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ABSTRACT
Distributed storage systems store data redundantly at

multiple servers which are geographically spread through-
out the world. This basic approach would be sufficient in
handling server failure due to natural faults, because when
one server fails, data from healthy servers can be used to
restore the desired redundancy level. However, in a set-
ting where servers are untrusted and can behave maliciously,
data redundancy must be used in tandem with Remote Data
Checking (RDC) to ensure that the redundancy level of the
storage systems is maintained over time.

All previous RDC schemes for distributed systems impose
a heavy burden on the data owner (client) during data main-
tenance: To repair data at a faulty server, the data owner
needs to first download a large amount of data, re-generate
the data to be stored at a new server, and then upload this
data at a new healthy server. We propose RDC− SR, a
novel RDC scheme for replication-based distributed storage
systems. RDC− SR enables Server-side Repair (thus taking
advantage of the premium connections available between a
CSP’s data centers) and places a minimal load on the data
owner who only has to act as a repair coordinator. The main
insight behind RDC− SR is that the replicas are differen-
tiated based on a controllable amount of masking, which
offers RDC− SR flexibility in handling different adversarial
strengths. Also, replica generation must be time consuming
in order to avoid certain colluding attacks from malicious
servers. Our prototype for RDC− SR built on Amazon AWS
validates the practicality of this new approach.
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H.3.2 [Information Storage and Retrieval]: Informa-

tion Storage

General Terms
Security, Design, Performance
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1. Introduction
The recent proliferation of cloud services has made it eas-

ier than ever to build distributed storage systems based
on Cloud Storage Providers (CSPs). Traditionally, a dis-
tributed storage system stores data redundantly at multi-
ple servers which are geographically spread throughout the
world. In a benign setting where the storage servers always
behave in a non-adversarial manner, this basic approach

would be sufficient in order to deal with server failure due to
natural faults. In this paper however, we consider a setting
in which the storage servers are untrusted and may act ma-
liciously. In this setting, Remote Data Checking (RDC) [3,
4, 15, 21] can be used to ensure that the data remains recov-
erable over time even if the storage servers are untrusted.

When a distributed storage system is used in tandem
with remote data checking, we can distinguish several
phases throughout the lifetime of the storage system: Setup,
Challenge, and Repair. To outsource a file F, the data owner
creates multiple replicas of the file during Setup and stores
them at multiple storage servers (one replica per server).
During the Challenge phase, the data owner can ask period-
ically each server to provide a proof that the server’s replica
has remained intact. If a replica is found corrupt during the
Challenge phase, the data owner can take actions to Repair
the corrupted replica using data from the healthy replicas,
thus restoring the desired redundancy level in the system.
The Challenge and Repair phases will alternate over the life-
time of the system.

In cloud storage outsourcing, a data owner stores data in
a distributed storage system that consists of multiple cloud
storage servers. The storage servers may belong to the same
CSP (e.g., Amazon has multiple data centers in different
locations), or to different CSPs. The ultimate goal of the
data owner is that the data will be retrievable at any point
of time in the future. Conforming to this notion of storage
outsourcing, the data owner would like to outsource both the
storage and the management of the data. In other words,
after the Setup phase, the data owner should only have to
store a small, constant, amount of data and should be in-
volved as little as possible in the maintenance of the data.
In previous work, the data owner can have minimal involve-
ment in the Challenge phase when using an RDC scheme that
has public verifiability (i.e., the task of verifying that data
remains retrievable can be delegated to a third party audi-
tor). However, in all previous work [12, 7], the Repair phase
imposes a significant burden on the data owner, who needs
to expend a significant amount of computation and commu-
nication. For example, to repair data at a failed server, the
data owner needs to first download an amount of data equal
to the file size, re-generate the data to be stored at a new
server, and then upload this data at a new healthy server
([12, 7]). Archival storage deals with large amounts of data
(Terabytes or Petabytes) and thus maintaining the health of
the data imposes a heavy burden on the data owner.

In this work, we ask the question: Is it possible to design
an RDC scheme which can repair corrupted data with the



least data owner intervention? We answer this question in
the positive by exploring a model which minimizes the data
owner’s involvement in the Repair phase, thus fully realizing
the vision of outsourcing both the storage and management
of data. During Repair, the data owner simply acts as a
repair coordinator, which allows the data owner to manage
data using a lightweight device. This is in contrast with
previous work, which imposes a heavy burden on the data
owner during Repair. The main challenge is how to ensure
that the untrusted servers manage the data properly over
time (i.e., take necessary actions to maintain the desired
level of redundancy when some of the replicas have failed).

Main objective: Informally, our main objective is to de-
sign an RDC scheme for a replication-based distributed stor-
age system which has the following properties:

the system stores t replicas of the data owner’s original file
the system imposes a small load on the verifier during the

Challenge phase.
the system imposes a small management load on the data

owner (by minimizing the involvement of the data owner
during the Repair phase).

The first two properties alone can be achieved based on
techniques proposed in previous work ([12] provides multiple
replica guarantees, whereas RDC based on spot-checking [3,
15, 21] supports a lightweight verification mechanism in the
Challenge phase). The challenge is to achieve the third prop-
erty without giving up any of the first two properties. We
meet these objectives by proposing a new model and by re-
designing the three phases of a traditional RDC protocol.

1.1 Solution overview

Two insights motivate the design of our solution:

Insight 1. Replica differentiation: The storage servers
should be required to store t different replicas. Otherwise,
if all replicas are identical, an economically motivated set of
colluding servers could attempt to save storage by simply
storing only one replica and redirect all client’s challenges
to the one server storing the replica.

Previous work [6, 17] proposed to store identical replicas
at storage servers which are in different locations. To check
that each server stores a replica, they require servers to re-
spond fast, thus relying on the network delay and bandwidth
properties. While storing identical replicas has the advan-
tage of simplicity, in Sec. 2.1 we show that this approach has
major limitations. Moreover, we show that for real-world
CSPs, one of the assumptions made by [6] does not hold.

Insight 2. Server-side repair: We can minimize the load
on the data owner during the Repair phase by relying on
the servers to collaborate in order to generate a new replica
whenever a replica has failed. This is advantageous because
of two reasons:

(a) the servers are usually connected through premium net-
work connections (high bandwidth), as opposed to the
data owner’s connection which may have limited down-
load/upload bandwidth. Our experiments in Table 2 (Ap-
pendix A) show that Amazon AWS has premium Internet
connection of up to tens of MB/s between its data centers.

(b) the computational burden during the Repair phase is
shifted to the servers, allowing data owners to remain
lightweight.

Previous RDC schemes for replication-based distributed

storage systems ([12]) do not give the storage servers ac-
cess to the original data owner’s file. Each replica is a
masked/encrypted version of the original file. As a result,
the Repair phase imposes a high burden on the data owner:
The communication and computation cost to create a new
replica is linear with the size of the replica because the data
owner needs to download a replica, unmask/decrypt it, cre-
ate a new replica and upload the new replica. If the servers
do not have access to the original file, this intense level of
data owner involvement during Repair is unavoidable.

In this paper, we propose to use a different paradigm, in
which the data owner gives the servers both access to the
original file and the means to generate new replicas. This
will allow the servers to generate a new replica by collabo-
rating between themselves during Repair.

A Basic Approach and Its Limitations. A straight-
forward approach would be for the data owner to create
different replicas by using masking/encryption of the origi-
nal file. The data owner would reveal to the servers the key
material used to create the masked/encrypted replicas. Dur-
ing Repair, the servers themselves could recover the original
file from a healthy replica and restore the corrupted replica,
reducing the burden on the data owner.

This basic approach is vulnerable to a potential attack, the
replicate on the fly (ROTF) attack : During Repair, a mali-
cious set of servers could claim they generate a new replica
whenever an existing replica has failed, but in reality they
do not create the replica (using this strategy, an economi-
cally motivated set of servers tries to use less storage than
their contractual obligation). When the client checks the
newly generated replica during the Challenge phase, the set
of malicious servers can collaborate to generate the replica
on the fly and pass the verification successfully (this replica
is then immediately deleted after passing the challenge in
order to save storage). This will hurt the reliability of the
storage system, because in time the system will end up stor-
ing much fewer than t replicas, unbeknownst to the client.

Overcoming the ROTF attack. The new paradigm we
introduce in this paper, which allows the servers to generate
a new replica by collaborating between themselves during
Repair, has the important advantage of minimizing the load
on the data owner during data maintenance. However, this
comes at the cost of allowing a new attack avenue for servers,
the ROTF attack.

To overcome the ROTF attack, we make replica creation
to be time consuming. In this way, malicious servers cannot
generate replicas on the fly during Challenge without being
detected.

Contributions. In this paper, we propose RDC− SR, a
novel RDC scheme for replication-based distributed storage
systems, which enables Server-side Repair. Compared to all
the previous distributed RDC schemes, which impose a high
load on the data owner in the Repair phase, our RDC− SR
scheme imposes a small load on both the verifier in the
Challenge phase and the data owner in the Repair phase.
To the best of our knowledge, we are the first to propose the
server-side repair strategy and an RDC scheme that imple-
ments it in the context of a real-world CSP. Specifically, our
paper makes the following contributions:

• We point out limitations of a previous network delay-
based model for establishing data geolocation and re-
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vise this model to suit our approach. Based on exper-
iments on the Amazon cloud platform, we show that
one of the assumptions made in the network delay-
based model does not hold in practice. We further
show that an RDC scheme built on such a model can
only provide a very low data possession assurance.

• We revise this model to include replica differentia-
tion and time-consuming replica generation, in order
to limit the ability of economically-motivated adver-
saries to cheat. In this new model, in which servers
are allowed to generate new replicas, the burden during
the Repair phase is shifted to the server side, allowing
lightweight clients to perform data maintenance. We
observe that this new paradigm enables a new attack,
the replicate on the fly (ROTF) attack, which requires
us to consider a new adversarial model, the α-cheating
adversary that seeks to cheat by only storing an α frac-
tion of its contractual storage obligations.

• All previous distributed RDC schemes place a heavy
burden on the client during repair. We propose
RDC− SR, a novel RDC scheme for replication-based
distributed storage systems. RDC− SR enables Server-
side Repair (thus taking advantage of the premium
connections available between a CSP’s data centers)
and places a minimal load on the client who only has
to act as a repair coordinator. To integrate our new
model into RDC− SR, we devise a novel technique by
which replicas are differentiated based on a control-
lable amount of masking; this offers RDC− SR flexi-
bility in handling different adversarial strengths. We
prove that RDC− SR can mitigate the ROTF attack.

• We provide guidelines on how to choose the param-
eters for RDC− SR in a practical setting and build
a prototype for RDC− SR on Amazon AWS. The ex-
perimental results show that: (a) RDC− SR imposes
only a small load on the verifier in the Challenge phase
and a small management load on the data owner in the
Repair phase; (b) RDC− SR can easily differentiate be-
nign and adversarial CSP behavior when relying on a
time threshold, as 95% of the benign cases are under
the threshold, while 100% of the adversarial cases are
over the threshold.

2. Models for Checking Replica Storage
In this section, we first review a previously proposed the-

oretical framework that relies purely on network delay to es-
tablish the geolocation of files at cloud providers, and point
out several limitations of this model when used with a basic
RDC protocol on the Amazon cloud service provider. The
main limitation is that one of its assumptions does not hold
in a practical setting, and thus a protocol that relies only on
the network delay to detect server misbehavior can only offer
a very low data possession guarantee. We then augment this
model to include time-consuming replica generation in order
to make RDC usable for geolocation of files in the context
of a real-world cloud storage provider such as Amazon.

2.1 A Network Delay-based Model and Its Limita-
tions

Benson, Dowsley and Shacham proposed a theoretical
model for verifying that copies of a client’s data are stored at
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Figure 1: Auditing protocol: Client C checks if
server si has a file copy F.

different geographic locations [6] (we refer to it as the “BDS
model”). This model allows to derive a condition which can
be used to detect if a server at some location does not have
a copy of the data. The idea behind the condition is that
an auditor which challenges a storage server must receive an
answer within a certain time, otherwise the server is consid-
ered malicious. The time is chosen such that a server that
does not have the challenged data cannot provide an answer
by using data from a server at a different geolocation.

The BDS model [6]. The customer (client) makes a
contract with the CSP to store one copy of the client’s file
in each of the CSP’s k data centers. For simplicity, if we
assume that k = 2, then a file copy should be stored at si
and another file copy at sj . The goal is to build an audit
protocol that tests if the cloud provider is really storing one
copy of the file in each of the two data centers si and sj .
Several assumptions need to be made:

(Assumption 1) The locations of all data centers of the
cloud provider are known.

(Assumption 2) The cloud provider does not have any ex-
clusive Internet connection between the data centers.

(Assumption 3) For each datacenter s, it is possible to have
access to a machine that is located very close to s (i.e., very
small network latency), such as in the same data center.

Consider the case when the client wants to check if si is
storing a copy of the file. As shown in Figure 1(b), si and sj
may be colluding malicious servers who only store one copy
of the file at sj ; when si is challenged by the client to prove
data possession, it redirects the challenge to sj , who answers
directly to the client. To prevent such an attack, the client
imposes a certain time limit for receiving the answer.

Let Ti be the upper bound on the execution time of some
auditing protocol by a datacenter si, ti be the network de-
lay between the client and si, and tij be the network delay
between data centers si and sj . For a network delay time t,
we use the notation max(t) to denote the upper bound on t
and min(t) to denote the lower bound on t.

If the data center si is honest, the client accepts the au-
dit protocol execution as valid if the elapsed time for re-
ceiving the answer is Ti + 2 ∗max(ti), because that is the
time needed to receive the answer in the worst case sce-
nario. On the other hand, if the answer is received after
min(ti) +min(tij) +min(tj), the client should consider the
audit protocol execution invalid, since si may be dishonest
and may be using data from another data center. Thus
Ti + 2 ∗max(ti) ≤ min(ti) +min(tij) +min(tj), or
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Ti ≤ min(ti) +min(tij) +min(tj)− 2 ∗max(ti) (1)

Limitations of the basic PoR protocol based on
BDS model. Based on the condition derived from the
BDS model, [6] proposed a basic Proof of Retrievability
(PoR) protocol which seeks to ensure that a set of storage
servers not only store n copies of the client’s data, but also
that these copies are stored at specific geographic locations
known to the client. In the PoR protocol, the client stores
identical copies of a file at multiple storage servers, and for
each copy, it also stores authentication tags (one tag for each
file block). To check that a server has a copy of the file, the
auditor asks the server to provide several randomly chosen
file blocks and their corresponding MAC tags. If the audi-
tor receives the answer within a certain time, the auditor
checks if the MAC tags are valid tags for the file blocks. In
this protocol, the auditor challenges as many random blocks
as it is possible for si to access in time Ti.

Based on Assumption 3 in the BDS model, the auditor
can be located very close to si, which means that min(ti)
and max(ti) will be small compared to tij and tj . Thus,
the value of Ti will be mainly determined by min(tij) and
min(tj), which is determined by the quality (bandwidth)
of the Internet connection between si and sj and by the
distance between si and sj . Low bandwidth Internet con-
nection and large distance between si and sj will result in
larger values of min(tij) and min(tj), thus resulting in a
larger Ti. A larger Ti means the auditor can challenge more
blocks while still being able to differentiate a benign server
from a malicious server (the auditor should be able to chal-
lenge a large enough number of randomly chosen blocks in
order to gain a reasonable confidence that the entire file is
stored by the server).

To ensure that Ti is large enough (and thus the proto-
col has practical value), the BDS model relies explicitly on
the assumption that there is no exclusive Internet connec-
tion between data centers (Assumption 2). The BDS model
also relies on the implicit assumption that the data centers
should be far away from each other. However, our mea-
surements with the Amazon CSP show that these assump-
tions do not hold (see Tables 2 and 3 in Appendix A). In
general, the network delay is the sum between propagation
delay (the time it takes the signal to travel from sender to
the receiver) and the transmission delay (the time required
to push all the data bits into the wire). From Table 2, we
can see that the download bandwidth between different S3
data centers varies between 11-36 MB/s, which is signifi-
cantly higher than the bandwidth between a point outside
the data centers and the data centers (less than 1 MB/s be-
tween our institution and different S3 data centers). We also
notice that inside a data center the download bandwidth is
very high (between 32-52 MB/s) and the propagation delay
is very small (between 0.2-0.7 milliseconds). Finally, we no-
tice from Table 3 that the propagation delay between certain
S3 data centers is quite small (e.g., 11 milliseconds between
N. California and Oregon).

Using the numbers in Tables 2 and 3, with si and sj being
the Virginia and the N. California data centers respectively,
and assuming that the auditor is located within si and chal-
lenges k 4KB random file blocks from si, Equation (1) for
the basic PoR protocol becomes x · k ≤ 80 + 0.3k, where x
is the time to access one random file block. According to

our experiments on Amazon S3, x ≈ 30 milliseconds (refer
to Appendix C), thus k ≤ 2.66. This means the basic PoR
protocol applied in the setting of the Amazon CSP allows
the auditor to challenge at most two random file blocks in
each protocol execution. This provides a very low data pos-
session assurance (comparatively, to achieve 99% confidence
that misbehavior will be detected when the server corrupts
1% of the file, the auditor should challenge 460 randomly
chosen file blocks [3]).

2.2 A New Model to Enable Server-side Repair

The main problem with the basic PoR protocol based on
the BDS model (cf. Sec. 2.1) is that all the file copies are
identical and the auditor relies solely on the network delay
to detect malicious server behavior. As a result, the protocol
must assume that there is no exclusive Internet connection
between the data centers (Assumption 2 in the BDS model).
Having established in Section 2.1 that this assumption does
not hold in a practical setting, we augment the BDS model to
make it usable in a practical setting. Namely, we require that
the file replicas stored at each server must be different and
personalized for each server. Upon being challenged, each
server must produce an answer that is dependent on its own
replica. As a result, a server cannot answer a challenge by
using another server’s replica. An economically-motivated
server who does not possess its assigned replica may try to
cheat by using another server’s replica. But to do this, the
cheating server must first generate its own replica in order
to successfully answer a challenge. As a result, our model
does not rely purely on network delay to differentiate benign
behavior from malicious behavior, but also on the time it
takes to generate a file replica. This allows us to eliminate
Assumption 2 from the BDS model, because we require that
replica generation be time consuming.

We propose a model in which the client creates t differ-
ent file replicas and stores them at t data centers owned
by the same CSP (one replica at each data center). To
illustrate the model for t = 2, the data owner generates
file replicas Fi and Fj ; server si stores Fi and sj stores Fj .
Even when replicas are different, malicious servers may ex-
ecute the ROTF attack, in which a server that does not
possess its assigned replica may try to cheat by using repli-
cas from other servers to generate its assigned replica on the
fly during the Challenge phase. Using the same notation as
in the BDS model in Section 2.1, an audit protocol execution
should be considered invalid if the answer is received after
min(ti) + min(tij) + min(tj) + min(tR), where tR denotes
the time required to generate replica Fi (more precisely, the
time required to generate the portion of Fi that is necessary
to construct a correct answer). Thus, the condition used to
differentiate benign from malicious behavior becomes:

Ti + 2 ∗max(ti) ≤ min(ti) +min(tij) +min(tj) +min(tR) (2)

We only need to make the following two assumptions (note
that we do not assume there is no exclusive Internet connec-
tion between the data centers like in the BDS model):

(Assumption 1) The locations of all datacenters of the
cloud provider are known.

(Assumption 2) For each datacenter s, it is possible to have
access to a machine that is located very close to s (i.e., very
small network latency), such as in the same data center.
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3. System and Adversarial Model

3.1 System Model

The client wants to outsource the storage of a file F. To
ensure high reliability and fault tolerance of the data, the
client creates t distinct replicas and outsources them to t
data centers (storage servers) owned by a CSP (one replica
at each data center). To ensure that the t replicas remain
healthy over time, the client challenges each of the t servers
periodically. Upon finding a corrupted replica, the client
acts as a repair coordinator who oversees the repair of the
corrupted replica (the CSP, who has premium network con-
nection between its data centers, uses the healthy replicas to
repair the corrupted replica; the client should have minimal
involvement in the repair process).

We note that, given an individual file replica, say Fi, the
CSP can generate any another replica, say Fj , in two steps:
first recover the original file F from Fi, and then generate Fj .

3.2 Adversarial model

We assume that the CSP is rational and economically mo-
tivated. The CSP will try to cheat only if cheating cannot
be detected and if it achieves some economic benefit, such
as using less storage than required by contract. An econom-
ically motivated adversary captures many practical settings
in which malicious servers will not cheat and risk their rep-
utation, unless they can achieve a clear financial gain. We
also note that when the adversary is fully malicious, i.e., it
tries to corrupt the client’s data without regard to its own
resource consumption, there is no solution to the problem of
building a reliable system with t replicas [7, 12].

The ROTF attack. We are particularly concerned with
the following replicate on the fly (ROTF) attack : During
Repair, a set of colluding servers could claim they generate
a new replica whenever an existing replica has failed, but
in reality they do not create and store the replica. When
the client checks the newly generated replica during the
Challenge phase, the set of malicious servers can collaborate
to generate the replica on the fly and pass the verification
successfully. Immediately after the check, the servers delete
the newly generated replica, only to re-generate it on the fly
when the client initiates the next check. This will hurt the
reliability of the storage system, because in time the system
will end up storing much fewer than t replicas, unbeknownst
to the client.

To illustrate the ROTF attack, consider the setting in Fig-
ure 1(b), where si and sj should to store replicas Fi and Fj ,
respectively, but only sj stores Fj . When si is being chal-
lenged to prove possession of Fi, si can retrieve Fj from sj ,
and generate Fi on the fly in order to pass the challenge. Or,
it can forward the challenge to sj , who uses Fj to generate
on the fly Fi and then uses Fi to construct a valid response to
the challenge. Immediately after the challenge, Fi is deleted.

The α-cheating adversary. A CSP is obligated by con-
tract to store t file replicas, which requires a total of t|F| stor-
age. However, a dishonest CSP may try to use less than t|F|
storage space and hope that this will go undetected (e.g.,
executes the ROTF attack). We use the following defini-
tion to denote a CSP that is using only an α fraction of its
contractual storage obligation:

Definition 3.1. An α-cheating adversary is an economically-
motivated adversary that can successfully pass a challenge by
only using αt|F | storage (where 1

t
≤ α ≤ 1).

Note that if α < 1
t
, then the CSP stores less than |F|,

which means that any single-replica RDC scheme [3, 15]
would be enough to detect the CSP’s dishonest behavior.
Thus, we do not consider the case when α < 1

t
.

Adversarial Strategies. Replica generation in our
model is time consuming. A dishonest CSP trying to cheat
by storing less replicas and executing the ROTF attack is al-
ways better off by keeping a copy of the original file F. While
this strategy requires some additional storage, it increases
considerably the CSP’s chances to cheat undetectably be-
cause the CSP can generate any individual replica from F

in one step. Otherwise, cheating would require a two-step
process: To generate a particular replica that is being chal-
lenged and which is not in its possession, say Fi, the CSP
would need to first recover F from an existing replica, say
Fj , and then generate Fi from F. Since replica generation
is a time consuming operation (and similarly recovering F

from one of its replicas is also time-consuming), this two-
step process would considerably increase the client’s chances
of detecting the CSP’s dishonest behavior. Thus, we assume
a dishonest CSP always stores a copy of the original file F.

Also, recall that most RDC schemes ensure efficiency by
using spot checking [3, 15, 21]: The client challenges the
server to prove possession of a randomly chosen subset of c
blocks out of all the n file blocks. This can provide a high
likelihood that the server is storing the entire file.

An α-cheating adversary can adopt several strategies to
distribute its αt|F| storage among the t servers, which will
influence its ability to remain undetected. A basic strategy
is when the adversary chooses to store on one of the servers
the original file F, and to store on each of bαtc − 1 servers a
particular different replica. Thus, no data is stored on the
remaining t − bαtc servers. In this case, when one of the
t − bαtc servers is challenged, it can always generate the c
challenged blocks on the fly and then construct the answer
to the challenge. Let σ be the time required to generate the
c challenged blocks for one replica.

It turns out that the best data distribution strategy for
cheating is when the adversary stores in each of the t servers
an α fraction of the blocks from the corresponding replica
for that server. Thus, the adversary will still only use αt|F|
storage space in total1. When any of the t servers is chal-
lenged, this server will already possess, on average, an α
fraction of the c blocks that are being challenged. Thus, on
average, it only needs to generate on the fly a (1−α) fraction
of the c challenged blocks, which it can do in time (1−α)σ.
Since, (1− α)σ < σ, this strategy is always better than the
previously presented basic strategy.

4. An RDC Scheme with Server-side
Repair

In this section, we propose RDC− SR, the first replication-
based Remote Data Checking scheme that supports Server-
side Repair.

The original file F has n blocks, F = {b1, . . . , bn}, and
each contains s symbols in GF (p), where p is a large prime
(at least 80 bits). We use j to denote the index of a block
within a file / replica (i.e., j ∈ {1 . . . n}), and k to denote
the index of a symbol in a block (i.e., k ∈ {1 . . . s}). Let κ be

1Recall that we have assumed that the adversary always
stores one original file copy F, thus the total storage is (αt+
1)|F|; when t is large, this can be approximated by αt|F|.
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a security parameter. We make use of two pseudo-random
functions (PRFs) h and γ with the following parameters:
h : {0, 1}κ × {0, 1}∗ → {0, 1}log p

γ : {0, 1}κ × {0, 1}∗ → {0, 1}log p

RDC− SR overview. Like any RDC system for a multiple-
server setting [12, 7, 24, 11], RDC− SR consists of three
phases: Setup, Challenge and Repair. During the Setup
phase, the client first preprocesses the original file and gen-
erates t distinct replicas. We use i to denote the index of the
replica (i.e., i ∈ {1 . . . t}). To differentiate the replicas, we
adopt a masking strategy similar as in [12], in which every
symbol of the original file is masked individually by adding a
random value modulo p. We introduce a new parameter η,
which denotes the number of masking operations imposed
on each symbol when generating a distinct replica. η can
help control the computational load caused by the masking,
e.g., we can choose a larger η if we try to make the masking
more expensive for a block. This has the advantage that
we can adjust the load for masking to defend against dif-
ferent adversarial strenghts (see Sec. 3.2). The client then
generates verification tags for every replica, one tag per file
block. Each verification tag is computed similarly as in [21],
namely as a message authentication code by combining uni-
versal hashing with a PRF [16, 20, 22, 27]. After having
generated t distinct replicas and the corresponding verifica-
tion tags, the client sends those replicas to t different data
centers of the CSP (one replica per server), and the set of all
verification tags to each data center. The client also makes
public the key used for generating the distinct replicas, so
that the servers can use it during Repair to generate new
replicas on their own.

During the Challenge phase the client acting as the verifier
uses spot checking to check the replica at each server si, in
which it randomly samples a small subset of blocks from a
replica and checks their validity based on the the server si’s
response. Such a technique can detect replica corruption
with high probability [3], and has the advantage of only
imposing a small overhead on both the client and the server.
We use a threshold τ for our new model (see Sec.2.2): If the
response from a server is not received within time τ , then
that replica will be considered corrupted.

The Repair phase is activated when the verifier has de-
tected a corrupted replica during Challenge. The client acts
as the repair coordinator, i.e., it coordinates the CSP’s
servers to repair the corruption. We take advantage of the
fact that a CSP usually has premium bandwidth between
its data centers (refer to Table 2) and permit the servers
to collaborate among themselves to restore the corrupted
replica (the key for generating distinct replicas is known to
the CSP). Thus, the system only imposes a small manage-
ment load on the client (data owner).

A detailed description of RDC− SR is provided in Fig-
ures 2 and 3, together with the following explanation of the
three phases.

The Setup phase. The client first generates keys K1 and
K2. K1 will be used to compute the verification tags and
K2 will be used in generating distinct replicas. It then picks
s random numbers, η, and threshold τ (refer to Sec. 5 – Pa-
rameterization and Guidelines on how to exactly determine
η and τ). The client then calls GenReplicaAndMetadata t
times in order to generate t distinct replicas and the cor-
responding verification tags. Each replica will be sent to a

We construct RDC− SR in three phases, Setup, Challenge,
and Repair. All arithmetic operations are in GF (p), unless
noted otherwise explicitly.

Setup: The client runs (K1,K2) ← KeyGen(1κ), and picks s

random numbers δ1, . . . , δs
R← GF (p). The client also chooses

α and determines the values η and τ , and then executes:
For 1 ≤ i ≤ t:
1. Run (ti1, . . . , tin, Fi) ←

GenReplicaAndMetadata(K1,K2, F, i, δ1, . . . , δs, η)

2. Send Fi to server Si for storage (each Si is located in a
different data center of the CSP) and send the verification
tags ti1, . . . , tin to each server .

The client may now delete the file F and stores only a small,
constant, amount of data: K1, δ1, . . . , δs, η, and τ . K2 is
made public.

Challenge: Client C uses spot checking to check possession of
each replica Fi stored at server Si. In this process, each server
uses its stored replica and the corresponding verification tags
to prove data possession. Suppose C challenges server Si.
Let query Q be the c-element set {(j, vj)}, in which j denotes
the index of the block to be challenged, and vj is a randomly
chosen value from GF (p).

1. C generates Q and sends Q to server Si

2. Si runs (ρ1, . . . , ρs, t)← GenProof(Q, Fi, ti1, . . . , tin)

3. Si sends to C the proof of possession (ρ1, . . . , ρs, t)

4. C checks whether the response time is larger than
τ . If yes, C declares Si as faulty. Otherwise, C
checks the validity of the proof (ρ1, . . . , ρs, t) by running
CheckProof(K1, δ1, . . . , δs, Q, ρ1, . . . , ρs, t, i)

Repair: Assume that in the Challenge phase C has identified a

faulty server whose index is y (i.e., the corresponding replica
has been corrupted). C acts as the repair coordinator. It
communicates with the CSP, asks for a new server from the
same data center to replace the corrupted server, and co-
ordinates from where the new server can retrieve a healthy
replica to restore the corrupted replica. Suppose Si is se-
lected to provide the healthy replica. The new server will
reuse the index of the faulty server, namely, y.

1. Server Sy retrieves the replica Fi = {mi1, . . . , min} and
all the verification tags from server Si

2. Server Sy generates its own replica:
For 1 ≤ j ≤ n:

• For 1 ≤ k ≤ s: myjk = mijk −
∑η
l=1 γK2

(i||j||k||l) +∑η
l=1 γK2

(y||j||k||l)

Figure 2: RDC− SR: a replication-based RDC system
with Server-side Repair

server located in a different data center of the CSP. The en-
tire set of verification tags will be sent to each server. The
client may then delete the original file and only keep a small
amount of key material.

In GenReplicaAndMetadata, the client masks the original
file at the symbol level, applying η masking operations to
each symbol. Each masking operation consists of adding
a pseudo-random value to the symbol; this pseudo-random
value is the output of a PRF applied over the concatenation
of the replica index, the block index, the symbol index, and
an integer l (l ∈ {1 . . . η}).

The Challenge phase. For this phase, we integrate spot
checking [3, 15, 21] with our new model introduced in
Sec. 2.2. The client (verifier) sends a challenge request to
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KeyGen(1κ): Randomly choose two keys: K1,K2
R← {0, 1}κ.

Return (K1,K2)

GenReplicaAndMetadata(K1,K2, F, i, δ1, . . . , δs, η):

1. Parse F as {b1, . . . , bn}

2. Generate the i-th replica:
For 1 ≤ j ≤ n:

• Mask block bj at the symbol level and get mij :
For 1 ≤ k ≤ s: mijk = bjk +

∑η
l=1 γK2

(i||j||k||l)

3. Compute verification tags:
For 1 ≤ j ≤ n: tij = hK1

(i||j) +
∑s
k=1 δkmijk

4. Return (ti1, . . . , tin, Fi = {mi1, . . . , min})
GenProof(Q, Fi, ti1, . . . , tin):

1. Parse Q as a set of c pairs (j, vj). Parse Fi as
{mi1, . . . , min}.

2. Compute ρ and t:

• For 1 ≤ k ≤ s: ρk =
∑

(j,vj) ∈ Q vjmijk mod p

• t =
∑

(j,vj) ∈ Q vjtij mod p

3. Return (ρ1, . . . , ρs, t)

CheckProof(K1, δ1, . . . , δs, Q, ρ1, . . . , ρs, t, i):

1. Parse Q as a set of c pairs (j, vj)

2. If t =
∑

(j,vj) ∈ Q vjhK1
(i||j) +

∑s
k=1 δkρk mod p, re-

turn “success”. Otherwise return “failure”.

Figure 3: Components of RDC− SR

each of the t servers. For each challenge, the client selects
c random replica blocks for checking. The challenged server
parses the request, calls GenProof to generate the proof, and
sends back the proof. If the client does not receive the proof
within time τ , it marks that particular server as faulty and
its replica as corrupt. Otherwise, the client checks the va-
lidity of the proof by calling CheckProof.

The Repair phase. During the Repair phase, the client
acts as the repair coordinator; our approach here is novel
compared to previous work, in which the client itself re-
pairs the data by downloading the entire file to regenerate
a corrupt replica [12, 7, 11]. The client contacts the CSP,
reports the corruption, and coordinates the CSP’s servers to
repair the corruption. The server which is found faulty in
the Challenge phase should be replaced by a new server from
the same data center. The new server contacts one of the
healthy servers, retrieves a replica, un-masks it to restore
the original file, and masks the original file to regenerate
the corrupted replica. The new server directly retrieves the
entire set of verification tags from this healthy server (re-
call that the entire set of verification tags is stored at every
server). Note that the size of the set of all verification tags
is always small compared to the data.

5. Guidelines for using RDC− SR
In order to setup the system, the data owner must initially

decide the type of adversary it wants to protect the data
against. Concretely, by picking a value for α, the data owner
seeks to protect its data against a CSP that is modeled as
an α-cheating adversary. For example, by picking a small α,
the data owner achieves protection against a CSP that will
try to cheat by corrupting a large amount of the data. This
type of corruption is easier to detect and, as a result, the

data owner can afford to use a smaller masking factor. On
the other hand, by picking a large α, the data owner seeks
protection against a more stealthy CSP that only corrupts a
small fraction of the data. As a result, the data owner needs
to use a larger masking factor.

Once the data owner fixes α, it can derive the two param-
eters: η (the masking factor) and τ (the time threshold used
to validate the audit protocol).

Estimating η. From Sec. 3, we have Ti ≤ min(ti) +
min(tij) + min(tj) + min(tR) − 2 ∗max(ti), which can be
further simplified as Ti ≤ tij + tj − ti + tR (Let x be the
time each of the c challenged file blocks contributes to the
generation of the proof by the server. Since Ti is the upper
bound on the execution time of the auditing protocol (as
defined in Sec. 2.1), we have c ·x ≤ Ti. Based on the triangle
inequality, we always have tij + tj− ti ≥ 0. To have a coarse
evaluation of η, we neglect tij + tj − ti, which is always
small compared to tR (milliseconds compared to seconds, as
shown in Table 4 of Appendix B which contains some typical
values based on our experiments for Amazon S3). Thus, we
get c · x ≤ tR.

Let tprf denote the time required to compute one PRF
(specifically, one computation of the function γ used to mask
a symbol in RDC− SR). Then, for a challenge that checks c
blocks, assuming that the adversary adopts the best attack
strategy (see Sec. 3.2), we have tR = (1− α) · c · s · η · tprf .
We thus get c · x ≤ tR = (1− α) · c · s · η · tprf , which means
that η ≥ x

(1−α)·s·tprf
(recall that s is the number of symbols

in a file block). The client should choose η as the smallest
integer which satisfies this condition.

Estimating τ . The time threshold τ can be computed as
c · x+ 2 · ti. As defined earlier in this section, x denotes the
time each of the c challenged file blocks contributes to the
generation of the proof by the server, which should include
the time for accessing one block and computing the proof
for one block. ti denotes the network delay between the
challenged server and the client.

It turns out it is not trivial to estimate x for the Amazon
CSP. In our experiments, the value x exhibits some variation
due to the fact that sampling a random block in Amazon S3
can be very large in some rare cases (in those cases it will be
difficult to differentiate between benign and malicious CSP
behavior). However, based on our experiments we observed
that, out of 240 protocol executions, 95% of the values for x
are within the range [0.025 sec, 0.034 sec] for the AWS Ore-
gon region. Thus, the data owner should use the top value
in this range (0.034 sec) to estimate x in the formula for τ
if the data is stored in the Oregon S3 region. We propose
three ways in which the data owner can acquire x: First of
all, data owners can estimate x themselves by measuring it
directly in the target data centers; Secondly, the CSP could
determine such a range and publish it; Thirdly, it can be es-
timated by a trusted third party. Note that if x is estimated
by data owners or trusted third parties, the CSP should not
be able to differentiate the events of “estimating x” and “reg-
ular data access”, thus it cannot affect the effectiveness of
verification by artificially manipulating the value of x.

6. Security Analysis for RDC− SR
Our RDC− SR scheme is an RDC scheme and it can be

easily shown that, in the context of each individual server
that holds a replica, RDC− SR provides the data owner with
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a guarantee of data possession of that replica by using an
efficient spot checking mechanism [3, 15]. Note that confi-
dentiality of the data from the CSP is an orthogonal prob-
lem to RDC (although our RDC− SR scheme could easily
achieve confidentiality by encrypting the original file and
then storing masked replicas of the encrypted file).

As opposed to previous work on RDC, the paradigm we
introduce in this paper allows the servers themselves to gen-
erate new replicas for repair purposes. This opens the door
to a new attack, the replicate on the fly (ROTF) attack,
in which the economically-motivated servers claim to store
t replicas, but in reality they store less than t|F| data and
generate the missing data on the fly upon being challenged
by the client. The following theorem shows that RDC− SR
can mitigate the ROTF attack executed by an α-cheating
adversary (defined in Sec. 3.2):

Theorem 6.1. In RDC− SR, an α-cheating adversary
can successfully execute the ROTF attack without being de-
tected with a probability of at most αcc(1−α), where c is the
number of file blocks checked by the client in a challenge.

For fixed values of α, we can always choose c such that
the probability that a server is cheating successfully without
being detected becomes negligibly small. For example, if
a server is storing only 90% of the data (i.e., α = 0.9),
challenging c = 400 random blocks, ensures that the upper
bound on the probability of server cheating is 1.99 ∗ 10−17.

Proof. Per Definition 3.1, an α-cheating adversary is an
economically-motivated adversary that only uses αt|F| stor-
age (where 1/t ≤ α ≤ 1). We have established in Sec. 3.2
that the best data distribution strategy for cheating is when
each malicious server stores only an α fraction of the blocks
from the replica it is supposed to store. Thus each malicious
server is missing an (1− α) fraction of the file blocks.

As described in Sec. 5, the time threshold τ in RDC− SR
is computed based on the assumption that every time the
client randomly checks c blocks from a file stored in one of
the t servers, at least (1 − α)c blocks are from the missing
(1−α) fraction of the file, and thus the server has to compute
(1−α)c blocks on the fly. However, if the number of checked
blocks from the (1−α) missing fraction is less than (1−α)c,
then the cheating server will be able to successfully pass the
check because it has to generate less than (1−α)c blocks on
the fly and can provide a reply in a time less than τ .

When a server is missing an (1 − α) fraction of the file
blocks and the client randomly challenges c blocks, let P be
the probability that less than (1 − α)c blocks will be chal-
lenged among the missing file blocks. This is the probability
that the cheating server is able to cheat successfully without
being detected. We evaluate P next.

Evaluating P is equivalent to evaluating the probability
that the number of challenged blocks that are among the
non-missing α fraction of blocks is at least cα + 1. The
number of possible cases that more than cα + 1 challenged
blocks are from the non-missing α fraction of the file is:(
nα
c

)
+
(
nα
c−1

)
+ ...+

(
nα

c−c(1−α)+1

)
, where n is the total number

of file blocks.

Thus, P =
(nαc )+( nαc−1)+...+( nα

c−c(1−α)+1)
(nc)

. Considering that(
nα
x−1

)
≤

(
nα
x

)
whenever 2 ≤ x ≤ nα+1

2
, and that c ≤ nα+1

2
always holds in practice because c is a small constant in the
RDC literature (e.g., c = 400) compared to n, we have:

P ≤ (nαc )c(1−α)
(nc)

=
(nαc )
(nc)

c(1−α) = nα(nα−1)...(nα−c+1)
n(n−1)...(n−c+1)

c(1−

α) = nα
n
nα−1
n−1

...nα−c+1
n−c+1

c(1−α) = αn
n
α
n− 1

α
n−1

...α
n− c−1

α
n−(c−1)

c(1−
α) ≤ αcc(1− α).

Thus, P ≤ αcc(1− α).

7. Implementation and Experiments

7.1 Background on Amazon’s Cloud Services (AWS)

We provide some background for Amazon’s cloud ser-
vices within the United States, called Amazon Web Services
(AWS). EC2 is Amazon’s cloud computing service and S3 is
Amazon’s cloud storage service. In the United States, Ama-
zon has three EC2 regions (US East - Virginia, US West -
North California, and US West - Oregon) and three S3 re-
gions (US Standard, US West - North California, and US
West - Oregon). Based on our measurements in Table 2
and 3 of Appendix A, the following EC2 and S3 regions are
located extremely close to each other and have very high
network connection between them, thus we consider them
in the same region: Virginia (EC2 US East - Virginia and
S3 US Standard), N. California (EC2 US West - North Cal-
ifornia and S3 US West - North California), and Oregon
(EC2 US West - Oregon and S3 US West - Oregon).

7.2 Experimental Setup

We build and test our prototype for RDC− SR on Amazon
Web Services (AWS). Each server is run on an EC2 large
instance (4 ECUs, 2 Cores, and 7.5GB Memory, created from
Amazon Linux AMI 64-bit image). The client is run on a
machine located in our institute, equipped with Intel Core 2
Duo system with two CPUs (each running at 3.0GHz, with
a 6144KB cache), 333GHz frontside bus, 4GB RAM and a
Hitachi HDP725032GLA360 360GB hard disk with ext4 file
system. In the following, our EC2 instances and S3 data are
located in the Oregon region, unless noted otherwise. The
prototype for RDC− SR has been implemented in C and uses
OpenSSL version 1.0.0e [1] for cryptographic operations.

From Sec. 5, we have η ≥ x
(1−α)·s·tprf

and we also choose

x = 0.034 sec. We estimate tprf = 4.3 µsec for an EC2 large
instance (EC2 Oregon). We choose 40 KB for the file block
size and 80-bit prime number p, thus s is 4000.

We use the following values for (α, η) in our experiments:
(0.6, 5), (0.7, 7), (0.8, 10) (recall from Sec. 5 that once α is
fixed, η can be computed). We use these values for α to
reflect an economically-motivated CSP (such a CSP would
not likely be interested in saving a small amount of storage,
so we don’t consider cases when α > 0.8). The experimental
results are averaged over 20 runs, unless noted otherwise.

Preprocess. The file to be outsourced is preprocessed by
an EC2 large instance, generating 3 different replicas and
the corresponding verification tags. The replicas are then
stored at 3 different S3 regions, one replica per region. All
the verification tags are stored at every S3 region. In our
experiments, we adopt a slightly different strategy from the
scheme described in Sec. 4: One of the 3 different replicas
is the actual original file. This strategy speeds up the re-
pairing of a corrupted replica, because the replica can be
computed directly from the original file (a similar approach
was proposed in [13, 19]).

We measure the time for masking, verification tag gen-
eration and total preprocessing for one masked replica un-
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α η operation throughput (MB/s)

0.6
masking 0.44

5 verification tag 5.2
total 0.41

0.7
masking 0.32

7 verification tag 5.2
total 0.3

0.8
masking 0.22

10 verification tag 5.2
total 0.21

Table 1: Preprocessing throughput

der three sets of (α, η) parameters. We repeat the experi-
ments for four different file sizes (20MB, 50MB, 80MB, and
100MB). Table 1 shows the throughput for total preprocess-
ing and its different components.

We have several observations for Table 1: First, the
throughput of masking operation decreases when α in-
creases. This is expected because a larger α means that it
is more difficult to detect the adversarial behavior, thus, we
need a larger η, hence more computations are required for
masking. Secondly, the throughput of verification tag com-
putation is independent of α, due to the fact that the ver-
ification tags are computed over the masked replica, which
is independent of η, hence independent of α. Thirdly, the
throughput of total preprocessing, which includes masking
and verification tag computation, is always close to but a
little smaller than the throughput of masking, since the ver-
ification tag computation is very efficient (can generate ver-
ification tags for more than 5MB data in one second) and
only has a small impact to the total preprocessing time.

Challenge. The client issues a challenge to the server (run
in an EC2 large instance). The server samples blocks from
S3 in the same region, and computes and sends back the
proof. The client then checks the proof. For simplicity, we
only challenge the server running in EC2 Oregon which is
responsible for the replica stored in S3 Oregon. The number
of blocks to be challenged is c = 400, which provides a high
guarantee to detect data corruption by the server [3]. For
the chosen values of α (Table 1) and c, the probability that
a server performs the ROTF attack without being detected
is less than 1.38 ∗ 10−37(cf. Sec. 6). Amazon S3 offers a
REST API to access data, which is based on the HTTP/1.0
protocol. Although HTTP supports operations on multiple
ranges of the target object in one request, Amazon S3 only
supports one range. This means that in order to sample
400 random blocks, we must send 400 different requests for
a one-block range. This explains partially the large varia-
tion we observe in block access time for S3 (Figures 4(b)
and 5(b)), thus we average the block access time over 100
runs. We examine two cases:

• Benign case: The CSP is honest, i.e., it strictly stores the
replicas in the corresponding regions according to the con-
tract. Upon challenge, the server uses the data from the
same region to pass the challenge. In this case, the to-
tal server computation includes sampling challenged blocks
from S3 of the same region and computing the proof.

• Adversarial case: The CSP is cheating by not storing all
replicas in their entirety according to the contract. The
malicious CSP adopts the best attack strategy described in
Sec. 3.2. Because the server will only have an α fraction of

the challenged blocks, it retrieves the other (1−α) fraction
from another region and recreates the missing blocks on
the fly. The total server computation for this case includes
sampling challenged blocks from S3 of the same region,
generating a 1 − α fraction of the challenged blocks (by
masking the original file blocks), and computing the proof.

We repeat the experiments for different sets of (α, η) pa-
rameters and for different file sizes. Figure 4 and 5 show the
server computation and client computation for both cases.

For the benign case, we observe from Fig. 4 that the total
server computation and its various components as well as
the client (verifier) computation are independent of file size
and of α. This is expected because: First of all, we rely
on spot checking [3] which always randomly samples a fixed
number of blocks from the masked replica, thus can main-
tain constant server/client computation. Secondly, during a
challenge, the operations on both server and client are over
the masked replica, which is independent of η, hence inde-
pendent of α. Figure 4(d) shows that the time for the client
to check the proof is less than 7 msec, which justifies our
claim that the system imposes a small load on the verifier
during the challenge phase.

For the adversarial case, we observe from Fig. 5 that the
total server computation and its various components are in-
dependent of filesize. The reason has been explained in the
benign case. For Figure 5(c), we expected to see that the
masking time is independent of α, because: The malicious
server always stores only an α fraction of the corresponding
data, and generates the 1 − α fraction of challenged blocks
on the fly (by masking). Larger α means that the malicious
server has to generate less challenged blocks but generating
one challenged block will be more expensive, thus, the mask-
ing time for the 1−α fraction of challenged blocks should be
almost constant. However, Figure 5(c) shows that for the
case of α = 0.7, the masking time is larger than those of
other two cases. This discrepancy can be explained because
we must always choose η as an integer number. The server
masking time is 400(1−α) ·s ·η ·tprf , which is determined by
the multiplication of 1−α and η. For the case of α = 0.7, the
minimum integer for η is 7, thus, (1−α) · η = 2.1. For both
cases α = 0.6 and α = 0.8, (1−α)·η = 2 < 2.1. This explains
where such a discrepancy comes from. However, note that
there is a lower bound on the server masking time, because
400(1−α)·s·η·tprf ≥ 400(1−α)·s·tprf · x

(1−α)·s·tprf
= 400x =

13.6 sec. We observe that most of the points in Figure 5(c)
are over this lower bound, except the point in 20MB filesize
when α = 0.6, but we still consider this point as valid since it
is only 1% smaller. The existence of the lower bound for the
server masking time guarantees that even if the malicious
server has the magic power to access the data and compute
the proof instantly (i.e., the times shown in Figure 5(b) and
Figure 5(d) are 0), it still cannot cheat successfully, since the
time for generating the 1 − α fraction of challenged blocks
will be always larger than 400x, which is the total server
computation for the benign case.

Figure 5(d) shows that the time for the server to compute
the proof varies with α. However, we can still conclude that
this time is independent of α given that the variance is quite
small (around 1%).

According to the guidelines for establishing the time
threshold τ in Sec. 5, τ should be 13.7 sec (c=400, x =
0.034 sec, ti = 0.045 sec based on our experiments). We see
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Figure 4: Computational cost for the server and the client in challenge phase (benign case).
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Figure 5: Computational cost for the server and its various components in challenge phase (adversarial case).
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Figure 6: Computational cost for repairing a replica.

that 95% of the individual runs for Figure 4(a) are below this
threshold, and 100% of the individual runs for Figure 5(a)
are above this threshold. This confirms the practical value
of using a time threshold to establish if the CSP is malicious.

Repair. We assume that the replica stored in S3 Oregon
has been found corrupted, and the replica stored in S3 Cali-
fornia is retrieved to repair the corruption. The repair server
runs in a large instance from EC2 Oregon. The server down-
loads the replica from S3 California and masks it to generate
the replica for S3 Oregon. The server also downloads all the
verification tags from another S3 region (this time is negli-
gible in our experiment). The results are shown in Figure 6
(this includes time for masking to generate a new replica,
as described Table 1). We observe from Figure 6(a) that,
for repairing one replica, total server computation increases
with α. This is because, as shown in Preprocessing, larger α
will result in larger masking computation, and the masking
computation dominates the total repair computation.

One significant advantage in the repair phase is that the
client can be kept lightweight, e.g., the client only needs
to exchange a few messages to coordinate the repair pro-
cedure. This justifies our claim that the system imposes a
small management load on the data owner during repair.

8. Related Work
RDC for the single-server setting. Early RDC schemes
have focused on ensuring the integrity of outsourced data
in the static setting. Such schemes include Provable Data
Possession (PDP) [3] and Proofs of Retrievability (PoR) [15,
21]. Later RDC schemes investigated models that can pro-
vide strong integrity guarantees while supporting dynamic
operations on the outsourced data [5, 14, 25, 23, 28, 10, 9].

RDCs for the multiple-server setting. RDC has been
extended to the multiple-server setting (distributed RDC).
Curtmola et al. proposed MR-PDP [12], an efficient RDC
scheme for replication-based distributed storage systems,
which differentiates the replicas by random masking. We
adapt this technique in our work. Bowers et al. [7] and
Wang et al. [24] built RDC schemes for erasure coding-based
distributed storage systems. Chen et al. [11] proposed an
RDC scheme for network coding-based distributed storage
systems. All the aforementioned distributed RDCs adopt
client-side repair, in which the client is intensively involved
in the repair procedure, i.e., the client will retrieve the data,
generate and upload the new data to repair the corruption.
Our work proposes server-side repair, a novel strategy which
is different from all the previous distributed RDCs.

A new direction for RDC. All the previous RDC schemes
are cryptography-based, i.e., the security of the proposed
schemes are inherited from the security of the cryptographic
primitives. Bowers et al. [8] propose RAFT, a new time-
based RDC scheme which can enable a client to obtain a
proof that a given file is distributed across an expected num-
ber of physical storage devices in a single datacenter.

Although RAFT and our work share the idea of using a
time-based mechanism to detect malicious behavior, they
are fundamentally different in their basic approach and
goals, and in the system and adversarial models. First, while
in RDC− SR the replicas are differentiated based on control-
lable masking to mitigate the ROTF attack, RAFT mainly
relies on the I/O bottleneck of a single hard drive, specif-
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ically, on the fact that the time required for two parallel
reads from two different drives is clearly less that the time
required for two sequential reads from a single drive. Second,
in RDC− SR the file is replicated t times and the t replicas
are stored in t different data centers (which may belong to
the same CSP or to different CSPs). Within one data cen-
ter, RDC− SR does not impose requirements on how exactly
should the replica be stored. The data owner seeks to enable
the self-repairing functionality while ensuring that a certain
number of replicas are stored in the cloud at all times, so
that the desired level of reliability is maintained. In RAFT,
the file is encoded and is stored by the cloud server using
the desired number of hard drives. The data owner wants to
ensure that the server stores the file so that it can tolerate
a certain number of hard drive failures. Third, in RDC− SR
we introduce the α-cheating adversary, in which the cloud
servers collude with each other to cheat by only storing an
α fraction of the contractual storage, and there are no re-
quirements for how exactly the adversary stores the data on
the hard drives. In RAFT, a cheap-and-lazy adversary tries
to cut corners by storing less redundant data on a smaller
number of disks or by mapping file blocks unevenly across
hard drives.

Benson et al. [6] propose another time-based model (BDS
model) to guarantee that multiple replicas are distributed
to different data centers of the CSP. Our work adapts this
model to enable the server-side repair.

Watson et al. [26] propose LoSt, which formalizes the con-
cept of Proofs of Location (PoL). A PoL relies on a geoloca-
tion scheme [6] and a Proof of Retrievability (PoR) scheme.
We summarize the differences between RDC− SR and LoSt.
First, the goals are different. RDC− SR aims at enabling
self-repair, a novel functionality for replication-based dis-
tributed storage systems that, when combined with periodic
integrity checks provides an efficient mechanism to ensure
long-term data reliability. In particular, RDC− SR does not
try to enforce specific locations of the data. LoSt aims at
ensuring that the outsourced file copies are stored within
the specified region and requires a landmark infrastructure
to verify the location of the data. Second, the system model
is different. RDC− SR has two entities, namely, the client
and the storage servers (CSP), in which the client is always
trusted and the storage servers are untrusted and may col-
lude. In LoSt there are three entities, the client, the CSP,
and the data centers, and the model assumes that theres is
no collusion between the CSP and the data centers. Third,
the basic idea for the solution is different. RDC− SR relies
on the differentiation of the replicas based on controllable
masking to defend against the ROTF (replicate on the fly)
attack. Instead, LoSt relies on “recoding” to efficiently dif-
ferentiate (done at the CSP with CSP’s private key) the file
tags for each server, while each server will keep the same file
copy.

Other work. Similar with the work of Reiter at al. [18],
our scheme relies on the idea that only a prover which has
the data can respond quickly enough to pass a challenge.
Unlike our work however, their work is set in the context
of P2P networks and the verifier (client) needs to keep the
data for the verification purpose.
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APPENDIX

A. Measurements for the Amazon CSP
Tables 2 and 3 show the bandwidth and the propagation

delay between Amazon S3 data centers (regions) and be-
tween our institution and different S3 data centers (regions).
For measurements, we used an EC2 instance within the cor-
responding Amazon data centers. To measure bandwidth,
we used Wget [2] to download a large file. To measure the
propagation delay, we adopt the method introduced in [6]
that is, we measure the time between sending a SYN packet
and receiving a SYN-ACK packet of a TCP connection, half
of which is considered as the propagation delay. All the

results in Tables 2 and 3 are averaged over 20 runs.

Virginia N. California Oregon
Virginia 32.7 11.62 12.59

N. California 11.95 48.03 36.05
Oregon 14.07 26.43 52.18

Our institution 0.816 0.456 0.439

Table 2: Download bandwidth (in MB/s): (rows 1-
3) between S3 data centers (regions); (row 4) be-
tween our institution and different S3 data centers.

Virginia N. California Oregon
Virginia 0.579 40 49

N. California 40 0.705 11
Oregon 49 11 0.212

Our institution 4 40 45

Table 3: Propagation delay (in milliseconds): (rows
1-3) between S3 data centers (regions); (row 4) be-
tween our institution and different S3 data centers.

B. Network Delays for Amazon CSP
Table 4 shows the values of tij + tj − ti for Amazon AWS,

which are used in Sec. 5.

i j tij + tj − ti (in seconds)
Virginia N. California 0.08
Virginia Oregon 0.098

N. California Virginia 0.08
N. California Oregon 0.022

Oregon Virginia 0.098
Oregon N. California 0.022

Table 4: Values of tij + tj − ti if the client is located
within a data region of AWS S3

C. Sampling Blocks from Amazon S3
We wrote a program running in an EC2 instance (Amazon

Virginia region) to randomly sample 4KB blocks from S3
Virginia region. We collect the time in Table 5. All the
results are averaged over 20 runs.

# of blocks 1 10 40 400
time (sec.) 0.026062 0.260492 1.024863 10.191946

Table 5: The time for randomly sampling 4KB
blocks from Amazon S3 Virginia region
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