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Public key encryption 
Each entity has: 

§  a public key (Pub), which is made public 
§  a private key (Priv), which is kept secret 

Alice Bob 

(PubB, PrivB) 

generate ciphertext 
C = EPubB(M) 

C 

retrieve plaintext    
M = DPrivB(C) 
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Public key encryption 
l  Entities don’t need to establish a secret key or a trust relationship ahead of 

time 
l  A public key encryption scheme is a collection of three algorithms (G, E, D) 

§  Key generation algorithm G: generates a pair of keys (Pub, Priv) 
§  Encryption algorithm E: C = EPub(M) 
§  Decryption algorithm D: M = EPriv(C) 

l  The following should always hold true: 
§  DPriv(EPub(M)) = M  

l  It is infeasible to derive the private key from the public key 
l  The public keys may be made publicly available, e.g., in a publicly available 

directory 
l  Many can encrypt, only one can decrypt 
l  Provides: confidentiality 
l  Does not provide: authentication, non-repudiation 
l  It is a keyed cryptographic primitive 
l  Example: RSA encryption, El-Gamal encryption 
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Public-key Cryptography 

l  Public-key cryptography (a.k.a. asymmetric-key cryptography) 
§  encryption key different from decryption key 
§  cannot derive decryption key from encryption key 
§  higher cost than symmetric cryptography 
§  simplifies key distribution 

§  Came into existence in 1976 
§  Analogy with a mailbox 
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Miscellaneous: Turing Award 

l  The Turing Award is the equivalent of the Nobel 
Prize for Computer Science 
§  $1,000,000 prize (used to be $250K until 2014) 
§  Named after Alan Turing (British mathematician who 

was part of the team which cracked the Enigma 
machine; also had many contributions in theoretical 
Computer Science and a significant role in the creation 
of the modern computer) 
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Miscellaneous: Turing Award 

l  Past winners:  
Rivest, Shamir, Adleman (in 2002) for “their 
ingenious contribution to making public-key 
cryptography useful in practice” 
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Miscellaneous: Turing Award 

l  Past winners:  
Shafi Goldwasser and Silvio Micali (in 2012):  
for “transformative work that laid the complexity-
theoretic foundations for the science of cryptography, 
and in the process pioneered new methods for 
efficient verification of mathematical proofs in 
complexity theory.” 
§  Press release:  

 http://www.acm.org/press-room/awards/turing-award-12 
§  “their work helped to establish the  

 tone and character of modern  
 cryptographic research.” 
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Public-key Cryptography 

l  Alice has pair of keys PubA, PrivA 
l  EPubA must be a one-way function:  

 knowing C= EPubA[M], it should be infeasible to find M 
l  However, EPubA should not be one-way from Alice’s 

perspective.  The function EPubA must have a trapdoor 
such that knowledge of the trapdoor enables Alice to 
invert it (you can think of the private key PrivA as the 
trapdoor) 
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One-way Trapdoor Functions 
Definition: 
A function f: {0,1}* → {0,1}* is a trapdoor one-way function iff f(x)  
is a one-way function; however, given some extra information it  
becomes feasible to compute f-1: given y, find x s.t. y = f(x) 

l  Example: f(x) = x3 mod n, n = pq  (based on the integer 
factorization problem) 
§  If factorization of n is unknown, then f is a one-way function 
§  However, if one knows p and q s.t. n=pq, then it is easy to 

invert the function 
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RSA Algorithm 

l  Invented in 1978 by Ron Rivest, Adi Shamir and 
Leonard Adleman 
§  Published as R. L. Rivest, A. Shamir, L. Adleman, 

"On Digital Signatures and Public Key 
Cryptosystems", Communications of the ACM, vol. 
21 no. 2, pp120-126, Feb 1978  

l  Security relies on the difficulty of factoring large 
composite numbers  
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Z*n (multiplicative group of integers mod n) 

•  Let n>1 be an integer and let Z*n = {a ∈ Zn | gcd(a,n)=1}. 
 (Z*n, •) is a group, where • is multiplication modulo n. 
 (Z*n, •) is called the multiplicative group of Zn. 

 
l  Let p and q be two large primes 
l  Denote their product n=pq 
l  Z*n= Z*pq contains all integers in the range [1, n-1] that 

are relatively prime to both p and q 
l  The size of Z*n is   φ(pq) = (p-1)(q-1)  
l  For every x ∈ Zn*, x(p-1)(q-1) ≡ 1 mod n 
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RSA Public Key Cryptosystem 
Key generation: 
l  Select 2 large prime numbers of about the same 

size, p and q 
l  Compute n = pq, and φ(n) = (q-1)(p-1) 
l  Select a random integer e,  1 < e < φ(n), s.t.  

 gcd(e, φ(n)) = 1 
l  Compute  d, 1< d< φ(n) s.t.  ed ≡ 1 mod φ(n) 
 
Public key:  (n, e) 
Private key: d   
 
Note: p and q must remain secret  
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RSA Public Key Cryptosystem 
Encryption 
l  Obtain the recipient’s public key (n,e) 
l  Represent the message as an integer M , 0 ≤ M < n 
l  Compute C = Me mod n 
l  Send ciphertext C to recipient 
 
Decryption 
l  Given a ciphertext C, use private key d to recover M: 

 M = Cd mod n 
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RSA Example 

l  p = 11, q = 7, n = 77, φ(n) = 60  
l  d = 13, e = 37   (ed = 481;  ed mod 60 = 1) 

l  Let M = 15.  Then C ≡ Me mod n 
C ≡ 1537 (mod 77) = 71 

l  M ≡ Cd mod n 
M ≡ 7113 (mod 77) = 15 
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Why does RSA decryption work?  

l  Need to show that (Me)d ≡ M mod n, where n = pq 
l  Since ed ≡ 1 mod φ(n), there exists k s.t. ed = 1 + k φ(n) 
l  If we can show that Med ≡ M mod p and Med ≡ M mod q, then 

Med ≡ M mod n (since gcd(p,q)=1) 

l  Show that Med ≡ M mod p: 
§  If M ≡ 0 mod p, then certainly Med ≡ M mod p 
§  If M ≠ 0 mod p, then by Fermat’s Little Theorem: Mp-1 ≡ 1 mod p 

 Thus:  Med ≡ M1 + k φ(n) ≡ M1 + k(p-1)(q-1) ≡ M (Mp-1)k(q-1) ≡  M 1k(q-1) 
≡ M mod p 

 
l  Similarly, we can show that Med ≡ M mod q 

CS 408 Lecture 15 / Spring 2015 16 

RSA Implementation  

n, p, q 
l  The security of RSA depends on how large n is, 

which is often measured in the number of bits for n. 
Current NIST recommendation is at least 2048 bits 
for n. 

l  p and q should have the same bit length, so for 
2048-bit RSA, p and q should each be about 1024 
bits. 

l  p - q should not be small 
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RSA Implementation  

Value for e ? 
l  e is usually chosen to be 3 or 

216 + 1 = 65537 
l  In order to speed up the 

encryption 
§  the smaller the number of 1 

bits, the better  
§  why? 
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RSA on Long Messages 

•  RSA requires that the message M is at most n-1 where n is the 
RSA modulus. 

•  What about longer messages?  
•  They are broken into blocks with value at most n-1.  
•  Smaller messages are padded.  
•  CBC is used to prevent attacks regarding the blocks. 

•  In practice RSA is used to encrypt symmetric keys, so the 
message is not very long. 
•  To encrypt a long message M for Bob, 

 Alice generates a random symmetric key K, 
 then computes: 
 AESK(M) and RSABob_pub_key(K), 
 and sends them to Bob. 
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Public Key Cryptography 

l  Advantages over symmetric key crypto 
§  Key management 

• Key establishment: does not require secure channel to 
transmit secret keys 

• Key distribution: does not require O(n2) keys to be 
managed to communicate with n entities 

l  Disadvantages over symmetric key crypto 
§  Slower (orders of magnitude) 

l  Is not meant to completely replace symmetric key 
cryptography, but to supplement it 
§  E1Pub(K), E2K(M) 

 (where E1 is symmetric-key encryption and E2 is 
public-key encryption) 


