
1

CS408
Cryptography & Internet Security

Lectures 16, 17:
Security of RSA

El Gamal Cryptosystem

CS 408 Lectures 16, 17 / Spring 2015 2

Announcement

l  Final exam will be on May 11, 2015 between
11:30am – 2:00pm in FMH 319
§  http://www.njit.edu/registrar/exams/finalexams.php

2

FROM LAST WEEK: RSA

CS 408 Lectures 16, 17 / Spring 2015 3

CS 408 Lectures 16, 17 / Spring 2015 4

Z*n (multiplicative group of integers mod n)

•  Let n>1 be an integer and let Z*n = {a ∈ Zn | gcd(a,n)=1}.
 (Z*n, •) is a group, where • is multiplication modulo n.
 (Z*n, •) is called the multiplicative group of Zn.

l  Let p and q be two large primes
l  Denote their product n=pq
l  Z*n= Z*pq contains all integers in the range [1, n-1] that

are relatively prime to both p and q
l  The size of Z*n is φ(pq) = (p-1)(q-1)
l  For every x ∈ Zn*, x(p-1)(q-1) ≡ 1 mod n

3

CS 408 Lectures 16, 17 / Spring 2015 5

RSA Public Key Cryptosystem
Key generation:
l  Select 2 large prime numbers of about the same

size, p and q
l  Compute n = pq, and φ(n) = (q-1)(p-1)
l  Select a random integer e, 1 < e < φ(n), s.t.

 gcd(e, φ(n)) = 1
l  Compute d, 1< d< φ(n) s.t. ed ≡ 1 mod φ(n)

Public key: (n, e)
Private key: d

Note: p and q must remain secret

CS 408 Lectures 16, 17 / Spring 2015 6

RSA Public Key Cryptosystem
Encryption
l  Obtain the recipient’s public key (n,e)
l  Represent the message as an integer M , 0 ≤ M < n
l  Compute C = Me mod n
l  Send ciphertext C to recipient

Decryption
l  Given a ciphertext C, use private key d to recover M:

 M = Cd mod n

4

CS 408 Lectures 16, 17 / Spring 2015 7

Why is RSA Encryption Secure?

l  Because there is no known efficient algorithm to solve the
RSA problem

l  The RSA Problem (RSAP):
 Given an integer c, find an integer m such that
me ≡ c (mod n)
 (where e, n are defined like in the RSA setting:
§  n is a product of two distinct large primes: n = pq
§  e is a positive integer s.t. gcd(e, φ(n))=1
§  n and e are public
§  c ∈ {0, 1, …, n-1})

In other words, the RSA problem is that of finding eth roots
modulo n
(this problem is difficult when n, p, q are very large; there are
no known efficient algorithms to solve it)

CS 408 Lectures 16, 17 / Spring 2015 8

The Integer Factorization Problem (FACTORING)

l  Given a positive integer n, find its prime factorization.
That is, write n = p1

e1 p2
e2 … pk

ek, where pi are
pairwise distinct primes.

l  When n is a very large number (e.g., n is
represented using thousands of bits), there is no
known efficient algorithm to solve FACTORING.

l  In particular, let n be a product of two distinct large
primes n = pq. Then FACTORING becomes:
given n, find p and q.

5

CS 408 Lectures 16, 17 / Spring 2015 9

The Relationship between RSAP and FACTORING
l  If an adversary can solve FACTORING, then the adversary can

also solve RSAP.
 (we say that the RSA problem reduces to the integer factorization
problem)

l  Why?
 If adversary knows primes p and q such that n = pq, then the
adversary can compute φ(n) = (p-1)(q-1).
 This allows the adversary to compute d such that de ≡ 1 mod φ(n).
If adversary knows d, then it can decrypt any RSA ciphertext.

l  It is widely believed that if an adversary can solve RSAP, then it

can also solve FACTORING (although no one has been able to
prove this).
§  If this were true, then RSAP and FACTORING would be

equivalent.

CS 408 Lectures 16, 17 / Spring 2015 10

Factoring Large Numbers
l  RSA Factoring Challenge: a challenge put forward by

RSA Labs to encourage research into computational
number theory and the practical difficulty of factoring large
integers.

l  RSA-768 (modulus n has 768 bits) is the largest RSA
Challenge number factored to date (December 12, 2009)
§  The effort took almost 2000 2.2GHz-Opteron-CPU years

according to the submitters, just short of 3 years of calendar
time, using a combination of sophisticated techniques

l  Factoring a 1024-bit modulus is still estimated to be about
one thousand times harder to factor than a 768-bit one
§  It may be possible to factor a 1024-bit RSA modulus within

the next decade
l  NIST standards recommend phasing out 1024-bit moduli

by 2010, after 2010 the recommended size is 2048 bits.

6

CS 408 Lectures 16, 17 / Spring 2015 11

Attacks on RSA Encryption

Small message space (e.g., m ∈ {yes, no})

l  Attacker can try to encrypt all possible plaintext

messages until the ciphertext c is obtained.
l  Solution: use salting (append a random bitstring to the

plaintext message before encryption):
§  For a message m = 1001…10, generate a random

bitstring r = 11001…11 (at least 64 bits) and encrypt r || m
 (|| denotes bitstring concatenation)

CS 408 Lectures 16, 17 / Spring 2015 12

Attacks on RSA Encryption (continued)

Common modulus attack

Assume two entities A and B use the same modulus n.
A’s public key is (n, e1), B’s public key is (n, e2).

If an attacker eavesdrops an encryption for A: c1 = me1 mod n,
and also eavesdrops an encryption for B for the same
message: c2 = me2 mod n, then the attacker can find m!

§  if gcd(e1, e2) = 1, then the attacker can find integers u and v
s.t. ue1 + ve2 = 1

§  The attacker then computes
 c1

u c2
v = (me1)u (me2)v = mue1 + ve2 = m

Thus, each entity should choose its own RSA modulus n.

7

CS 408 Lectures 16, 17 / Spring 2015 13

Attacks on RSA Encryption (continued)

Malleability (multiplicative property)

Let m1 and m2 be two plaintext messages and let c1 and
c2 be their respective RSA encryptions. Observe that:
(m1 m2)e = m1

e m2
e = c1c2 (mod n)

Assume that an adversary observes a ciphertext
c = me mod n. Even if the adversary doesn’t know m, it can
transform c so that it is still valid upon decryption:
e.g., multiply c by (10)e. As a result, recipient gets
c’ = (10)e c = (10)e me = (10m)e and will incorrectly
decrypt 10m instead of m.

CS 408 Lectures 16, 17 / Spring 2015 14

Definitions of Security
l  Semantic Security:

 An adversary should be unable to learn any partial information
about the plaintext from the ciphertext (besides the length of the
plaintext)

l  Ciphertext Indistinguishability:
 An adversary should be unable to distinguish pairs of ciphertexts
based on the plaintext they encrypt

l  These two notions are equivalent, but the latter one is usually

used in proofs of security
§  They were proven equivalent under chosen-plaintext (CPA)

attacks
l  Under chosen-plaintext attacks, these are basic requirements for

any modern cryptosystem (IND-CPA)
§  Some cryptosystems achieve stronger security (IND-CCA)

8

CS 408 Lectures 16, 17 / Spring 2015 15

Ciphertext Indistinguishability

l  If the adversary knows that a ciphertext results from
one of two possible plaintexts, the adversary should
not be able to tell which one plaintext is more likely
to be the one that was encrypted

CS 408 Lectures 16, 17 / Spring 2015 16

Ciphertext Indistinguishability (for public key encryption)
 Let (G,E,D) be a public-key encryption scheme.

 IND-CPA security game: between Challenger (Chal) and Adversary (Adv)

1.  Chal chooses a key pair (Pub,Priv). Pub is made public, but Priv is kept
secret and not revealed to Adv.

2.  Adv is allowed to perform any number of encryptions (using Pub) or other
operations (we say Adv uses Chal as an “encryption oracle”)

3.  Eventually, Adv chooses two distinct plaintexts of equal length m0 and m1
and sends them to Chal

4.  Chal chooses a bit b ∈ {0,1} uniformly at random, computes the
challenge ciphertext c = EPub(mb), and sends c back to Adv

5.  Adv is allowed to perform any number of encryptions (using Pub) or other
operations (i.e., Adv continues to have oracle access to E)

6.  Adv outputs a bit b’
 The Adversary wins the game if b’= b

9

CS 408 Lectures 16, 17 / Spring 2015 17

Ciphertext Indistinguishability (continued)
l  A public-key encryption scheme is IND-CPA secure if every

probabilistic polynomial-time (PPT) adversary wins the IND-CPA
security game with probability 0.5 + ε(k), where ε(k) is a negligible
function in the security parameter k
§  i.e., the adversary has a negligible “advantage” over random

guessing

CS 408 Lectures 16, 17 / Spring 2015 18

Deterministic vs. Probabilistic Encryption
l  Probabilistic encryption implies the use of randomness

in encryption: when encrypting the same plaintext
several times, it will result in different ciphertexts
§  Each plaintext will map into a large number of possible

ciphertexts
l  To achieve semantic security, an encryption algorithm

must be probabilistic

l  Why can’t deterministic public encryption achieve
semantic security?

l  Textbook RSA encryption is not semantically secure
because it is deterministic

10

(BEGIN)
CRYPTOGRAPHIC

HASH
FUNCTION

CS 408 Lectures 16, 17 / Spring 2015 19

CS 408 Lectures 16, 17 / Spring 2015 20

Functions

Definition

 Given two sets, X and Y, a function f : X → Y (from
set X to set Y), is a relation which uniquely
associates members of set X with members of set Y.

11

CS 408 Lectures 16, 17 / Spring 2015 21

Cryptographic Hash Functions

l  Takes as input a string of any size and outputs a
fixed-size string (usually output is much smaller than
input)
§  E.g., output can be 160 bits regardless of input size

l  A hash is a many-to-one function, so collisions can
happen (but should be unlikely to happen).

l  Two fundamental properties: compression and
easy to compute.

CS 408 Lectures 16, 17 / Spring 2015 22

Cryptographic Hash Functions (continued)

l  Informal requirements
§  One-way (non-invertible)
§  Produces different outputs for different inputs (with

high likelihood)

12

(END)
CRYPTOGRAPHIC

HASH
FUNCTION

CS 408 Lectures 16, 17 / Spring 2015 23

CS 408 Lectures 16, 17 / Spring 2015 24

Cost of Semantic Security in Public Key Encryption

l  In order to have semantic security, some expansion
is necessary
§  i.e., the ciphertext must be larger than its

corresponding plaintext

13

CS 408 Lectures 16, 17 / Spring 2015 25

A Padding Scheme for Semantically Secure Public-key Encryption

l  Given a public-key encryption scheme (G,E,D):
§  to encrypt m, generate a random r, and the ciphertext is

c = (c1, c2) = (EPub(r), H(r) ⊕ m), where H is a
cryptographic hash function
o  The ciphertext consists of a pair of values

§  to decrypt c = (c1,c2), compute m = H(DPriv(c1)) ⊕ c2
§  requires an extra random number generation and an

XOR operation for each bit

CS 408 Lectures 16, 17 / Spring 2015 26

Example of the Padding Scheme

l  Example of the Padding Scheme for RSA
Public key: (n,e)
Private key: d

To encrypt m, generate random r and compute

ciphertext (c1, c2) = (re mod n, m ⊕ H(r))
To decrypt a ciphertext (c1, c2), compute

r = c1
d mod n, and m = c2 ⊕ H(r)

For a 1024-bit modulus n, to encrypt a 128-bit

message, the ciphertext has 1024+128 bits

14

CS 408 Lectures 16, 17 / Spring 2015 27

OAEP
l  M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances

in Cryptology - Eurocrypt '94, Springer-Verlag (1994), 92-111.
l  [Optimal Asymmetric Encryption Padding (OAEP)]: method for encoding

messages.
l  To encode a message m ∈ {0,1}u:

§  choose random r ∈ {0,1}t
§  use two cryptographic hash functions: H: {0,1}u→{0,1}t and G: {0,1}t→{0,1}u

§  compute m⊕G(r) || r⊕H(m⊕G(r))

l  To encrypt m, compute EK[m⊕G(r) || r⊕H(m⊕G(r))], where EK is
a trapdoor one-way permutation function (such as RSA encryption).
§  So, to encrypt we do [m⊕G(r) || r⊕H(m⊕G(r))]e mod n

l  OAEP is provably IND-CPA secure when H and G are modeled as
random oracles and EK is a trapdoor one-way permutation.

El Gamal Cryptosystem

15

CS 408 Lectures 16, 17 / Spring 2015 29

Reminder: Z*p

•  Let p be a prime integer and let Z*p be the set
{1, 2, …, p-1}.
 (Z*p, •) is a group, where • is multiplication modulo p.

l  If p is a prime, then (Z*p,•) is always cyclic (it has

primitive roots)

CS 408 Lectures 16, 17 / Spring 2015 30

ElGamal Public Key Cryptosystem

l  Proposed by Taher ElGamal in 1985
l  Message expansion: the ciphertext is twice

as big as the original message
l  Uses randomization, each message has p-1

possible different encryptions

16

CS 408 Lectures 16, 17 / Spring 2015 31

ElGamal Public Key Encryption

Key Generation
Each entity A should do the following:
1.  Generate a large random prime p. Find a generator

g of the multiplicative group Z*p.
2.  Select a random integer x, 1 ≤ x ≤ p-2, and compute

y = gx mod p
3.  A’s public key is (p, g, y)

 A’s private key is x

CS 408 Lectures 16, 17 / Spring 2015 32

ElGamal Public Key Encryption
Encryption (B encrypts a message m for A):
1.  Obtain A’s authentic public key (p, g, y)
2.  Represent the message as an integer m in the

range [0 .. p-1]
3.  Select a random integer r, 1 ≤ r ≤ p-2
4.  Compute c1 = gr mod p, c2 = m • yr mod p
5.  Send ciphertext c = (c1, c2) to A

Decryption (A decrypts a ciphertext c = (c1, c2) from B):
1.  Compute m = c2 • c1

-x mod p

Why is decryption correct?
c2 • c1

-x = m • yr • (gr)-x = m • gxr • g-xr = m

17

CS 408 Lectures 16, 17 / Spring 2015 33

Security of ElGamal Encryption

l  Security of ElGamal encryption relies on the difficulty
of two problems:
§  Computational Diffie-Hellman Problem (CDH)
§  Decisional Diffie-Hellman Problem (DDH)
(will see these later in the course)

l  Also, one cannot find x from gx mod p
§  this is called the Discrete Log Problem (DLP)

l  Note that ElGamal produces randomized ciphertexts
§  Two identical plaintexts will be encrypted into different

ciphertexts

CS 408 Lectures 16, 17 / Spring 2015 34

Recommended Reading

l  Chapter 6.1, 6.2, 6.7 for RSA
l  Chapter 7.5 for ElGamal

