CS 408 Cryptography & Internet Security

Lecture 23:

Secure Communication after Key Setup SSL

What Happens after Key Setup?

- Assume that Alice and Bob have session keys for encryption and authentication.
- What next? How to protect communication?
 - Differentiate between encryption and authentication
- Where in the protocol stack to put security?
- Assume insecure network and powerful attacker (can eavesdrop, inject, modify etc.)

Where to Put Security?

- Application layer?
- Transport layer?
- Network layer?
- Link layer?

CS 408 Lecture 23 / Spring 2015 3

Security at the Link Layer?

- When to use?
 - High volume, direct connection between two nodes
 - Vulnerable link due to the nature of the physical layer
- Example:
 - A wireless home network
 - WEP (every LL frame is encrypted and authenticated)
- Not appropriate for devices that do not have a direct connection
 - Intermediate nodes may need routing information (IP address)

CS 408

Security at the Network or Transport Layer?

- Network layer (IPsec) ("layer 3")
 - Requires modification of the TCP/IP stack
 - Does not require changes in the applications
- Transport layer (SSL) ("layer 4")
 - The OS does not need to be modified
 - Requires modification of the applications

CS 408 Lecture 23 / Spring 2015 5

Security at the Application Layer?

- When to use?
 - When there are very specific security needs required by an application
 - When no end-to-end transport connection exists between two parties
- Example: e-mail
 - Users send emails to other users in different geographic locations, using diverse platforms
 - People may not trust the sys admin
 - PGP (Pretty Good Privacy)

CS 408 Lecture 23 / Spring 2015 6

Secure Sockets Layer (SSL)

- Goals for secure communication between a client and a server
 - Provide confidentiality
 - Provide (mutual) authentication
- Communication is divided into two phases
 - Handshake
 - client and server agree on what set of cryptographic algorithms to use
 - authenticates the server
 - establishes keys which will be used for the data transfer
 - Secure data transfer
 - Data is transferred (authenticated and encrypted using the keys established during handshake)

CS 408 Lecture 23 / Spring 2015 7

Basic Handshake Protocol

CS 408

Basic Handshake Protocol

- Client uses https:// instead of http:// (this indicates to server to use port 443 instead of 80)
- X is a random value chosen by the client
- Only the server authenticates itself
 - Client authentication is rarely achieved through SSL
- Messages 5) and 6) protect tampering of the (unprotected) messages 1) and 2)
- The derived key material K includes <u>different</u> keys for encryption and authentication
 - $PRF(X, R_C, R_S) = (K_{S1}, K_{S2}, K_{C1}, K_{C2})$
 - Server encryption key K_{S1}, server MAC key K_{S2}
 - Client encryption key K_{C1}, client MAC key K_{C2}

CS 408 Lecture 23 / Spring 2015 9

SSL Data Transfer

- Data is broken into records
- · Each record is:
 - Compressed
 - MAC-ed
 - Encrypted
 - Pre-pended with an SSL header

Early Versions of SSL

- The presented protocol is SSL v3
- SSL v2 was flawed:
 - MITM attack (messages 5) and 6) were not present;
 attacker could tamper with messages 1) and 2) and cause
 a downgrade attack to a weak ciphersuite
 - Uses identical keys for both encryption and authentication
- SSL v2 is disabled by default in modern browsers

CS 408 Lecture 23 / Spring 2015 11

Certificates in SSL - root certificates

12

Certificates in SSL – website certificates

CS 408 Lecture 23 / Spring 2015 13

Certificates in SSL – website certificates

Certificates in SSL - website certificates

CS 408 Lecture 23 / Spring 2015 15

How to Get an SSL Certificate for a Domain?

- Pay money
 - Verisign (\$350)
 - Thawte (\$150)
- Prove that your request comes from the legal holder of the domain
 - Letter from company
 - Notarized document
- CA may check
 - Existence of business
 - Ownership of the domain name
 - Employment status

SSL Pitfalls

- Presence of SSL is indicated by a lock at the bottom of the browser window
- What does this mean?
 - Browser is engaging in a secure session with some server
 - Burden is on the user to check information about the certificate
 - There is no guarantee that the server that serves the certificate is the entity in the certificate
 - Users usually ignore browser warnings

CS 408 Lecture 23 / Spring 2015 17

SSL Pitfalls

- The PayPal.com scam
 - Phishing attempt in 2000
 - Using I (uppercase i) instead of I (lowercase I)
 - Attacker registered paypal.com domain and obtained a certificate for it
 - User is tricked into revealing PayPal account credentials
- SSL is not a magical solution for Web security
 - Provides a secure pipe between user-server, but the user is responsible to verify identity of the server

SSL Pitfalls

- Users don't check certificates
 - Users ignore warnings about invalid or expired certificates
 - Many users don't even know what certificates mean!
- Certificates can be easily obtained
- Browsers contain too many CAs
- Performance
 - Some sites turn it off during peak times

CS 408 Lecture 23 / Spring 2015 19

Certificate Authorities: are they trustworthy?

- In general, yes, for all practical purposes
- However, they are not immune to attacks
 - In August 2011 a Dutch CA (DigiNotar) was hacked and and fraudulent digital certificates had been issued for *.google.com, *.microsoft.com, *.windowsupdate.com, www.update.microsoft.com, etc.
 - Man-in-the-middle attack becomes possible
 - Attacker sits in between client and server and can listen (and potentially tamper with) the communication
 - How was this addressed?
 - Web browsers needed to update their CA list (remove DigiNotar as a trusted CA)
 - Users can also manually remove a trusted CA from the browser

CS 408 Lecture 23 / Spring 2015 21