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Cryptography & Internet Security 
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Basic notions of number theory 
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Last Time 

l  Randomness 
l  Pseudo-randomness 
l  PRFs, PRPs 
l  Security of block ciphers 

§  Semantic security 
§  Ciphertext indinstinguishability 
§  IND-CPA security was defined in terms of a game 
§  If a block cipher is a PRP, then using the cipher under 

the CBC or CTR modes of operation achieves 
semantic security 
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RSA Public Key Cryptosystem 
Key generation: 
l  Select 2 large prime numbers of about the same 

size, p and q 
l  Compute n = pq, and φ(n) = (q-1)(p-1) 
l  Select a random integer e,  1 < e < φ(n), s.t.  

 gcd(e, φ(n)) = 1 
l  Compute  d, 1< d< φ(n) s.t.  ed ≡ 1 mod φ(n) 
 
Public key:  (e, n) 
Private key: d   
 
Note: p and q must remain secret  
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RSA Public Key Cryptosystem 
Encryption 
l  Obtain the recipient’s public key (n,e) 
l  Represent the message as an integer M, 0 < M < n 
l  Compute C = Me mod n 
l  Send ciphertext C to recipient 
 
Decryption 
l  Given a ciphertext C, use private key d to recover M: 

 M = Cd mod n 
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RSA Public Key Cryptosystem 

WHY IS THIS TRUE?  
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WHO CARES,  
IT WORKS!  
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IT’S MAGIC! 
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IT’S NOT MAGIC,  
IT’S MATH! 
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Divisibility 

Definition 
Given integers a and b, with a ≠ 0, a divides b (denoted 

a|b) if ∃ integer k, s.t. b = ak 
•   a is called a divisor of b, and b a multiple of a 

 

 
Propositions: 
1.  If a ≠ 0, then a|0 and a|a.  Also, 1|b for every b. 
2.  If a|b and b|c, then a|c 
3.  If a|b and a|c, then a | (sb + tc) for all integers s and 

t. (We say if a divides b and c, then it divides any 
linear combination of b and c) 
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Divisibility (cont.) 

Theorem 
Given integers a, b such that a>0, a<b then there exist 
two unique integers q and r, 0 ≤ r < a s.t. b = aq + r 
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Prime and Composite Numbers 

Definition 
An integer n > 1 is called a prime number if its only 
positive divisors are 1 and n 
 
Definition 
Any integer number n > 1 that is not prime, is called a 
composite number 
 
Example 
Prime numbers: 2, 3, 5, 7, 11, 13, 17, … 
Composite numbers: 4, 6, 25, 900, 17778,  … 
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Decomposition in Product of Primes 

Theorem (Fundamental Theorem of Arithmetic) 
Any integer number n > 1 can be written as a product of 
prime numbers (>1), and the product is unique if the 
numbers are written in increasing order. 
 
 
 
 
Example:   84 = 22 x 3 x 7  
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Number of Prime Numbers 
 

Theorem 
The number of prime numbers is infinite. 
 
(for the proof, I recommend reading: 
http://en.wikipedia.org/wiki/Euclid's_theorem 
The proof given by Euclid is educational and quite 

interesting!) 
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Distribution of Prime Numbers 
 

 

Theorem (prime number theorem) 
For any real number x, the number of primes  
smaller than x is given by: 
 
 
 
 
Example 
We can estimate that the number of 100-digit primes is: 
π(10100) - π(1099) ≈ 10100/ln 10100 - 1099/ln 1099 ≈ 3.9 x 1097 
 
 
 

! 

" (x) # x
ln x
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Greatest Common Divisor (GCD) 
Definition 
The greatest common divisor (gcd) of two positive  
integers a and b is the largest positive integer that  
divides both a and b 

•  We use the notation gcd(a,b) 
 
Example 
gcd(125, 200) = 25 
gcd (5, 7) = 1 

   
 
Definition 
Two integers a > 0 and b > 0 are relatively prime if  
gcd(a, b) = 1 
 
Example 
49 and 100 are relatively prime    
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GCD as a Linear Combination  
Theorem 
Given positive integers a, b, with a > b, let d = gcd(a,b). 
Then there exist integers x, y such that ax + by = d 
 

•  In fact, d is the least positive integer that can be 
represented as ax + by 

•  If a and b are relatively prime, then there exist integers 
x, y such that ax + by = 1 

 
Example 
gcd(100, 36) = 4 = 4 × 100 +  (-11) × 36 = 400 - 396 
gcd (7, 4) = 1 = 3 x 7 + (-5) x 4 = 21 - 20 
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GCD and Multiplication 

Theorem 
Let a, b, and m be integers greater than 1.  
If gcd(a, m) = gcd(b, m) = 1, then gcd(ab, m) = 1 
 
(if a and m are relatively prime, b and m are relatively  
prime, then also ab and m are relatively prime) 
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GCD and Multiplication 

Theorem 
If a prime p divides a product of integers ab, then  
either p|a or p|b 
 
Proof: 
Assume p does not | a.  
Then gcd(a,p) = 1, so there exists x and y such 
that ax + py = 1. 
We multiply by b and get bax + bpy = b. 
Since p | bax and p | pby, we have that   
p | (abx + bpy). 
So p|b 
 
Similarly, if we assume that p does not | b, we can  
show that p|a 
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GCD and Division 

Theorem 
Given integers a>0, b, q, r, such that  b = aq + r, 
then gcd(b, a) = gcd(a, r) 
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Finding GCD 

Using the Theorem: Given integers a>0, b, q, r, such 
that  b = aq + r, then gcd(b, a) = gcd(a, r) 

 
gcd is the last nonzero remainder: 
 
Euclidian Algorithm 
Find gcd (b, a) 

  while a ≠0 do 
   r ← b mod a 
   b ← a 
   a ← r 
  return b 
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Euclidian Algorithm Example 

Find gcd(143, 110) 

gcd(143, 110) = 11 

143 = 110 x  1 + 33 
110 = 33 x  3 + 11 
33   = 11 x  3 + 0 

 b =     a x q  + r 
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Euclidian Algorithm Example 

gcd(482, 1180) 

1180 = 482 x 2 + 216 
  482 = 216 x 2 +   50 
  216 =   50 x 4 +  16 
    50 =   16 x 3 +    2 
    16 =     2 x 8 +    0 
 
gcd (482, 1180) = 2  
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Towards Extended Euclidian Algorithm 

Theorem 
Given positive integers a, b, with a > b, let d = gcd(a,b). 
Then there exist integers x, y such that ax + by = d 
 
How to find such x and y? 

Hint: use  a modified version of the Euclidian algorithm 
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Iterative method 
 1180 = 2 x 482 + 216 
   482 = 2 x 216 + 50 
   216 = 4 x 50 + 16 
     50 = 3 x 16 + 2 
     16 = 8 x 2 + 0 
gcd (482, 1180) = 2  
 
How to write 2 as a  
function of  
1180 and 482 

q1 = 2 
q2 = 2 
q3 = 4 
q4 = 3 
q5 = 8 
 
x0 = 0, y0 = 1 
x1 = 1, y1 = 0 
xj = -qj-1xj-1 + xj-2 
yj = -qj-1yj-1 + yj-2 
axn+ byn = gcd(a,b) 
 
x2 = -q1 x1 + x0 = -2 
x3 = -q2 x2 + x1 = -2 x (-2) + 1 = 5 
x4 = -q3 x3 + x2 = -4 x 5 + (-2) = -22 
x5 = -q4 x4 + x3 = -3 x (-22) + 5 = 71 
 
Compute y5 = -29 
 
482 x 71 + 1180 x (-29) = 2 = gcd(482, 1180) 
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Extended Euclidian Algorithm 
x=1;  y=0;  d=a;  r=0;  s=1;  t=b; 
while (t>0) { 

  q = ⎣d/t⎦ 
  u=x-qr;  v=y-qs;  w=d-qt 
  x=r;       y=s;       d=t 
  r=u;       s=v;       t=w 

} 
return (d, x, y) 

ax + by = d 
ar + bs = t 

Invariants: 
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Are we there yet? 

l  Solving linear equations 
l  CRT 
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 Modulo Operation 

rnqaqrna +!="#=   s.t. ,  mod 

! 

where 0 " r " n #1

Definition: 
Given two integers a and n: 

 
(so, the modulo operation finds the remainder of dividing  
a by n; division is done over integers) 
 
 
Example: 
7 mod 3 = 1,     7 = 3 x 2 + 1 
-7 mod 3 = 2,   -7 = -3 x 3 + 2 
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Congruence modulo n 

Definition 
Let a, b, n be integers with n≠0. Then: 

(we read a≡b mod n as a is congruent to b mod n)  
 
Another formulation is that a - b is a multiple of n. 
n | (a-b) 
Or, a = nk + b, for some k 
 

Example 
29 ≡ 14 mod 3 
16 ≡ 51 mod 5 

nbnanba  mod  mod  mod =!"
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Congruence Relation 

Theorem 
Congruence mod n is an equivalence relation: 
 

Reflexive:   a ≡ a (mod n)    
Symmetric: a ≡ b (mod n) iff b ≡ a mod n  
Transitive:  if a ≡ b (mod n) and b ≡ c (mod n), then 
                   a ≡ c (mod n) 
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Congruence Relation Properties 

1.  If a ≡ b (mod n) and c ≡  d (mod n), then: 
 a + c ≡ b + d (mod n) 
 a - c ≡ b - d (mod n) 
 ac ≡ bd (mod n)  

2.  If a ≡ b (mod n) and d | n then: 
 a ≡ b (mod d) 

3.  If a ≡ b (mod n), a ≡ b (mod m) and gcd(m, n)=1, then  
 a ≡ b (mod mn) 



16 

CS 408 Lectures 11, 12, 13, 14 / Spring 2015 31 

Operations modulo n 

For positive integers, a, b, n, how do we compute  
a op b (mod n)? (where op is +, - , x) 
 
1.  We compute a op b as integers 
2.  If a op b is < n, we stop 
3.  If a op b ≥ n, we divide by n and take the remainder 
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Operations modulo n 

What about division modulo n? 

Proposition 
Let a, b, c, n be integers with n ≠ 0.  
If ab ≡ ac (mod n) and gcd(a, n) = 1, then b ≡  c (mod n).  
(In other words, if a and n are relatively prime, we can  
divide both sides of the congruence by a) 
 
Example 
Solve 2x + 7 ≡ 3 (mod 17). 
We have 2x ≡ -4 (mod 17) 
We can divide both sides by 2, since gcd(2, 17)=1 
We get x ≡ -2 ≡ 15 (mod 17) 
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Linear Equation Modulo n 
If gcd(a, n) = 1, then the equation 

    ax ≡ 1 mod n 
has a unique solution for x, with 0< x < n.   
 
This solution is often represented as a-1 mod n  
(the multiplicative inverse of a). 
(note that the solution is unique up to the modulo operation) 
 
Proof: Assume there are two solutions x1 and x2 s.t.    

 ax1 ≡ 1 (mod n) and ax2 ≡ 1 (mod n)  
⇒ a(x1-x2) ≡ 0 (mod n) ⇒ n | a(x1-x2)   ⇒ n | (x1-x2)   
⇒ x1-x2=0 
 
How to compute x? 
Using Extended Euclidian algorithm, find s and t s.t.: 
as + nt = 1 
Then, as = -t*n +1 = 1 (mod n), so s is the solution 
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Examples 

Solve  
 
2x ≡ 1 mod 3  =>   2 (, 5, 8, …) 
3x ≡ 1 mod 7  =>   5 (, 12, 19, . 
4x ≡ 1 mod 5  =>  4 (, 9, 14, …) 
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Linear Equation Modulo n (cont.) 

Let gcd(a, n) = d.  
The equation  
 
     
has a solution iff d | b 

      
 

nbax  mod !
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Examples 
Which equations have solutions? 
6x ≡ 2 mod 4 
 
6x ≡ 0 mod 3 
 
6x ≡ 2 mod 3 

6x ≡ 0 mod 2 
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Solving Linear Equation Modulo  
To solve the equation  
 
     
When gcd(a,n)=1, compute x = a-1 b (mod n). 
(obtain a-1 by solving  ax ≡ 1 (mod n) ) 
 
When gcd(a,n) = d >1, do the following: 

•  If d does not divide b, there is no solution. 
•  If d|b, then solve the new congruence  

      and get solution x0 

•  The solutions of the original congruence are      
 x0, x0+(n/d), x0+2(n/d), …, x0+(d-1)(n/d)      (mod n). 

 
 (so, there are d solutions) 

nbax  mod !

) (mod /)/( dndbxda !
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Examples 
l  2x ≡ 3 (mod 5) 
l  Since gcd(2, 5) = 1, we compute 2-1, by solving 2x ≡ 1 (mod 5) 
l  2-1 with respect to multiplication mod 5 is -2 

 (from EEA, we have 2*(-2) + 5*1 = 1)  
l  We multiply both sides by -2, we get x = (-2) * 3 (mod 5), so  

 x = -6 = 4 (mod 5) 
 
l  12x ≡ 21 (mod 39) 
l  gcd(12, 39) = 3, which divides 21 
l  We divide by 3 to obtain the new congruence 4x ≡ 7 (mod 13), which 

has solution x0 = 5 
l  The solutions to the original congruence are:    

  x0, x0 + 39/3, x0 + 2 * 39/3 
 x ≡ 5, 18, 31 (mod 39) 

 
l  What about 6x = 2 mod 4? 
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Chinese Reminder Theorem (Sun Tzi, 3rd century AD)  
Theorem 
   
Let m, and n be integers s.t. gcd(m, n) = 1.  
Given integers a and b, there exists exactly one  
solution x (mod mn) to the simultaneous congruences: 
 

  x ≡ a (mod m) 
  x ≡ b (mod n) 
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Example of CRT 

Solve the system of equations: 
x ≡ 3 mod 7 
x ≡ 5 mod 15 
 
Since 80 ≡ 3 mod 7 and 80 ≡ 5 mod 15, then 80 is a  
solution, solution is uniquely determined modulo 7 * 15 = 105 

 
How to do it?  
1.  List all numbers between 1 and 105 that are equal to 5 modulo 

15, then check which ones are equal to 3 modulo 7. 
Or 

2.  Solve the Extended Euclidian Algorithm, get s and t 
s.t. 7s + 15t = 1, then compute the solution as:         
x = b*m*s + a*n*t =  5*7*s + 3*15*t  
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Chinese Reminder Theorem (CRT) 
Theorem 
   
Let n1, n2, …, nk be integers s.t. gcd(ni, nj) = 1 for any 

i ≠j. 
Given integers a1, a2, …, ak, there exists exactly one  
solution x (mod n1n2…nk) to the simultaneous  
congruences: 
 

  x ≡ a1 (mod n1) 
  x ≡ a2 (mod n2) 
  … 
  x ≡ ak (mod nk)  
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Are we there yet? 

l  Fermat’s Little Theorem 
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The Euler Phi Function: φ(n)  

Definition 
Given an integer n, φ(n)  is the number of integers in the  
interval [1, n] that are relatively prime to n. 
(i.e., the number of integers a s.t. gcd(a, n)=1 and 0 < a <= n) 
 
Theorem 
If gcd(m,n) = 1, then φ(mn) = φ(m) φ(n) 
 
Note 
We’ll be using ϕ(n) and φ(n) alternatively.  
They both stand for the Greek letter “phi” 

CS 408 Lectures 11, 12, 13, 14 / Spring 2015 45 

The Euler Phi Function 

Theorem (formula for φ(n)) 
Let p be prime, and let e, m, n be positive integers 
     1) φ(p) = p-1 
     2) φ(pe) = pe – pe-1 
 

     3) If                                    , then 
 
 
 

 (in particular, if n=pq, where p, q are primes, then φ(n)=(p-1)(q-1)  
 
Example 
φ(7) = 6 
φ(23) = 23 - 22 = 4 
φ(10) = (2-1)(5-1) = 4 

ek
k
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Fermat’s Little Theorem 
Fermat’s Little Theorem           
If p is a prime number and a is a natural number that is  
not a multiple of p, then  
                          ap-1 ≡ 1 (mod p) 
 
 
Example 
 45-1 (mod 5) ≡ 256 (mod 5) ≡ 1 (mod 5) 
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Euler’s Theorem 

Euler’s Theorem 
Given integer n > 1, such that gcd(a, n) = 1, then        
                             aφ(n) ≡ 1 (mod n) 
Corollary 1 
Given integers n > 1 and a such that gcd(a, n) = 1,  
then  aφ(n)-1 mod n is a multiplicative inverse of a mod n 
 
Corollary 2 (principle of modular exponentiation) 
Let n > 1, x, y, a be positive integers with gcd(a, n) = 1.  
If x ≡ y (mod φ(n)), then 
                               ax ≡ ay (mod n) 
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Consequence of Euler’s Theorem 

Corollary 2 (principle of modular exponentiation) 
Let n > 1, x, y, a be positive integers with gcd(a, n) = 1.  
If x ≡ y (mod φ(n)), then 
                               ax ≡ ay (mod n) 
      
Proof: 
x ≡ y (mod φ(n)) ⇒ x-y is a multiple of φ(n) ⇒ 
x-y = k φ(n) ⇒ x = y + k φ(n) ⇒ 
ax = ay+kφ(n) = ay ak φ(n) = ay (aφ(n))k 
By applying Euler’s theorem, we obtain 
ax ≡ ay (mod n) 
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Consequence of Euler’s Theorem 

Corollary 2 (principle of modular exponentiation) 
Let n > 1, x, y, a be positive integers with gcd(a, n) = 1.  
If x ≡ y (mod φ(n)), then 
                               ax ≡ ay (mod n) 
      
Observations 

                xy (mod n) 

  
l  When we work with the bases, we work mod n  
     (we can reduce bases mod n) 
l  When we work with the exponents, we work mod φ(n) 
     (we can reduce exponents mod φ(n)) 

base 

exponent 
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Bases and Exponents 

l  When we work with the bases, we work mod n       
(we can reduce bases mod n) 
§  When working mod n, the integers are:                  

0, 1, 2, …, n-2, n-1 
§  n = 0 mod n; n+1 = 1 mod n; n+2 = 2 mod n; …;                     

n+(n-2) = n-2 mod n; n+(n-1) = n-1 mod n 
 
l  When we work with the exponents, we work mod φ(n) 

(we can reduce exponents mod φ(n)) 
§  a0, a1, a2, a3, …, aφ(n)-2, aφ(n)-1 
§  aφ(n) = a0 mod n; aφ(n)+1 = a1 mod n; aφ(n)+2 = a2 mod n;…;     

aφ(n)+(φ(n)-1) = aφ(n)-1 mod n; aφ(n)+φ(n) = a0 mod n 
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Groups 

Definition 
A group (G,*) is a set G of elements on which a binary 
operation * is defined, which satisfies the following axioms: 
 
Closure:         For all a, b ∈ G, a * b  ∈ G 
 
Associativity:  For all a, b, c ∈ G, (a * b) * c = a * (b * c) 
 
Identity:          ∃ e ∈G s.t. for all a ∈ G, a * e = a = e * a  

   (e is called the identity element of the group) 
 
Invertibility:     For all a ∈ G, ∃ b ∈ G s. t. a * b = b * a = e 

   (b is called a’s inverse; sometimes we use the 
    notation a-1 instead of b) 
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Groups (examples) 

•  (Z,+) is a group, where + is addition over integers. 
 
•  If • is multiplication over integers, is (Z,•) a group? 

 No! Why not? Are all the group axioms satisfied? 
 No, because not all elements in Z have multiplicative 
inverses. 

•  Let n>1 be an integer and let Zn be the set {0, 1, 2, …, n-1}. 
Zn is known as the set of integers modulo n. 

 (Zn,+) is a group, where + is addition modulo n. 
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Groups (examples) 

•  Let n>1 be an integer and let Z*n = {a ∈ Zn | gcd(a,n)=1}. 
 (Z*n, •) is a group, where • is multiplication modulo n. 

 
  (Z*n, •) is called the multiplicative group of Zn. 

•  Let p be a prime integer and let Z*p be the set      
{1, 2, …, p-1}. 

 (Z*p, •) is a group, where • is multiplication modulo p. 
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Groups (Revisit Euler’s theorem) 

l  Let n>1 be an integer. If a ∈ Z*n, then aφ(n) ≡ 1 (mod n) 
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Groups (cont.) 

Definition: 
A group (G,*) is called an abelian group if the operation * 
is a commutative operation: 
Commutative:  For all a, b ∈ G, a * b = b * a. 
 
Example: 
(Z, +) is an abelian group 
 
Definition 
A group (G,*) is cyclic if ∃ g ∈ G s.t. any h ∈ G can be 
written as h = gi for some integer i. 
g is called group generator for G. 
  

Example 
Cyclic groups: (Z*3, •), (Z*p, •) where p is a prime 
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Order of a Group  
Definition 
The order of a group (G,*) is defined as the number of  
elements in the  group.  
We use the notation ord(G), or |G|. 
 
 

Definition 
A group G is finite, if |G| = ord(G) is finite. 
  
Example: 
The order of (Z*n, •) is φ(n). Why? 
The order of (Z*p, •) is p-1. Why? 
What is the order of (Z*7, •), (Z*700, •) ? 
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Order of a Group Element 

Definition 
The order of an element a from a group G, is the least  
positive integer t such that at=e, where e is the identity  
element of the group. 
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(Z*n,•): The multiplicative group of Zn 

l  For the group (Z*n, •), the order of an element a ∈ Z*n is 
the smallest positive integer t s.t. at ≡ 1 (mod n) 

l  If the order of a ∈ Z*n is t, then t | φ(n) 
 (the order of an element divides the order of the group) 

 
Example 
Let n=21. Then Z*21={1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}. 

φ(21) = φ(3) φ(7) = 12 = ord(Z*21) 
These are the orders of elements in Z*21: 
 

a ∈ Z*21 1 2 4 5 8 10 11 13 16 17 19 20 
order of a 1 6 3 6 2 6 6 2 3 6 6 2 
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(Z*n,•): The multiplicative group of Zn 

Example 
l  What is the order of 2 in (Z*5, *)?  

 It is 4 because 24 ≡ 1 mod 5 
 
l  What is the order of 3 in (Z*10, *)?  

 It is 4 because 34 ≡ 1 mod 10 
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Generators 

Definition 
Let g ∈ Z*n. If the order of g is φ(n), then g is said to be a  
generator (or a primitive element) of Z*n. 
 
Example 
(Z*7, •), 56 ≡ 1 mod 7 and φ(7) = 6 
56 = 15625 
(Z*8, *) does not have a primitive element. 
 
FACT 
The group (Z*n, •) has primitive elements only if  
n is 2, 4, pt or 2pt, where p is an odd prime and t ≥ 1. 
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Primitive Elements and Cyclic Groups 
FACT 
If Z*n has a generator, then Z*n is said to be cyclic. 
 
Each primitive element (generator) can be used to generate  
the whole set: Z*n = {g0, g1, g2, … g φ(n)-1} 

FACT 
If the group (Z*n,•) is cyclic, the number of primitive  
elements is φ(φ(n)) 

OBSERVATION 
(Z*n,•) is cyclic if it has primitive elements 
(Z*p,•) is always cyclic (where p is a prime) 
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Primitive Elements 

Examples 
 
Z*21 is not cyclic. 
Z*25 is cyclic. A generator is g = 2. 
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The Logarithm Function 

Definition 
The logarithm of a number y with respect to base b is the  
exponent to which b has to be raised in order to yield y. 
 
In other words, the logarithm of y to base b is the  
number x satisfying the equation: 

    bx = y  
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Discrete Logarithm 
Definition 
Let p be a prime, G = (Z*p, •) be a cyclic group, and g be a generator  
(primitive element) of G. Then, every element a of G can be  
written as gk ≡ a mod p for some integer k.  
k is called the the discrete logarithm of a to base g modulo p. 
 
Example 
Z*97 is cyclic group of order 96. A generator of Z*97 is g=5. 
Since 532 ≡ 35 (mod 97), we have that log535 = 32 in Z*97. 
 
Note 
Discrete logarithms can be defined for any finite cyclic group. 
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Modular Exponentiation 

l  How to efficiently compute ab (mod n) ? 
l  How to compute 21234 (mod 789)? 
l  Method 1: compute x = 21234 and then reduce x mod 789 

§  Infeasible (if a, b are 100-digit numbers, memory will 
overflow) 

l  Method 2: apply the modulo operation after each 
multiplication 
§  Impractical: too slow, since we would need to 

compute 1234 modular multiplications 



33 

CS 408 Lectures 11, 12, 13, 14 / Spring 2015 66 

Modular Exponentiation (continued) 
l  Method 3: square and multiply 

 Start with 22 ≡ 4 (mod 789) and square both sides: 
 24 ≡ 42 ≡ 16   2128 ≡ 559 
 28 ≡ 162 ≡ 256  2256 ≡ 37 
 216 ≡ 2562 ≡ 49  2512 ≡ 580 
 232 ≡ 34   21024 ≡ 286 
 264 ≡ 367 
  

Since 1234 = 1024 + 128 + 64 + 16 + 2, we have: 
21234 ≡ 21024 ⋅ 2128 ⋅ 264 ⋅ 216 ⋅ 22 = 286 ⋅ 559 ⋅ 367 ⋅ 49 ⋅ 4 ≡ 481 (mod 789) 
 
Note that we never needed to work with a number larger than 7882 
In general, to compute ab (mod n): 
l  at most 2*log2(b) multiplications mod n are required 
l  we only need to work with numbers smaller than n2 
 
Using square and multiply, modular exponentiation can be achieved fast and  
not much memory is needed! 

Announcement: programming project 

l  Programming project has been posted on the course 
website 

l  It is due on April 7 at 4:00pm 
§  Email your program to me76@njit.edu and also CC me at 

crix@njit.edu 
l  You are allowed to work in teams of up to 2 students 
l  It is optional and counts for 10% of your final grade 
l  You can use the extra days (you have 3 extra days IN 

TOTAL through the entire semester to use for 
assignments and projects) 
§  For example, you may use 1 extra day for Assignment #1, then 

1 extra day for Assignment #2, and 1 extra day for the project 
§  Or, you can use all 3 days for Assignment #2.  
§  Or, you can use all 3 days for the Programming Project 
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