CS 408 Cryptography & Internet Security

Lecture 19:

Digital signatures, RSA signature, PKI, Hybrid schemes

Last time

- Cryptographic Hash Functions
- Message Authentication Codes

CS 408

Lecture 19 / Spring 2015

What Do We Have in Our Toolbox?

- Confidentiality
 - Symmetric-key encryption (block ciphers: AES, DES)
 - Public-key encryption (RSA, ElGamal)
- Integrity
 - Message Authentication Codes (HMAC-SHA1)
- Authentication
 - Message Authentication Codes (HMAC-SHA1)
- Non-Repudiation?

CS 408

Lecture 19 / Spring 2015

3

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts, they are valid if they are signed.
- Can we have a similar service in the electronic world?

CS 408

Lecture 19 / Spring 2015

4___

Digital Signature

Each entity has:

- a public key (Pub), which is made public
- a private key (Priv), which is kept secret

Digital Signature (continued)

- Entities don't need to establish a secret key or a trust relationship ahead of time
- A public key signature scheme is a collection of three algorithms (G, S, V)
 - Key generation algorithm G: generates a pair of keys (Pub, Priv)
 - Signature generation algorithm S: Sig = S_{Priv}(M)
 - Signature verification algorithm V: "result" = V_{Pub}(M,Sig), where "result" is "valid" or "invalid"
- The following should always hold true:
 - V_{Pub}(M, Sig)) = "valid", if Sig = S_{Priv}(M) = "invalid", otherwise

CS 408

Lecture 19 / Spring 2015

Digital Signature (continued)

- It is infeasible to derive the private key from the public key
- Provides: authentication, integrity, non-repudiation
- Does not provide: confidentiality
- It is a keyed cryptographic primitive
- Example: RSA signature, ElGamal signature, DSA signature

CS 408

Lecture 19 / Spring 2015

7

Adversarial Goals

- Total break: adversary is able to find the secret for signing, so he can forge then any signature on any message.
- Selective forgery: adversary is able to create valid signatures on a message chosen by someone else.
- Existential forgery: adversary can create a pair (message, signature), s.t. the signature of the message is valid.

CS 408

Lecture 19 / Spring 2015

Attack Models for Digital Signatures

- Key-only attack: Adversary knows only the public verification key.
- Known message attack: Adversary knows a list of messages previously signed by Alice (and their corresponding signatures).
- Chosen message attack: Adversary can choose what messages Alice will sign, and he knows both the messages and the corresponding signatures.

CS 408

Lecture 19 / Spring 2015

9

Two Flavors of Digital Signatures

- Digital signatures with appendix
 - A computes Sig = S_{PrivA}(M)

A sends to B: (M, Sig)

B verifies if Sig is a valid signature on M

- Example: Schnorr signature scheme
- Sigital signatures with message recovery
 - A computes Sig = S_{PrivA}(M)

A sends to B: Sig

B uses Sig to recover M and also verifies the validity of the signature in the process

Example: RSA signature scheme

CS 408

Lecture 19 / Spring 2015

Digital Signatures and Hash Functions

- For efficiency reasons, digital signatures are usually used in combination with cryptographic hash functions:
 - To sign a message, first compute a hash of the message, and then sign the hash (instead of the message)
 - 1. A computes Sig = $S_{PrivA}(h(M))$
 - 2. A sends to B: M, Sig
 - 3. B computes h(M) and checks if $V_{PubA}(h(M), Sig) = "valid"$
- Cryptographic hash functions must have:
 - Pre-image resistance (first pre-image resistance)
 - Weak collision resistance (second pre-image resistance)
 - Strong collision resistance (collision resistance)

CS 408

Lecture 19 / Spring 2015

11

RSA Digital Signature

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\phi(n) = (q-1)(p-1)$
- Select a random integer e, $1 < e < \phi(n)$, s.t. $gcd(e, \phi(n)) = 1$
- Compute d, $1 < d < \phi(n)$ s.t. ed = 1 mod $\phi(n)$

Public key: (n, e) Private key: d

Note: p and q must remain secret

CS 408

Lecture 19 / Spring 2015

RSA Digital Signature

Signature Generation:

Goal: generate a digital signature for message M

- Represent the message as an integer M , 0 < M < n
- Compute S = M^d mod n
- Send S to recipient

Signature Verification:

- Obtain the sender's public key (n,e)
- Compute M = Se mod n

Note: in practice, a hash of the message is signed and not the message itself.

CS 408

Lecture 19 / Spring 2015

13

Security of RSA Signature

Example of forging

• Attack based on the multiplicative property of RSA:

$$y_1 = sig_K(x_1) = x_1^d \mod n$$

 $y_2 = sig_K(x_2) = x_2^d \mod n$, then
 $ver_K(x_1x_2 \mod n, y_1y_2 \mod n) = true$

$$sig(x_1x_2) = (x_1x_2)^d = (x_1)^d (x_2)^d = y_1y_2 \mod n$$

- So adversary can create the valid signature y₁y₂ mod n on the message x₁x₂ mod n
- This is an existential forgery using a known message attack.

CS 408

Lecture 19 / Spring 2015

Security of RSA Signature

 To avoid the forgery attack, we must use a secure padding scheme that encodes the message in order to provide some specific structure to the message:

A computes Sig = $(P(M))^d$ mod n B recovers P(M) and checks if it has a specific format

Current standards for secure padding schemes: PKCS#1 (provides padding for signatures, similar with the OAEP padding for public-key encryption)

CS 408

Lecture 19 / Spring 2015

15

Our Toolbox (revisited)

- Confidentiality
 - Symmetric-key encryption (block ciphers: AES, DES)
 - Public-key encryption (RSA, ElGamal)
- Integrity
 - Digital Signatures (RSA signature)
 - Message Authentication Codes (HMAC-SHA1)
- Authentication
 - Message Authentication Codes (HMAC-SHA1)
 - Digital Signatures (RSA signature)
- Non-Repudiation
 - Digital Signatures (RSA signature)

CS 408

Lecture 19 / Spring 2015

Our Toolbox (another view)

- Symmetric-key encryption
 - Confidentiality
- Public-key encryption
 - Confidentiality
- Message Authentication Codes
 - Integrity and Authentication
- Digital Signatures
 - Integrity, Authentication, Non-Repudiation

CS 408 Lecture 19 / Spring 2015 17

Public Key Infrastructure (PKI)

Alice, ID Proof, Pub_A

CERT(Alice, Pub_A)

Certification Authority (CA)

- CERT(Alice, Pub_A) is Alice's public key certificate, which binds Alice's identity to her public key
 - signed by the CA (using the CA's private key)
- Anyone can verify authenticity of CERT_A by using the CA's public key
- The CA's public key is readily available in a root certificate
 - Included in the browser, published online, or in a newspaper, or on a CD etc.
 - The root certificate is a self-signed certificate (signed with the private key corresponding to the actual public key contained in the certificate)

CS 408

Lecture 19 / Spring 2015

19

Public Key Infrastructure (PKI)

Alice, ID Proof, Pub_A

CERT(Alice, Pub_A)
Alice

Certification Authority (CA)

- To verify a signature from Alice:
 - Bob retrieves Alice's certificate CERT_A = CERT(Alice, Pub_A)
 - Bob can verify CERT_A by using the CA's public key
 - Bob can verify the signed message using Pub_A

CS 408

Lecture 19 / Spring 2015

PKI

- A public key certificate contains several fields:
 - The identity of the public key's owner
 - The public key
 - Serial number
 - Expiration date
 - Other useful fields

CS 408

Lecture 19 / Spring 2015

21

Public Key Infrastructure

- When Alice needs Bob's public key, she retrieves Bob's certificate: CERT(Bob, Pub_B)
 - Alice has the authentic public key of the CA, so she can verify the authenticity of Bob's certficate
 - This validates the authenticity of Bob's public key, Pub_B, which is contained inside Bob's certificate
- A Root Certificate acts as an anchor point in the chain of trust
 - They are used to validate certificates lower in the PKI hierarchy
- PKI = the entire infrastructure needed to support public key cryptography
 - Includes organizations (CAs), principals, and their interactions

CS 408

Lecture 19 / Spring 2015

Problems with PKI?

- Public key certificates have expiration dates
 - Short term (a few months), or longer term (a few years)
- What happens when a certificate needs to be revoked before the expiration date?
 - a company goes out of business
 - a web domain changes ownership
 - an employee changes affiliation (e.g., leaves a company)
 - the private key gets compromised (!)
 - the private key is lost (!)

CS 408

Lecture 19 / Spring 2015

23

Problems with PKI?

- Certificate Revocation Lists (CRL) are lists of certificates (serial numbers more precisely) that have been revoked
 - Published periodically by the CA that issued the corresponding certificate
- Best practices require to always check if a certificate has not been revoked before expiration
 - This means, that in order to PKI effectively, one needs to always check the list of current CRLs
 - Thus, there is a need for an entity which is always available ("on-line") and provides CRLs
 - This requirement of "on-line validation" negates one of the original major advantages of PKI over symmetric key cryptography
 - The need for verifying CRL before certification validation also raises the possibility of DoS attacks against the PKI

CS 408

Lecture 19 / Spring 2015

Public key cryptography

- · Advantages over symmetric key crypto
 - Key management
 - Key establishment: does not require secure channel to transmit secret keys
 - Key distribution: does not require O(n²) keys to be managed to communicate with n entities
 - Can provide non-repudiation
- Disadvantages over symmetric key crypto
 - Slower (orders of magnitude)
- Is not meant to completely replace symmetric key cryptography, but to supplement it
 - See hybrid schemes

CS 408

Lecture 19 / Spring 2015

25

Hybrid Schemes

- Alice wants to send a large secret message to Bob over an insecure channel
- How should Alice encrypt the message for Bob?

First attempt

 $P_{Bob}(m)$

(where P_{Bob} is public-key encryption with Bob's public key)

· This is very inefficient for a large message m!

Second attempt

 $E_k(m)$, $P_{Bob}(k)$

(where E_k is symmetric-key encryption with key k, P_{Bob} is public-key encryption with Bob's public key)

But E_k(m) doesn't guarantee integrity of m!

CS 408

Lecture 19 / Spring 2015

Hybrid Schemes

- 1. $E_{k1}(m)$, $HMAC_{k2}(m)$, $P_{Bob}(k1 || k2)$
- 2. $E_{k1}(m)$, $HMAC_{k2}(E_{k1}(m))$, $P_{Bob}(k1 || k2)$
- 3. $E_{k1}(m || HMAC_{k2}(m)), P_{Bob}(k1 || k2)$
- 4. $E_k(m \mid\mid S_{Alice}(m)), P_{Bob}(k)$ (where S_{Alice} is a signature with Alice's private key)

CS 408

Lecture 19 / Spring 2015

27

Authenticated Encryption

- A symmetric-key block cipher (such as AES) can also be used in a mode of operation that provides both confidentiality and authentication/integrity: authenticated encryption
- Examples of such modes of operation: OCB, GCM, CCM, CWC, EAX

CS 408

Lecture 19 / Spring 2015

Computational Costs of Various Cryptographic Primitives

(results obtained with OpenSSL on MacBook 2 Ghz Intel Core 2 Duo with 2 GB memory)

1024-bit blocks:

sha1: 4.31 x 10⁻⁶ seconds

hmac(md5): 9.19 x 10⁻⁶ s aes-128-cbc: 26 x 10⁻⁶ s

1024-bit keys:

RSA sign: $7.22 \times 10^{-3} \text{ s}$ RSA verify: $0.31 \times 10^{-3} \text{ s}$ DSA sign: $3.09 \times 10^{-3} \text{ s}$ DSA verify: $3.72 \times 10^{-3} \text{ s}$

CS 408 Lecture 19 / Spring 2015

15