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CS408 
Cryptography & Internet Security 

Lectures 16, 17: 
Security of RSA 

El Gamal Cryptosystem 
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Announcement 

l  Final exam will be on May 11, 2015 between 
11:30am – 2:00pm in FMH 319 
§  http://www.njit.edu/registrar/exams/finalexams.php 
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FROM LAST WEEK: RSA 
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Z*n (multiplicative group of integers mod n) 

•  Let n>1 be an integer and let Z*n = {a ∈ Zn | gcd(a,n)=1}. 
 (Z*n, •) is a group, where • is multiplication modulo n. 
 (Z*n, •) is called the multiplicative group of Zn. 

 
l  Let p and q be two large primes 
l  Denote their product n=pq 
l  Z*n= Z*pq contains all integers in the range [1, n-1] that 

are relatively prime to both p and q 
l  The size of Z*n is   φ(pq) = (p-1)(q-1)  
l  For every x ∈ Zn*, x(p-1)(q-1) ≡ 1 mod n 
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RSA Public Key Cryptosystem 
Key generation: 
l  Select 2 large prime numbers of about the same 

size, p and q 
l  Compute n = pq, and φ(n) = (q-1)(p-1) 
l  Select a random integer e,  1 < e < φ(n), s.t.  

 gcd(e, φ(n)) = 1 
l  Compute  d, 1< d< φ(n) s.t.  ed ≡ 1 mod φ(n) 
 
Public key:  (n, e) 
Private key: d   
 
Note: p and q must remain secret  
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RSA Public Key Cryptosystem 
Encryption 
l  Obtain the recipient’s public key (n,e) 
l  Represent the message as an integer M , 0 ≤ M < n 
l  Compute C = Me mod n 
l  Send ciphertext C to recipient 
 
Decryption 
l  Given a ciphertext C, use private key d to recover M: 

 M = Cd mod n 
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Why is RSA Encryption Secure? 

l  Because there is no known efficient algorithm to solve the 
RSA problem 

l  The RSA Problem (RSAP): 
 Given an integer c, find an integer m such that              
me ≡ c (mod n) 
 (where e, n are defined like in the RSA setting: 
§  n is a product of two distinct large primes: n = pq 
§  e is a positive integer s.t. gcd(e, φ(n))=1  
§  n and e are public 
§  c ∈ {0, 1, …, n-1} ) 

In other words, the RSA problem is that of finding eth roots  
modulo n  
(this problem is difficult when n, p, q are very large; there are 
no known efficient algorithms to solve it) 
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The Integer Factorization Problem (FACTORING) 

l  Given a positive integer n, find its prime factorization. 
That is, write n = p1

e1 p2
e2 … pk

ek, where pi are 
pairwise distinct primes. 

l  When n is a very large number (e.g., n is 
represented using thousands of bits), there is no 
known efficient algorithm to solve FACTORING.  

l  In particular, let n be a product of two distinct large 
primes n = pq. Then FACTORING becomes:      
given n, find p and q. 
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The Relationship between RSAP and FACTORING 
l  If an adversary can solve FACTORING, then the adversary can 

also solve RSAP. 
 (we say that the RSA problem reduces to the integer factorization 
problem) 

l  Why? 
 If adversary knows primes p and q such that n = pq, then the 
adversary can compute φ(n) = (p-1)(q-1).   
 This allows the adversary to compute d such that de ≡ 1 mod φ(n). 
If adversary knows d, then it can decrypt any RSA ciphertext. 

 
l  It is widely believed that if an adversary can solve RSAP, then it 

can also solve FACTORING (although no one has been able to 
prove this). 
§  If this were true, then RSAP and FACTORING would be 

equivalent. 
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Factoring Large Numbers 
l  RSA Factoring Challenge: a challenge put forward by 

RSA Labs to encourage research into computational 
number theory and the practical difficulty of factoring large 
integers. 

l  RSA-768 (modulus n has 768 bits) is the largest RSA 
Challenge number factored to date (December 12, 2009) 
§  The effort took almost 2000 2.2GHz-Opteron-CPU years 

according to the submitters, just short of 3 years of calendar 
time, using a combination of sophisticated techniques 

l  Factoring a 1024-bit modulus is still estimated to be about 
one thousand times harder to factor than a 768-bit one 
§  It may be possible to factor a 1024-bit RSA modulus within 

the next decade 
l  NIST standards recommend phasing out 1024-bit moduli 

by 2010, after 2010 the recommended size is 2048 bits. 
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Attacks on RSA Encryption 

Small message space (e.g., m ∈ {yes, no})  
 
l  Attacker can try to encrypt all possible plaintext 

messages until the ciphertext c is obtained. 
l  Solution: use salting (append a random bitstring to the 

plaintext message before encryption): 
§  For a message m = 1001…10, generate a random 

bitstring r = 11001…11 (at least 64 bits) and encrypt r || m 
 ( || denotes bitstring concatenation) 
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Attacks on RSA Encryption (continued) 

Common modulus attack 
 
Assume two entities A and B use the same modulus n. 
A’s public key is (n, e1), B’s public key is (n, e2). 
 
If an attacker eavesdrops an encryption for A: c1 = me1 mod n,  
and also eavesdrops an encryption for B for the same  
message: c2 = me2 mod n, then the attacker can find m! 

§  if gcd(e1, e2) = 1, then the attacker can find integers u and v 
s.t. ue1 + ve2 = 1 

§  The attacker then computes  
 c1

u c2
v = (me1)u (me2)v = mue1 + ve2 = m 

Thus, each entity should choose its own RSA modulus n. 
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Attacks on RSA Encryption (continued) 

Malleability (multiplicative property) 

Let m1 and m2 be two plaintext messages and let c1 and  
c2 be their respective RSA encryptions. Observe that:  
(m1 m2)e = m1

e m2
e = c1c2 (mod n) 

 
Assume that an adversary observes a ciphertext                 
c = me mod n. Even if the adversary doesn’t know m, it can  
transform c so that it is still valid upon decryption: 
e.g., multiply c by (10)e. As a result, recipient gets 
c’ = (10)e c = (10)e me = (10m)e and will incorrectly  
decrypt 10m instead of m. 
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Definitions of Security 
l  Semantic Security:  

 An adversary should be unable to learn any partial information 
about the plaintext from the ciphertext (besides the length of the 
plaintext) 

l  Ciphertext Indistinguishability: 
 An adversary should be unable to distinguish pairs of ciphertexts 
based on the plaintext they encrypt 

 
l  These two notions are equivalent, but the latter one is usually 

used in proofs of security 
§  They were proven equivalent under chosen-plaintext (CPA) 

attacks 
l  Under chosen-plaintext attacks, these are basic requirements for 

any modern cryptosystem (IND-CPA) 
§  Some cryptosystems achieve stronger security (IND-CCA) 
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Ciphertext Indistinguishability 

l  If the adversary knows that a ciphertext results from 
one of two possible plaintexts, the adversary should 
not be able to tell which one plaintext is more likely 
to be the one that was encrypted 
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Ciphertext Indistinguishability (for public key encryption) 
 Let (G,E,D) be a public-key encryption scheme. 
  
 IND-CPA security game: between Challenger (Chal) and Adversary (Adv) 

1.  Chal chooses a key pair (Pub,Priv). Pub is made public, but Priv is kept 
secret and not revealed to Adv. 

2.  Adv is allowed to perform any number of encryptions (using Pub) or other 
operations (we say Adv uses Chal as an “encryption oracle”) 

3.  Eventually, Adv chooses two distinct plaintexts of equal length m0 and m1 
and sends them to Chal 

4.  Chal chooses a bit b ∈ {0,1} uniformly at random, computes  the 
challenge ciphertext c = EPub(mb), and sends c back to Adv 

5.  Adv is allowed to perform any number of encryptions (using Pub) or other 
operations (i.e., Adv continues to have oracle access to E) 

6.  Adv outputs a bit b’ 
 The Adversary wins the game if b’= b 
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Ciphertext Indistinguishability (continued) 
l  A public-key encryption scheme is IND-CPA secure if every 

probabilistic polynomial-time (PPT) adversary wins the IND-CPA 
security game with probability 0.5 + ε(k), where ε(k) is a negligible 
function in the security parameter k 
§  i.e., the adversary has a negligible “advantage” over random 

guessing 
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Deterministic vs. Probabilistic Encryption 
l  Probabilistic encryption implies the use of randomness 

in encryption: when encrypting the same plaintext 
several times, it will result in different ciphertexts 
§  Each plaintext will map into a large number of possible 

ciphertexts 
l  To achieve semantic security, an encryption algorithm 

must be probabilistic 

l  Why can’t deterministic public encryption achieve 
semantic security? 

l  Textbook RSA encryption is not semantically secure 
because it is deterministic 
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(BEGIN) 
CRYPTOGRAPHIC 

HASH 
FUNCTION 
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Functions 
  
Definition 

   Given two sets, X and Y, a function f : X → Y (from 
set X to set Y), is a relation which uniquely 
associates members of set X with members of set Y. 
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Cryptographic Hash Functions 

l  Takes as input a string of any size and outputs a 
fixed-size string (usually output is much smaller than 
input) 
§  E.g., output can be 160 bits regardless of input size 

l  A hash is a many-to-one function, so collisions can 
happen (but should be unlikely to happen). 

l  Two fundamental properties: compression and 
easy  to compute. 
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Cryptographic Hash Functions (continued) 

l  Informal requirements 
§  One-way (non-invertible) 
§  Produces different outputs for different inputs (with 

high likelihood) 
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(END) 
CRYPTOGRAPHIC 

HASH 
FUNCTION 
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Cost of Semantic Security in Public Key Encryption 

l  In order to have semantic security, some expansion 
is necessary 
§  i.e., the ciphertext must be larger than its 

corresponding plaintext  
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A Padding Scheme for Semantically Secure Public-key Encryption 

l  Given a public-key encryption scheme (G,E,D): 
§  to encrypt m, generate a random r, and the ciphertext is   

c = (c1, c2) = (EPub(r), H(r) ⊕ m), where H is a 
cryptographic hash function 
o  The ciphertext consists of a pair of values 

§  to decrypt c = (c1,c2), compute m = H(DPriv(c1)) ⊕ c2 
§  requires an extra random number generation and an 

XOR operation for each bit 

CS 408 Lectures 16, 17 / Spring 2015 26 

Example of the Padding Scheme 

l  Example of the Padding Scheme for RSA 
Public key: (n,e) 
Private key: d 
 
To encrypt m, generate random r and compute 

ciphertext (c1, c2) = (re mod n, m ⊕ H(r)) 
To decrypt a ciphertext (c1, c2), compute            

r = c1
d mod n, and m = c2 ⊕ H(r) 

 
For a 1024-bit modulus n, to encrypt a 128-bit 

message, the ciphertext has 1024+128 bits 
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OAEP 
l  M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances 

in Cryptology - Eurocrypt '94, Springer-Verlag (1994), 92-111. 
l  [Optimal Asymmetric Encryption Padding (OAEP)]: method for encoding 

messages. 
l  To encode a message m ∈ {0,1}u: 

§  choose random r ∈ {0,1}t  
§  use two cryptographic hash functions: H: {0,1}u→{0,1}t and G: {0,1}t→{0,1}u 

§  compute m⊕G(r) || r⊕H(m⊕G(r)) 

l  To encrypt m, compute EK[m⊕G(r) || r⊕H(m⊕G(r))], where EK is 
a trapdoor one-way permutation function (such as RSA encryption). 
§  So, to encrypt we do [m⊕G(r) || r⊕H(m⊕G(r))]e mod n 

l  OAEP is provably IND-CPA secure when H and G are modeled as 
random oracles and EK is a trapdoor one-way permutation.  

El Gamal Cryptosystem 
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Reminder: Z*p 

•  Let p be a prime integer and let Z*p be the set      
{1, 2, …, p-1}. 
 (Z*p, •) is a group, where • is multiplication modulo p. 

 
l  If p is a prime, then (Z*p,•) is always cyclic (it has 

primitive roots) 
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ElGamal Public Key Cryptosystem 

l  Proposed by Taher ElGamal in 1985 
l  Message expansion: the ciphertext is twice 

as big as the original message 
l  Uses randomization, each message has p-1 

possible different encryptions 
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ElGamal Public Key Encryption 

Key Generation 
Each entity A should do the following: 
1.  Generate a large random prime p. Find a generator 

g of the multiplicative group Z*p. 
2.  Select a random integer x, 1 ≤ x ≤ p-2, and compute 

y = gx mod p 
3.  A’s public key is (p, g, y) 

 A’s private key is x 
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ElGamal Public Key Encryption 
Encryption (B encrypts a message m for A): 
1.  Obtain A’s authentic public key (p, g, y) 
2.  Represent the message as an integer m in the 

range [0 .. p-1] 
3.  Select a random integer r, 1 ≤ r ≤ p-2 
4.  Compute c1 = gr mod p, c2 = m • yr mod p 
5.  Send ciphertext c = (c1, c2) to A 

Decryption (A decrypts a ciphertext c = (c1, c2) from B): 
1.  Compute m = c2 • c1

-x mod p 
 
Why is decryption correct? 
c2 • c1

-x = m • yr • (gr)-x = m • gxr • g-xr = m 
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Security of ElGamal Encryption 

l  Security of ElGamal encryption relies on the difficulty 
of two problems: 
§  Computational Diffie-Hellman Problem (CDH) 
§  Decisional Diffie-Hellman Problem (DDH) 
(will see these later in the course) 

l  Also, one cannot find x from gx mod p 
§  this is called the Discrete Log Problem (DLP) 

l  Note that ElGamal produces randomized ciphertexts 
§  Two identical plaintexts will be encrypted into different 

ciphertexts 
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Recommended Reading 

l  Chapter 6.1, 6.2, 6.7 for RSA 
l  Chapter 7.5 for ElGamal 


