) =d.
The equation

ax = bmod n
has a solution iff d | b
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Examples

Which equations have solutions?
6x =2 mod 4

6x =0 mod 3
6x =2 mod 3

6x =0 mod 2

CS 408 Lectures 11, 12, 13, 14/ Spring 2015 36
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Solving Linear Equation Modulo

To solve the equation AX = bmodn

When gcd(a,n)=1, compute x = a' b (mod n).
(obtain a! by solving ax =1 (mod n))

When gcd(a,n) = d >1, do the following:
* If d does not divide b, there is no solution.
« If d|b, then solve the new congruence

(a/d)x=b/d (modn/d)

and get solution x

* The solutions of the original congruence are
Xg, Xg+(n/d), Xo+2(n/d), ..., Xo+(d-1)(n/d)  (mod n).

(so, there are d solutions)
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Examples

e 2x=3(mod5)
« Since gcd(2, 5) = 1, we compute 2", by solving 2x = 1 (mod 5)
o 2"with respect to multiplication mod 5 is -2
(from EEA, we have 2*(-2) + 5*1 = 1)
« We multiply both sides by -2, we get x = (-2) * 3 (mod 5), so
X =-6 =4 (mod 5)

e 12x =21 (mod 39)
o gcd(12, 39) = 3, which divides 21
« We divide by 3 to obtain the new congruence 4x = 7 (mod 13), which
has solution x, =5
« The solutions to the original congruence are:
Xg, Xo + 39/3, X, + 2 * 39/3
x =5, 18, 31 (mod 39)

« What about 6x = 2 mod 47?
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Chinese Reminder Theorem (Sun Tzi, 3" century AD)

Theorem

Let m, and n be integers s.t. gcd(m, n) = 1.
Given integers a and b, there exists exactly one
solution x (mod mn) to the simultaneous congruences:

{an(mod m)

x =b (mod n)
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Example of CRT

Solve the system of equations:

x=3mod7

X =5mod 15

Since 80 = 3 mod 7 and 80 = 5 mod 15, then 80 is a

solution, solution is uniquely determined modulo 7 * 15 = 105

How to do it?

1. List all numbers between 1 and 105 that are equal to 5 modulo
15, then check which ones are equal to 3 modulo 7.

Or
2. Solve the Extended Euclidian Algorithm, get s and t

s.t. 7s + 15t = 1, then compute the solution as:
X =b*m*s + a*n*t = 5*7*s + 3*15%
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Chinese Reminder Theorem (CRT)

Theorem

Letny, n,, ..., N be integers s.t. gcd(n;, nj) =1 for any
i ).

Given integers a,, a,, ..., a,, there exists exactly one

solution x (mod n4n,...n,) to the simultaneous

congruences:

X
X

a, (mod n,)
a, (mod n,)

X = a, (mod n,)
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Are we there yet?

o Fermat’ s Little Theorem
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The Euler Phi Function: ¢(n)

Definition

Given an integer n, ¢(n) is the number of integers in the
interval [1, n] that are relatively prime to n.

(i.e., the number of integers a s.t. gcd(a, n)=1and 0 <a <=n)

Theorem
If gcd(m,n) = 1, then ¢(mn) = ¢(m) ¢(n)

Note

We'll be using ¢(n) and ¢(n) alternatively.
They both stand for the Greek letter “phi”
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The Euler Phi Function

Theorem (formula for ¢(n))
Let p be prime, and let e, m, n be positive integers

1) ¢(p) = p-1
2) ¢(p°) = p® — p°”’

3)Ifn=p°p,"..p " then
1 1 1
¢p(n)=n(l-—)1-—)..(d-—)
D P> Pk
(in particular, if n=pq, where p, q are primes, then ¢(n)=(p-1)(g-1)
Example
o(7)=6

¢(2%)=2%-22=4
¢(10) = (2-1)(5-1) = 4
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Fermat’ s Little Theorem

Fermat’ s Little Theorem

If p is a prime number and a is a natural number that is
not a multiple of p, then

ak! =1 (mod p)

Example
451 (mod 5) = 256 (mod 5) = 1 (mod 5)
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Euler’ s Theorem

Euler’ s Theorem
Given integer n > 1, such that gcd(a, n) = 1, then
a®™ =1 (mod n)
Corollary 1
Given integers n > 1 and a such that gcd(a, n) = 1,
then a®™-'mod n is a multiplicative inverse of a mod n

Corollary 2 (principle of modular exponentiation)
Letn > 1, x, y, a be positive integers with gcd(a, n) = 1.
If x =y (mod ¢(n)), then

a*=aY¥ (mod n)
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Consequence of Euler’ s Theorem

Corollary 2 (principle of modular exponentiation)
Letn > 1, X, y, a be positive integers with gcd(a, n) = 1.
If x =y (mod ¢(n)), then

a*=aY¥ (mod n)

Proof:

x =Yy (mod ¢(n)) = x-y is a multiple of ¢p(n) =
x-y=ko¢(n)=x=y+ken)=

ax = aytken) = gy gk o(n) = gy (gd(M)k

By applying Euler’ s theorem, we obtain
aX=aY (mod n)
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Consequence of Euler’ s Theorem

Corollary 2 (principle of modular exponentiation)
Letn > 1, X, y, a be positive integers with gcd(a, n) = 1.
If x =y (mod ¢(n)), then

aX=a¥ (mod n)

Observations
exponent

base_’Xy (mOd n )

« When we work with the bases, we work mod n
(we can reduce bases mod n)

« When we work with the exponents, we work mod ¢(n)
(we can reduce exponents mod ¢(n))
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Bases and Exponents

« When we work with the bases, we work mod n
(we can reduce bases mod n)

= When working mod n, the integers are:
0,1,2,...,n-2,n-1

=n=0modn;nt1=1modn;nt2=2modn; ...;
n+(n-2) = n-2 mod n; n+(n-1) = n-1 mod n

« When we work with the exponents, we work mod ¢(n)
(we can reduce exponents mod ¢(n))
» a0 a', a?, a3, ..., a¢n-2 go(n-1

= g9 =39 mod n; a®™*'=a' mod n; a®™*2= 32 mod n;...;
a*M*+@(n)-1) = gé(M-1 mod n; a¢M+e(n) = 30 mod n

CS 408 Lectures 11, 12, 13, 14/ Spring 2015 50

Groups

Definition

A group (G,*) is a set G of elements on which a binary
operation * is defined, which satisfies the following axioms:
Closure: Foralla,be G,a*b €G

Associativity: Foralla, b,ce G, (a*b) *c=a *(b *c)

|dentity: decGst forallace G, a*e=a=¢e*a
(e is called the identity element of the group)

Invertibility: Forallae G,abeGs.t.a*b=b*a=e¢e

(b is called a’s inverse; sometimes we use the
notation a’’ instead of b)
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Groups (examples)

* (Z,+)is a group, where + is addition over integers.

 If « is multiplication over integers, is (Z,*) a group?
No! Why not? Are all the group axioms satisfied?
No, because not all elements in Z have multiplicative
inverses.

* Let n>1 be an integer and let Z, be the set {0, 1, 2, ..., n-1}.
Z. is known as the set of integers modulo n.

(Z,,*) is a group, where + is addition modulo n.
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Groups (examples)

* Letn>1 be an integer and let Z*, = {a € Z, | gcd(a,n)=1}.
(Z*,,, ) is a group, where ¢ is multiplication modulo n.

(Z*,, *) is called the multiplicative group of Z,..
* Let p be a prime integer and let Z* be the set

1,2, .., p-1.

(Z*,, *) is a group, where * is multiplication modulo p.
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26



Groups (Revisit Euler’ s theorem)

« Letn>1be aninteger. If a € Z*, then a*™ = 1 (mod n)
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Groups (cont.)

Definition:

A group (G,*) is called an abelian group if the operation *
is @ commutative operation:

Commutative: Foralla,be G,a*b=b *a.

Example:
(Z, +) is an abelian group

Definition

A group (G,*) is cyclicif 3g € G s.t. any h € G can be
written as h = g’ for some integer i.

g is called group generator for G.

Example
Cyclic groups: (Z*3, *), (£*,, *) where p is a prime
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Order of a Group

Definition

The order of a group (G,*) is defined as the number of
elements in the group.

We use the notation ord(G), or |G|.

Definition
A group G is finite, if |G| = ord(G) is finite.

Example:

The order of (Z*, ¢) is ¢(n). Why?

The order of (Z*, ¢) is p-1. Why?
What is the order of (Z*,, *), (Z*700, *) ?

CS 408 Lectures 11, 12, 13, 14/ Spring 2015
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Order of a Group Element

Definition

The order of an element a from a group G, is the least
positive integer t such that al=e, where e is the identity
element of the group.

CS 408 Lectures 11, 12, 13, 14/ Spring 2015
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(Z*.,*): The multiplicative group of Z,

« Forthe group (Z*,, *), the order of an elementa € Z* is
the smallest positive integer t s.t. a! = 1 (mod n)

« Ifthe orderof a € Z* is t, then t| ¢(n)
(the order of an element divides the order of the group)

Example

Let n=21. Then Z*,,={1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.
6(21) = ¢(3) ¢(7) = 12 = ord(z*;,)

These are the orders of elements in z*,,:

ae€z | 1|24 |5]8 (1011|1316 [17|19]|20
orderofal 1 | 6 |3 | 6|2 |6 |6|2|3|6]|6]|2
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(Z*,,*): The multiplicative group of Z

Example
o What is the order of 2 in (Z*;, *)?
It is 4 because 2 =1 mod 5

o What is the order of 3 in (Z*,,, *)?
It is 4 because 3* =1 mod 10
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Generators

Definition
Let g €Z*,. If the order of g is ¢(n), then g is said to be a
generator (or a primitive element) of Z*,.

Example

(Z*5,°),58=1mod 7 and ¢(7) = 6

56 = 15625

(Z*g, *) does not have a primitive element.

FACT
The group (Z*,, ) has primitive elements only if
nis 2, 4, ptor 2pt, where p is an odd prime and t = 1.
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Primitive Elements and Cyclic Groups

FACT
If Z*, has a generator, then Z* is said to be cyclic.

Each primitive element (generator) can be used to generate
the whole set: Z*, = {g°, g', g2, ... g ¢}

FACT
If the group (Z*,,,*) is cyclic, the number of primitive
elements is ¢(dp(n))

OBSERVATION
(Z*,,*) is cyclic if it has primitive elements
(Z*,,*) is always cyclic (where p is a prime)
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Primitive Elements

Examples

Z*,, is not cyclic.
Z*,s is cyclic. A generatoris g = 2.
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The Logarithm Function

Definition
The logarithm of a number y with respect to base b is the
exponent to which b has to be raised in order to yield y.

In other words, the logarithm of y to base b is the

number x satisfying the equation:
bx=y
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Discrete Logarithm

Definition

Let p be a prime, G = (Z*,, *) be a cyclic group, and g be a generator
(primitive element) of G. Then, every element a of G can be

written as gk = a mod p for some integer k.

k is called the the discrete logarithm of a to base g modulo p.

Example
Z*4; is cyclic group of order 96. A generator of Z*y; is g=5.
Since 5% = 35 (mod 97), we have that logs35 = 32 in Z*;.

Note
Discrete logarithms can be defined for any finite cyclic group.
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Modular Exponentiation

« How to efficiently compute a® (mod n) ?
« How to compute 2234 (mod 789)?
o Method 1: compute x = 21234 and then reduce x mod 789

= Infeasible (if a, b are 100-digit numbers, memory will
overflow)

« Method 2: apply the modulo operation after each
multiplication

= Impractical: too slow, since we would need to
compute 1234 modular multiplications

CS 408 Lectures 11, 12, 13, 14/ Spring 2015 65
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Modular Exponentiation (continued)

« Method 3: square and multiply
Start with 22 = 4 (mod 789) and square both sides:

24=42=16 2128 = 559
28 =162 = 256 2256 = 37
216 = 2562 = 49 2512 = 580
232 =34 21024 < 286
264 = 367

Since 1234 = 1024 + 128 + 64 + 16 + 2, we have:
21234 < 1024 . 2128 . 264 . 216 . 22 = 286 - 559 - 367 - 49 - 4 = 481 (mod 789)

Note that we never needed to work with a number larger than 7882
In general, to compute a° (mod n):

« at most 2*log,(b) multiplications mod n are required

« we only need to work with numbers smaller than n2

Using square and multiply, modular exponentiation can be achieved fast and
not much memory is needed!
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Announcement: programming project

« Programming project has been posted on the course
website

o Itis due on April 7 at 4:00pm
= Email your program to me76@njit.edu and also CC me at
crix@nijit.edu

« You are allowed to work in teams of up to 2 students

« lItis optional and counts for 10% of your final grade

« You can use the extra days (you have 3 extra days IN
TOTAL through the entire semester to use for
assignments and projects)

= For example, you may use 1 extra day for Assignment #1, then
1 extra day for Assignment #2, and 1 extra day for the project

= Or, you can use all 3 days for Assignment #2.
= Or, you can use all 3 days for the Programming Project
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