CS408 Cryptography & Internet Security

Lecture 15: Public-key Cryptography, RSA

Public key encryption

- Entities don't need to establish a secret key or a trust relationship ahead of time
- A public key encryption scheme is a collection of three algorithms (G, E, D)
 - Key generation algorithm G: generates a pair of keys (Pub, Priv)
 - Encryption algorithm E: C = E_{Pub}(M)
 - Decryption algorithm D: M = E_{Priv}(C)
- The following should always hold true:
 - $D_{Priv}(E_{Pub}(M)) = M$
- . It is infeasible to derive the private key from the public key
- The public keys may be made publicly available, e.g., in a publicly available directory
- Many can encrypt, only one can decrypt
- · Provides: confidentiality
- · Does not provide: authentication, non-repudiation
- It is a keyed cryptographic primitive
- Example: RSA encryption, El-Gamal encryption

CS 408

Lecture 15 / Spring 2015

3

Public-key Cryptography

- Public-key cryptography (a.k.a. asymmetric-key cryptography)
 - encryption key different from decryption key
 - cannot derive decryption key from encryption key
 - higher cost than symmetric cryptography
 - simplifies key distribution
 - Came into existence in 1976
 - Analogy with a mailbox

CS 408

Lecture 15 / Spring 2015

Miscellaneous: Turing Award

- The Turing Award is the equivalent of the Nobel Prize for Computer Science
 - \$1,000,000 prize (used to be \$250K until 2014)
 - Named after Alan Turing (British mathematician who was part of the team which cracked the Enigma machine; also had many contributions in theoretical Computer Science and a significant role in the creation of the modern computer)

CS 408

Lecture 15 / Spring 2015

5

Miscellaneous: Turing Award

Past winners:

Rivest, Shamir, Adleman (in 2002) for "their ingenious contribution to making public-key cryptography useful in practice"

CS 408

Lecture 15 / Spring 2015

Miscellaneous: Turing Award

Past winners:

Shafi Goldwasser and Silvio Micali (in 2012): for "transformative work that laid the complexity-theoretic foundations for the science of cryptography, and in the process pioneered new methods for efficient verification of mathematical proofs in complexity theory."

 Press release: http://www.acm.org/press-room/awards/turing-award-12

 "their work helped to establish the tone and character of modern cryptographic research."

CS 408

Lecture 15 / Spring 2015

7

Public-key Cryptography

- Alice has pair of keys Pub_A, Priv_A
- E_{PubA} must be a one-way function:
 knowing C= E_{PubA}[M], it should be infeasible to find M
- However, E_{PubA} should not be one-way from Alice's perspective. The function E_{PubA} must have a trapdoor such that knowledge of the trapdoor enables Alice to invert it (you can think of the private key Priv_A as the trapdoor)

CS 408

Lecture 15 / Spring 2015

One-way Trapdoor Functions

Definition:

A function f: $\{0,1\}^* \to \{0,1\}^*$ is a trapdoor one-way function iff f(x) is a one-way function; however, given some extra information it becomes feasible to compute f^{-1} : given y, find x s.t. y = f(x)

- Example: f(x) = x³ mod n, n = pq (based on the integer factorization problem)
 - If factorization of n is unknown, then f is a one-way function
 - However, if one knows p and q s.t. n=pq, then it is easy to invert the function

CS 408

Lecture 15 / Spring 2015

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R. L. Rivest, A. Shamir, L. Adleman,
 "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol. 21 no. 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers

CS 408

Lecture 15 / Spring 2015

Z*_n (multiplicative group of integers mod n)

- Let n>1 be an integer and let Z*_n = {a ∈ Z_n | gcd(a,n)=1}.
 (Z*_n, •) is a group, where is multiplication modulo n.
 (Z*_n, •) is called the multiplicative group of Z_n.
- Let p and q be two large primes
- Denote their product n=pq
- Z*_n= Z*_{pq} contains all integers in the range [1, n-1] that are relatively prime to both p and q
- The size of Z_{p}^{*} is $\phi(pq) = (p-1)(q-1)$
- For every $x \in Z_n^*$, $x^{(p-1)(q-1)} \equiv 1 \mod n$

CS 408

Lecture 15 / Spring 2015

11

RSA Public Key Cryptosystem

Key generation:

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\phi(n) = (q-1)(p-1)$
- Select a random integer e, $1 < e < \phi(n)$, s.t. $gcd(e, \phi(n)) = 1$
- Compute d, $1 \le d \le \phi(n)$ s.t. ed = 1 mod $\phi(n)$

Public key: (n, e) Private key: d

Note: p and q must remain secret

CS 408

Lecture 15 / Spring 2015

RSA Public Key Cryptosystem

Encryption

- Obtain the recipient's public key (n,e)
- Represent the message as an integer M , 0 ≤ M < n
- Compute C = Me mod n
- · Send ciphertext C to recipient

Decryption

Given a ciphertext C, use private key d to recover M:
 M = C^d mod n

CS 408

Lecture 15 / Spring 2015

13

RSA Example

- p = 11, q = 7, n = 77, ϕ (n) = 60
- d = 13, e = 37 (ed = 481; ed mod 60 = 1)
- Let M = 15. Then $C = M^e \mod n$ $C = 15^{37} \pmod{77} = 71$
- $M = C^d \mod n$ $M = 71^{13} \pmod{77} = 15$

CS 408

Lecture 15 / Spring 2015

Why does RSA decryption work?

- Need to show that $(M^e)^d \equiv M \mod n$, where n = pq
- Since ed = 1 mod $\phi(n)$, there exists k s.t. ed = 1 + k $\phi(n)$
- If we can show that M^{ed} = M mod p and M^{ed} = M mod q, then M^{ed} = M mod n (since gcd(p,q)=1)
- Show that $M^{ed} \equiv M \mod p$:
 - If M = 0 mod p, then certainly Med = M mod p
 - If M ≠ 0 mod p, then by Fermat's Little Theorem: $M^{p-1} \equiv 1 \mod p$ Thus: $M^{ed} \equiv M^{1+k} \phi(n) \equiv M^{1+k(p-1)(q-1)} \equiv M (M^{p-1})^{k(q-1)} \equiv M 1^{k(q-1)}$ $\equiv M \mod p$

CS 408

Lecture 15 / Spring 2015

15

RSA Implementation

n, p, q

- The security of RSA depends on how large n is, which is often measured in the number of bits for n. Current NIST recommendation is at least 2048 bits for n.
- p and q should have the same bit length, so for 2048-bit RSA, p and q should each be about 1024 bits.
- p q should not be small

CS 408

Lecture 15 / Spring 2015

RSA Implementation

Value for e?

- e is usually chosen to be 3 or 2¹⁶ + 1 = 65537
- In order to speed up the encryption
 - the smaller the number of 1 bits, the better
 - why?

CS 408

Lecture 15 / Spring 2015

17

RSA on Long Messages

- RSA requires that the message M is at most n-1 where n is the RSA modulus.
- What about longer messages?
 - They are broken into blocks with value at most n-1.
 - · Smaller messages are padded.
 - CBC is used to prevent attacks regarding the blocks.
- In practice RSA is used to encrypt symmetric keys, so the message is not very long.
 - To encrypt a long message M for Bob,
 Alice generates a random symmetric key K,
 then computes:

 $AES_K(M)$ and $RSA_{Bob_pub_key}(K)$, and sends them to Bob.

CS 408

Lecture 15 / Spring 2015

Public Key Cryptography

- Advantages over symmetric key crypto
 - Key management
 - Key establishment: does not require secure channel to transmit secret keys
 - Key distribution: does not require O(n²) keys to be managed to communicate with n entities
- Disadvantages over symmetric key crypto
 - Slower (orders of magnitude)
- Is not meant to completely replace symmetric key cryptography, but to supplement it
 - E1_{Pub}(K), E2_K(M)
 (where E1 is symmetric-key encryption and E2 is public-key encryption)

CS 408

Lecture 15 / Spring 2015