CS 408 — Cryptography & Internet Security (Spring 2015)
Assignment #2
(due April 17, 2015, in the beginning of class (4:00pm))

Problem 1 (25 points)
Let n be a positive integer. The Fuler function ¢(n) is defined as the number of positive integers
smaller than n that are relatively prime to n.
Thus, if p is a prime, then ¢(p) = p — 1. Prove that ¢(p°) = p(1 — %), for any positive integer c.
(Note that you cannot just apply the general formula for ¢(n) when n = p®. You need to prove
this formula for n = p°. In general, there are two common ways to prove this: 1) use the technique
of mathematical induction, or 2) count the numbers, with enough details and arguments to justify
a correct counting of all the numbers)

Problem 2 (25 points)

Let a,b,e1,ea,n be publicly-known positive integers, such that ged(ei,e2) = 1 and n = pq
(where p and ¢ are large primes numbers that are kept secret).

Show that if a and b are chosen such that:

a® =02 mod n

then anyone can compute ¢ such that ¢®* = b mod n.

Problem 3 (25 points)

(a) The exponents e = 1 and e = 2 should not be used in RSA. Why? (argue why for each
exponent)

(b) Show that if n = 35 is used as an RSA modulus, then the encryption exponent e always equals
the decryption exponent d.

(c) Suppose you encrypt message m by computing ¢ = m® (mod 101). How do you decrypt?

(That is, you want to determine a decryption exponent d such that ¢ = m (mod 101); note
that 101 is prime).

(d) Let p be a large prime. Suppose you encrypt a message x by computing y = ¢ (mod p)
for some (suitably chosen) encryption exponent e. How do you find a decryption exponent d
such that y =2 (mod p)?



Problem 4 (25 points) The textbook RSA encryption scheme is deterministic (if the same
message m is encrypted twice, then we get the same ciphertext). Moreover, when the set of
possible plaintext messages is small, one can simply check if a ciphertext is an encryption of all
possible messages. This means that textbook RSA cannot offer confidentiality.
(Note: Even though in RSA a message m must satisfy 0 < m < n, a small message set does not
imply a small n. For example, n can still be very large, but in a practical application m may only
take the value 1 or 2 out of of a very large set of integers between 0 and n — 1.)

Consider instead the following scheme. Let (e,n) be an RSA public key, with n = pq, and let
(d,p,q) be the secret key, with ed = 1 mod ¢(n). To encrypt a message m € {0,1,2,...,n — 1},
compute a random r € Z} and one of the following encryption pairs (all operations are modulo n):

(a) [A =%, B=m+r]. To decrypt, compute B — A%
(b) [A=r,B = (m+r)¢]. To decrypt, compute B¢ — A.

Do any of these encryption pairs improve the security of textbook RSA? Why?



