
Practical Defenses Against Pollution Attacks in Intra-Flow
Network Coding for Wireless Mesh Networks

Jing Dong
Department of Computer Science

Purdue University
West Lafayette, IN 47907
dongj@cs.purdue.edu

Reza Curtmola
Department of Computer Science
New Jersey Institute of Technology

Newark, NJ 07102
crix@njit.edu

Cristina Nita-Rotaru
Department of Computer Science

Purdue University
West Lafayette, IN 47907
crisn@cs.purdue.edu

ABSTRACT
Recent studies show that network coding can provide significant
benefits to network protocols, such as increased throughput, re-
duced network congestion, higher reliability, and lower power con-
sumption. The core principle of network coding is that intermediate
nodes actively mix input packets to produce output packets. This
mixing subjects network coding systems to a severe security threat,
known as a pollution attack, where attacker nodes inject corrupted
packets into the network. Corrupted packets propagate in an epi-
demic manner, depleting network resources and significantly de-
creasing throughput. Pollution attacks are particularly dangerous
in wireless networks, where attackers can easily inject packets or
compromise devices due to the increased network vulnerability.

In this paper, we address pollution attacks against network cod-
ing systems in wireless mesh networks. We demonstrate that previ-
ous solutions to the problem are impractical in wireless networks,
incurring an unacceptably high degradation of throughput. We pro-
pose a lightweight scheme, DART, that uses time-based authentica-
tion in combination with random linear transformations to defend
against pollution attacks. We further improve system performance
and propose EDART, which enhances DART with an optimistic
forwarding scheme. A detailed security analysis shows that the
probability of a polluted packet passing our verification procedure
is very low. Performance results using the well-known MORE pro-
tocol and realistic link quality measurements from the Roofnet ex-
perimental testbed show that our schemes improve system perfor-
mance over 20 times compared to previous solutions.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.2.m [Computer-
Communication Networks]: Miscellaneous—Security

General Terms
Performance, Security

Keywords
Network coding, Pollution attacks, Network coding security, Wire-
less network security, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’09, March 16–18, 2009, Zurich, Switzerland.
Copyright 2009 ACM 978-1-60558-460-7/09/03 ...$5.00.

1. INTRODUCTION
Network coding [1] introduces a new paradigm for network pro-

tocols. Recent research has demonstrated the advantages of net-
work coding through practical systems such as COPE [2] and MORE
[3] for wireless unicast and multicast, Avalanche [4] for peer-to-
peer content distribution, protocols for peer-to-peer storage [5],
and protocols for network monitoring and management [6–8]. Net-
work coding has been shown to increase throughput [9–11], reduce
network congestion [12], increase reliability [13, 14], and reduce
power consumption [15–18], in unicast [3,19–22], multicast [3,23],
and more general network configurations [24–27].

Unlike traditional routing, where intermediate nodes just for-
ward input packets, in network coding, intermediate nodes actively
mix (or code) input packets and forward the resulting coded pack-
ets. Original unencoded packets are usually referred to as native
packets and packets formed from the mixing process are referred
to as coded packets. The active mixing performed by intermediate
nodes increases packet diversity in the network, resulting in fewer
redundant transmissions and better use of network resources. How-
ever, the very nature of packet mixing also subjects network cod-
ing systems to a severe security threat, known as a pollution attack,
where attackers inject corrupted packets into the network. Since in-
termediate nodes forward packets coded from their received pack-
ets, as long as at least one of the input packets is corrupted, all
output packets forwarded by the node will be corrupted. This will
further affect other nodes and result in the epidemic propagation of
the attack in the network.

Wireless mesh networks are a promising technology for pro-
viding economical community-wide wireless access. Typically, a
wireless mesh network consists of a set of stationary wireless routers
that communicate via multi-hop wireless links. The broadcast na-
ture of the wireless medium and the need for high throughput pro-
tocols make wireless mesh networks a prime environment for pro-
tocols based on network coding, and many such systems [2, 3, 22]
have been developed. However, as recently shown in [28], the wire-
less environment makes the threat of pollution attacks particularly
severe, since in wireless networks packets can be easily injected
and bogus nodes can be easily deployed. Even in the presence of
node authentication, such networks are vulnerable to insider attacks
since wireless devices can be compromised and controlled by an
adversary due to their increased susceptibility to theft and software
vulnerabilities.

There are two general approaches for applying network coding to
wireless mesh networks, intra-flow network coding and inter-flow
network coding. Both approaches exploit the broadcast advantage
and opportunistic listening in wireless networks to reduce trans-
missions and improve performance. However, these benefits are
realized differently: Intra-flow network coding systems mix pack-

ets within a single flow, while inter-flow network coding systems
mix packets across multiple flows.

In this paper, we focus on defense mechanisms against pollution
attacks in intra-flow network coding systems for wireless mesh net-
works. In existing intra-flow coding systems [3, 23, 27], intermedi-
ate nodes do not decode received packets, but use them to generate
new coded packets. However, intermediate nodes need to verify
that each received coded packet is a valid combination of native
packets from the source. As a result, traditional digital signature
schemes cannot be used to defend against pollution attacks, be-
cause the brute force approach in which the source generates and
disseminates signatures of all possible combinations of native pack-
ets has a prohibitive computation and communication cost, and thus
it is not feasible.

Several solutions to address pollution attacks in intra-flow cod-
ing systems use special-crafted digital signatures [29–32] or hash
functions [33, 34], which have homomorphic properties that al-
low intermediate nodes to verify the integrity of combined pack-
ets. While these are elegant approaches from a theoretical per-
spective, they are highly inefficient when applied in practice in
wireless networks, even under benign conditions when no attacks
take place. Non-cryptographic solutions have also been proposed
[35–37]. These solutions either provide only a partial solution by
detecting the attacks without any response mechanism [35], or add
data redundancy at the source, resulting in throughput degradation
proportionally to the bandwidth available to the attacker [36, 37].

We propose two practical schemes to address pollution attacks
against intra-flow network coding in wireless mesh networks. Un-
like previous work, our schemes do not require complex crypto-
graphic functions and incur little overhead on the system, yet can
effectively contain the impact of pollution attacks. To the best of
our knowledge, this is the first paper which proposes practical de-
fenses against pollution attacks in wireless networks and which
demonstrates their effectiveness in a practical system. Our main
contributions are:

• We demonstrate through both analysis and experiments that pre-
vious defenses against pollution attacks are impractical in wire-
less networks. In particular, we show that under a practical set-
ting, previous cryptographic-based solutions [29–33] are able to
achieve only less than 10% of typically available throughput.

• We design DART, a practical new defense scheme against pol-
lution attacks. In DART, the source periodically disseminates
random linear checksums for packets that are currently being for-
warded in the network. Other nodes verify their received coded
packets by checking the correctness of their checksums via ef-
ficient random linear transformations. The security of DART
relies on time asymmetry, that is, a checksum is used to verify
only those packets that are received before the checksum itself
was created. This prevents an attacker that knows a checksum to
subsequently generate corrupted packets that will pass our ver-
ification scheme, as the packets will be verified against another
checksum that has not yet been created. DART uses pipelin-
ing to efficiently deliver multiple generations concurrently. Our
analysis of the security of DART shows that under typical sys-
tem settings, DART allows only 1 out of 65336 polluted packets
passing a first hop neighbor of the attacker, and 1 out of over 4
billion polluted packets passing a second hop neighbor.

• We show how DART can be enhanced to perform optimistic for-
warding of unverified packets in a controlled manner. The new
scheme, EDART, improves network throughput and reduces de-
livery latency, while containing the scope of pollution attacks to

a limited network region. Our analysis of EDART shows pre-
cise upper bounds on the impact of pollution attacks under the
optimistic forwarding scheme.

• We validate the performance and the overhead of our schemes
with extensive simulations using a well-known network coding
system for wireless networks (MORE [3]) and realistic link qual-
ity measurements from the Roofnet [38] experimental testbed.
Our results show that pollution attacks severely impact the net-
work throughput; even a single attacker can reduce the through-
put of most flows to zero. Our schemes effectively contain pol-
lution attacks, achieving throughputs similar to a hypothetical
ideal defense scheme. The schemes incur a bandwidth overhead
of less than 2% of the system throughput and require approxi-
mately five digital signatures per second at the source.

Roadmap: Section 2 overviews related work. Section 3 presents
our system and adversarial model, while Section 4 motivates the
need for a new practical defense against pollution attacks. Sec-
tions 5 and 6 present our two schemes. Section 7 demonstrates the
impact of the attacks and the effectiveness of our defense mecha-
nisms through simulations. Finally, Section 8 concludes the paper.

2. RELATED WORK
Cryptographic approaches. In cryptographic approaches, the

source uses cryptographic techniques to create and send additional
verification information that allows nodes to verify the validity of
coded packets. Polluted packets can then be filtered out by inter-
mediate nodes. The proposed schemes rely on techniques such as
homomorphic hash functions or homomorphic digital signatures.
These schemes have high computational overhead, as each veri-
fication requires a large number of modular exponentiations. In
addition, they require the verification information (e.g., hashes or
signatures) to be transmitted separately and reliably to all nodes in
advance; this is difficult to achieve efficiently in wireless networks.

In hash-based schemes [33, 34], the source uses a homomorphic
hash function to compute a hash of each native data packet and
sends these hashes to intermediate nodes via an authenticated chan-
nel. The homomorphic property of the hash function allows nodes
to compute the hash of a coded packet out of the hashes of native
packets. The requirement for reliable communication is a strong
assumption that limits the applicability of such schemes in wireless
networks that have high error rates. The scheme proposed in [33]
also has a high computational overhead. To overcome this lim-
itation, [34] proposed probabilistic batch verification in conjunc-
tion with a cooperative detection mechanism. This scheme was
proposed for and works reasonably well in peer-to-peer networks.
However, it relies on fast and reliable dissemination of pollution
alert messages. The scheme also relies on mask-based checksums
that need to be sent individually to every node via different secret
and reliable channels prior to the data transfer. Both of these are
difficult to achieve in wireless networks, in which links have higher
latency and error rate than in wired networks.

Schemes based on digital signatures [29–32] require reliable dis-
tribution of a new public key for every new file that is sent and the
size of the public key is linear in the file size (the only exception
is a recent scheme [39] which achieves constant-size public key,
but uses expensive bilinear maps). The source uses specialized ho-
momorphic signatures to send signatures that allow intermediate
nodes to filter out polluted packets. These schemes have a high
computational cost. To verify each packet, [29, 39] rely on expen-
sive bilinear maps, while [30–32] require a large number of modu-
lar exponentiations. Although the schemes proposed in [30–32] al-
low batch verification, in which several packets are verified at once

to amortize the cost of verification, they have inherent limitations
because they cannot achieve a suitable balance between computa-
tional overhead, network overhead, and packet delay. Ultimately,
they result in low overall performance. In Sec. 4, we argue in de-
tail that cryptographic approaches have high overhead even under
benign conditions, making them impractical for use in a wireless
network.

Information theoretic approaches. One information theoretic
approach [35] relies on coding redundant information into pack-
ets, allowing receivers to efficiently detect the presence of polluted
packets. The scheme provides only a partial solution, as it does not
specify any mechanisms to recover from pollution attacks. An-
other approach [36] provides a distributed protocol to allow the
receiver to recover native packets in the presence of pollution at-
tacks. However, given that polluted packets are not filtered out, the
throughput that can be achieved by the protocol is upper-bounded
by the information-theoretic optimal rate of C − zO , where C is
the network capacity from the source to the receiver and zO is the
network capacity from the adversary to the receiver. Thus, if the at-
tacker has a large bandwidth to the receiver, the useful throughput
can rapidly degrade to 0. Unfortunately, there are many scenarios
in wireless networks where the attacker has a large bandwidth to
the receivers (e.g., the attacker is located one hop away from the
receiver, or multiple attackers are present), making the scheme not
practical in wireless networks. In addition, due to the constrained
bandwidth of the medium, there is a long term benefit in detecting
the presence of the attacker and not allowing polluted packets to
propagate in the network. [37] proposes to reduce the capacity of
the attacker by only allowing nodes to broadcast at most once in the
network. This model requires trusted nodes and differs vastly from
practical systems for wireless networks, where each intermediate
node in general forwards multiple coded packets.

Network error correction coding. Recent work [40–43] has de-
veloped a network error correction coding theory for detecting and
correcting corrupted packets in network coding systems. In princi-
ple, the network error correction coding theory is parallel to clas-
sic coding theory for traditional communication networks, and also
exhibits a fundamental trade-off between coding rate (bandwidth
overhead of coding) and the error correction ability. Such schemes
have limited error correcting ability and are inherently oriented to-
ward network environments where errors only occur infrequently.
In an adversarial wireless environment, the attackers are capable
of injecting a large number of polluted packets that can easily over-
whelm the error correction scheme and result in incorrect decoding.

3. SYSTEM AND ADVERSARIAL MODEL

3.1 System Model
We consider a general intra-flow network coding system where

the network consists of a source s, multiple receivers r1, r2, . . . , rk,
and other nodes, a subset of which are forwarders for packets. Re-
ceiver nodes may also act as forwarders. The source has a sequence
of N packets which is divided into sub-sequences called genera-
tions. Each generation consists of n packets and it is disseminated
independently to the receivers using network coding.

As required by network coding, each packet is divided into m
codewords, each of which is regarded as an element in a finite field
Fq , where q is a positive power of a prime number. Each packet
~pi can be viewed as an element in an m-dimensional vector space
over the field Fq , i.e., as a column vector with m symbols:

~pi = (pi1, pi2, . . . , pim)T, pij ∈ Fq.

A generation G consisting of n packets can be viewed as a matrix:

G = [~p1, ~p2, . . . , ~pn],

with each packet in the generation as a column in the matrix.
The source forms random linear combinations of uncoded pack-

ets ~e =
Pn
i=1 ci ~pi, where ci is a random element in Fq and all

algebraic operations are in Fq . The source then forwards packets
consisting of (~c,~e) in the network, where ~c = (c1, c2, . . . , cn). As
in [3], we refer to uncoded packets as native packets, to (~c,~e) as
coded packets, to ~c as the coded vector, and to ~e as the coded data.
A forwarder node also forms new coded packets by computing lin-
ear combinations of the coded packets it has received and forwards
them in the network. When a receiver has obtained n linearly in-
dependent coded packets, it can decode them to recover the native
packets by solving a system of n linear equations. For consistency,
all vectors used throughout the paper are column vectors.

This model is the general network coding framework proposed in
[44] and fits all existing intra-flow network coding systems known
to us, including [3,22,23,45,46]. We do not restrict the specific al-
gorithm for selecting the subset of forwarder nodes, nor the packet
coding and the forwarding scheme.

On the need of generations in network coding. To measure the
communication overhead incurred by network coding, we use as a
metric the relative network overhead ρ = n

m
(the ratio between the

size of the code vector, which is overhead, and the size of the coded
data, which is the useful data). The smaller the value of ρ, the less
communication overhead incurred by network coding.

Given a fixed native packet size (e.g., 1500B) and the size of
field Fq , the value for m is fixed. Therefore, to ensure a small
overhead ρ, the source has to encode the native packets in small
chunks, i.e., generations, to ensure a small value for n. Otherwise,
if the source applies network coding on the entire sequence of N
packets (i.e., treats the entire sequence as a single generation), then
ρ = N

m
. Clearly, for large files (i.e., large N), this would result in

large network overhead that would render network coding imprac-
tical. Instead, all practical systems designed for wireless networks
[3,22,23] use network coding within generations of n packets (e.g.,
n = 32). In general, when choosing the parameters for network
coding, one needs to ensure n � m in order to ensure a small
communication overhead ρ.

The source advances through generations of packets based on
a feedback mechanism which informs the source that all packets
from a generation were received and decoded by receivers. We
refer to a generation that is in transit from the source to the des-
tination as an active generation. Depending on specific systems,
multiple generations can be active at the same time.

3.2 Security and Adversarial Model
We assume the source is trusted. However, both the forwarders

and receivers can be adversarial. They can either be bogus nodes
introduced by the attacker or legitimate but compromised nodes.
Adversarial nodes launch the pollution attack either by injecting
bogus packets or by modifying their output packets to contain in-
correct data. We say a packet (~c,~e) is a polluted packet, if the
following equality does not hold:

~e =

nX
i=1

ci ~pi.

As in the well-known TESLA protocol [47, 48], we assume that
clocks in the network are loosely synchronized and that each node
knows the upper bound on the clock difference between the node
and the source, denoted as ∆. Several mechanisms to securely
achieve such loose clock synchronization are provided in [47, 49].

Other techniques proposed in [50] reduce the synchronization error
to the order of microseconds.

We also assume the existence of an end-to-end message authen-
tication scheme, such as traditional digital signature or message
authentication code, that allows each receiver to efficiently verify
the integrity of native packets after decoding.

We focus only on pollution attacks, which are a generic threat
to all network coding systems. We do not consider attacks on the
physical or MAC layer. We also do not consider packet dropping
attacks, nor attacks that exploit design features of specific network
coding systems, such as the selection of forwarder nodes. Defend-
ing against such attacks is complementary to our work.

4. LIMITATIONS OF PREVIOUS WORK
Approaches based on information theory and network error cor-

rection coding have severe limitations in wireless networks, as they
assume limited bandwidth between the attacker and the receiver.
However, in wireless networks, an attacker can easily have a large
bandwidth to the receiver, for example, by injecting many cor-
rupted packets, staying near the receiver node, or having multiple
attacker nodes.

Cryptographic approaches propose to filter out polluted packets
at the intermediate nodes by using homomorphic digital signatures
[29–32] and homomorphic hashes [33,34]. Below we argue that the
high computational cost of these schemes makes them impractical
for wireless systems.

In the existing cryptographic-based schemes [29–34], verifying
the validity of a coded packet requires m+ n modular exponentia-
tions (typically using a 1024-bit modulus), where m is the number
of symbols in a packet and n is the number of packets in a gen-
eration. Most schemes can reduce this cost to γ = 1 + m

n
expo-

nentiations per packet by using batch verification, which enables
nodes to verify a set of coded packets from the same generation at
once. Note that batch verification cannot be performed across gen-
erations, since each generation requires a different set of parameters
(e.g., different public keys).

Even when batch verification is used, the computational cost
is still too high for practical network coding systems. More pre-
cisely, since the relative network overhead due to network coding
is ρ = n

m
and the computational overhead to verify a packet is

γ = 1 + m
n

, minimizing the computational cost and minimizing
the relative network overhead are two conflicting goals; reducing
one of them results in increasing the other. We now compute the
maximum throughput τ achievable in such systems. We assume
each node in the system is equipped with a 3.4 Ghz Pentium IV
processor, which performs around 250 modular exponentiations
per second1 , and the packet size is 1500B. Therefore, the des-
tination can verify 250

γ
packets per second and the throughput is

τ = (1− ρ) 250
γ
× 1500 bytes per second, or equivalently,

τ = (1− n

m
)
250× 1500

1 + m
n

,

which achieves the maximum value of 502kbps when n
m

= 0.41.
Therefore, even if the source and destination are direct neighbors
and there is no attack, the maximum throughput achievable is 502kbps,
regardless of the actual link bandwidth, which can be much larger,
e.g., 11Mbps. In practice, the source and destination are usually
more than one hop away, in which case the achievable throughput
is much lower. Our experiments (see Sec. 7.4) show that, under typ-
ical network settings, the achievable throughput is around 50kbps,
which is only 4% of the throughput of the system without using
1Numbers were obtained using the OpenSSL library (version 0.9.8e).

the defense mechanism; this is a 96% throughput degradation even
when no attacks take place.

Besides having a high computational cost, previously proposed
cryptographic schemes require the source to disseminate new pa-
rameters for each generation (e.g., a new public key per genera-
tion) with a size linear to the size of the generation. This further
increases the overhead and reduces the throughput.

Previously proposed cryptographic schemes also have require-
ments that conflict with the parameters for practical network cod-
ing in wireless systems. A critical factor for the security of crypto-
graphic schemes is the size of the field Fq , which has to be large,
e.g., 20 or 32 bytes [29–32]. However, in all the practical network
coding systems in wireless networks [3, 22, 23], the symbol size
used is much smaller, usually one byte. This is because arithmetic
operations over a field are extensively used and a small symbol size
ensures that these operations are inexpensive. Furthermore, small
symbols result in a largem value, which in turn reduces the relative
network overhead.

5. THE DART SCHEME
Our first scheme, DART, uses checksums based on efficiently

computable random linear transformations to allow each node to
verify the validity of coded packets. The security of the scheme re-
lies on time asymmetry, that is, a node verifies a coded packet only
against a checksum that is generated after the coded packet itself
was received. Each node uses only valid coded packets to form
new coded packets for forwarding. Invalid packets are dropped af-
ter one hop, thus eliminating packet pollution. Our scheme can
be applied on top of any network coding scheme that uses gener-
ations and has one or more active generations at a time. The time
asymmetry of checksum verification in DART is close in spirit with
TESLA[47], in which the sender delays disclosure of the key used
to authenticate a packet.

We present our solution incrementally. First, we describe our
scheme, focusing on one active generation. We present in detail
the checksum generation and verification, showing how batch ver-
ification is performed for one generation. We then show how mul-
tiple generations can be pipelined in a network coding system to
increase performance. Finally, we demonstrate the effectiveness of
our scheme in filtering out polluted packets by analyzing the prob-
ability that an attacker bypasses our verification scheme.

5.1 Scheme Description
LetG be an active generation. The source periodically computes

and disseminates a random checksum packet (CHKs(G), s, t) for
the generation, where CHKs(G) is a random checksum for the
packets in generation G, s is the random seed used to create the
checksum, and t is the timestamp at the source when the checksum
is created. The source ensures the authenticity of the checksum
packet itself by digitally signing it2.

Each forwarder node maintains two packet buffers, verified_set
and unverified_set, that buffer the verified and unverified packets,
respectively. Each node combines only packets in the verified_set
to form new packets and forwards such packets as specified by the
network coding system. On receiving a new coded packet, a node
buffers the packet into unverified_set and records the correspond-
ing receiving time.

Upon receiving a checksum packet (CHKs(G), s, t), a forwarder
node first verifies that it is not a duplicate and that it was sent by
the source by checking its digital signature. If the checksum is

2Alternatively, the source may use more efficient authentication mechanisms such as
TESLA[47] or µTESLA[49].

1

2

1

2

Figure 1: An example network for illustrating the process in
DART. NodeA1, A2, B1, B2 are the forwarder nodes for source
S and destination R. The arrows indicate that packets can be
heard over the link.

authentic, the node re-broadcasts it to its neighbors. It then uses
the checksum to verify those packets in unverified_set that were
received by that node before the checksum was created at the source
(i.e., packets whose receive time is smaller than the time t − ∆,
where ∆ is the maximum time skew in the network). Valid packets
are transferred from unverified_set to verified_set. Packets that do
not pass the verification are discarded.

Checksum packets are not required to be delivered reliably: If a
node fails to receive a checksum, it can verify its buffered packets
upon the receipt of the next checksum. To reduce the overhead, we
restrict the checksum to be flooded only among forwarder nodes.

When a receiver node receives enough linear independent coded
packets that have passed the checksum verification, it decodes the
packets to recover the native packets. It verifies the native packets
using an end-to-end authentication scheme such as digital signature
or message authentication code (MAC) before passing the packets
to the upper layer protocol. The additional end-to-end authentica-
tion is to address the extremely rare occasion when some polluted
packet pass our checksum verification at the receiver, which would
otherwise cause incorrect packets to be delivered to the upper layer.

The key points of our approach are that checksums are very effi-
cient to create and verify, as they are based on cheap algebraic op-
erations, and that each node uses a checksum to verify only those
packets that were received before the checksum itself was created.
Therefore, although after obtaining a checksum an attacker is able
to generate corrupted packets that match the known checksum, it
cannot convince other nodes to accept them, as these packets will
not be verified with the checksum known to the attacker, but with
another random checksum generated by the source at a time after
the packets are received.

Since coded packets are delayed at each hop for checksum verifi-
cation, the number of checksums needed for a generation is at least
as many as the number of hops from the source to the receiver.
As checksums are released at fixed time intervals, the requirement
of multiple checksums for a generation can result in a large deliv-
ery time for a generation, hence reducing throughput. The packet
delivery time could be reduced by releasing checksums more of-
ten; however, this would increase the network overhead. We solve
this dilemma by using pipelining across generations such that mul-
tiple generations are being transmitted concurrently. We describe
pipelining in Sec 5.3.

Example. We illustrate DART with an example presented in
Fig. 1. Without loss of generality, we assume that the source S
transmits one active generation at a time and that nodes are per-
fectly time-synchronized. Let T denote the time interval at which
the source periodically disseminates checksum packets.

At time 0, the source starts broadcasting coded packets for the
current generation. Nodes A1 and A2 buffer their received coded
packets in unverified_set and record their received time without
forwarding them. At time T , S broadcasts a signed random check-
sum packet with timestamp T . Nodes A1 and A2 first forward
the received checksum packet to the downstream nodes B1 and
B2. Then they use the checksum to verify the packets in their
unverified_set whose receive time is before time T , and transfer

successfully verified packets to their verified_set. As nodes B1

and B2 do not have any packet to verify, the checksum packet is
ignored at B1 and B2.

After packet verification, A1 and A2 start to forward new coded
packets generated from their verified_set to B1 and B2, which
buffer their received packets in their unverified_set without for-
warding them.

At time 2T , S broadcasts a new (different) random checksum for
the generation, which is also forwarded by nodes A1, A2 to nodes
B1, B2. Upon receiving the checksum packet, nodesA1, A2, B1, B2

use it to verify packets in their unverified_set that were received
before time 2T . Upon packet verification, nodes B1, B2 also start
forwarding coded packets generated from their verified_set to the
destination node R.

The above process continues until the destination node receives
the entire generation of packets that are successfully verified, and
sends an acknowledgment to the source, which advances the source
to transmitting the next generation. The entire process then repeats
for the delivery of the next generation.

5.2 Checksum Computation and Verification
We now describe in detail how checksums are generated and how

individual coded packets are verified. We then show how to amor-
tize the verification cost by verifying a set of packets at once.

As mentioned in the system model (Sec. 3.1), we denote the gen-
eration size used for network coding as n. Let ~p1, ~p2, . . . , ~pn be the
packets to be transmitted in the current generation. We view each
packet as an element in an m-dimensional vector space over a field
Fq , i.e., as a column vector with m symbols:

~pi = (pi1, pi2, . . . , pim)T, pij ∈ Fq.

We use a m× n matrix G to denote all packets in the generation:

G = [~p1, ~p2, . . . , ~pn].

Let f : {0, 1}κ×{0, 1}log2(b)+log2(m) → Fq be a pseudo-random
function, where κ and b are security parameters (κ is the size of the
key for f , whereas b controls the size of the checksum). We write
fs(x) to denote f keyed with key s applied on input x.

Our checksum generation and verification are based on a random
linear transformation applied on the packets in a generation.

Checksum creation. The source generates a random b×m ma-
trix Hs = [ui,j] using the pseudo-random function f and a ran-
dom κ-bit seed s, where ui,j = fs(i||j). We define the checksum
CHKs(G) based on seed s for generation G as

CHKs(G) = HsG.

Hence, CHKs(G) is obtained by applying a random linear trans-
formation Hs on the packets in G. Since Hs is a b×m matrix and
G is am×nmatrix, the checksum CHKs(G) is a b×nmatrix. The
source includes (CHKs(G), s, t) in the checksum packet, where t
is the timestamp at the source when the checksum is created, and
then disseminates it in an authenticated manner.

Packet verification. Given an authentic checksum (CHKs(G), s, t)
for generation G, a node uses it to verify coded packets that are re-
ceived before time t −∆, where ∆ is the maximum time skew in
the network. Given such a packet (~c,~e), a node checks its validity
by checking if the following equation holds,

CHKs(G)~c = Hs~e, (1)

where Hs is the random b × m matrix generated from seed s as
described above.

If Eq. (1) holds, then the coded packet is deemed valid, other-
wise, it is deemed invalid. To see the correctness of this check,

consider a valid packet (~c,~e), where ~e =
Pn
i=1 ci ~pi = G~c and the

checksum (CHKs(G), s, t), where CHKs(G) = HsG. Then,

CHKs(G)~c = (HsG)~c = Hs(G~c) = Hs~e.

Batch verification. The above individual verification can be ex-
tended to efficiently verify a set of coded packets at once. Let

E = {(~c1, ~e1), . . . , (~cl, ~el)}

be a set of l coded packets from a generation G where all packets
are received before time t − ∆. To verify E against a checksum
(CHKs(G), s, t) a node computes a random linear combination of
the packets, (~c,~e) = (

Pl
i=1 ui~ci,

Pl
i=1 ui~ei), where the coeffi-

cients u1, u2, . . . , ul are selected uniformly at random from Fq .
The node then verifies the combined packet (~c,~e) using the indi-
vidual verification described above. A node can further reduce the
false negative probability of the verification by repeating the pro-
cedure with different random coefficients.

IfE passes the verification, then all l coded packets are regarded
as valid. Otherwise, the invalid packets in the set can be identified
efficiently using a technique similar to binary search.

Checksum overhead. The size of a checksum (CHKs(G), s, t)
is dominated by the size of CHKs(G), which is a b × n matrix of
elements in Fq . Thus, its size is bn log2 q bits. Compared to the
total data size in a generation, the overhead is (bn log2 q)/n(n +
m) log2 q = b/(n+m). In a typical setting, b = 2, n = 32,m =
1500, the overhead is less than 0.1%. The computational overhead
for checksum computation and verification is also comparable to
generating a single coded packet in network coding, and is evalu-
ated in Sec. 7.5.

5.3 Pipelining Across Generations
As discussed in Sec. 5.1, the basic DART scheme may reduce

throughput due to the increased packet delivery time. A general ap-
proach to address this problem is using pipelining, in which trans-
missions are pipelined across generations and multiple generations
are delivered concurrently. Several existing network coding sys-
tems [22, 23] already incorporate pipelining for performance pur-
pose and DART can be applied directly to such systems without
performance penalties. Next, we propose a generic mechanism
for pipelining across generations in systems that do not perform
pipelining natively, e.g., MORE [3].

To pipeline packet transmission across generations, the source
transmits n coded packets for each generation, moving to the next
generation without waiting for acknowledgments. The source main-
tains a window of k active generations and cycles through these
active generations, transmitting n coded packets for each genera-
tion. Whenever the source receives an acknowledgment for an ac-
tive generation, that generation is considered successfully delivered
and the source activates the next available generation of packets.
Each checksum packet contains k checksum values, one for each
active generation.

Selecting a large value for k assures that no link goes idle and the
bandwidth resource is fully utilized. However, an overly large value
for k increases the latency for delivering a generation, because the
number of active generations that the source cycles through in-
creases. To meet these two opposing requirements, the optimal k
value should be the smallest value such that the bandwidth is fully
utilized. We estimate the optimal k value as follows. Let d be the
number of hops from the source to destination, and τ be the de-
lay at each hop. τ consists of two components, the time between
two checksum packets (t1) and the clock synchronization error be-
tween the node and the source node (t2), which is less than ∆. So
the total delay from the source to the destination is dτ . Let a be the

time for transmitting n packets at the source, to ensure the source
never idles, we need to have k ≥ dτ

a
= d(t1+t2)

a
. Assuming a rel-

atively large clock synchronization error, that is t2 � t1, we have
k ≥ dt2

a
. Thus we can select k = d∆

a
. Our experiments show that

selecting k = 5 is sufficient.
A potential concern for pipelining is that the source needs to

disseminate multiple checksums in one checksum packet, as there
are multiple active generations simultaneously. Our experiments in
Sec. 7 show that, due to the small size of checksums, the overall
bandwidth overhead is still small.

5.4 Security Analysis
Below we discuss the security properties of DART by focusing

on one generation. Pipelining across several active generations has
no implication on the security analysis presented below as check-
sums are generation specific and packets for each generation are
verified independently.

Recall that checksums are signed by the source, thus the attacker
cannot inject forged checksums into the network. The only op-
tion left for the attacker is to generate corrupted packets that will
match the checksum verification at honest nodes. The key point
of our scheme that prevents this is the time asymmetry in check-
sum verification: A node uses a checksum to verify only packets
that are received before the creation of the checksum. Therefore,
unlike traditional hash functions where the attacker has a chance
to find a collision because he has the hash value, in our scheme,
the time asymmetry in checksum verification prevents the attacker
from computing a suitable polluted packet that will pass the ver-
ification algorithm. At best, the attacker can randomly guess the
upcoming checksum value, thus only having a small chance of suc-
cess. We formalize the intuition for the security of our scheme as
follows.

We say a coded packet is safe with respect to a checksum packet
if the coded packet is created prior to the time the checksum packet
is created at the source. We prove Lemma 1 and Theorems 1 and 2,
where q is the field size used by network coding and b is the secu-
rity parameter for the checksum generation as described in Sec.5.2.
Due to space limitations, the proofs are presented in the full version
of the paper [51].

LEMMA 1. In DART, all packets that are verified against a check-
sum packet are safe with respect to that checksum packet.

THEOREM 1. Let CHK = (CHKs(G), s, t) be a checksum for
a generation G, and let (~c,~e) be a polluted packet (i.e., ~e 6= G~c).
The probability that (~c,~e) successfully passes the packet verifica-

tion for CHK at a node is at most
1

qb
.

THEOREM 2. Let CHK = (CHKs(G), s, t) be a checksum for
a generation G and let E = {(~c1, ~e1), . . . , (~cl, ~el)} be a set con-
taining polluted packets. The probability thatE successfully passes
w independent batch verifications for CHK at a node is at most
1

qw
+

1

qb
.

Note that the checksum verification algorithm does not have false
positives. Thus, a packet can be verified against multiple check-
sums to further reduce the false negative probability, as long as the
packet is safe with respect to the checksums. The failure of any
checksum verification indicates that the packet is corrupted. How-
ever, our experimental results (Sec. 7) show that verifying each
packet with only one checksum is already sufficient. Also note
that since each checksum is generated independently at random,

knowing multiple checksums does not help the attacker in generat-
ing corrupted packets that will pass the checksum verification for
future checksums.

Additional Remarks. Attackers may try to attack the DART
scheme itself by preventing nodes from receiving checksum pack-
ets. Recall that the checksum packets are flooded among all for-
warder nodes. If attackers are always able to prevent a node from
receiving checksum packets, this implies that the node is com-
pletely surrounded by attackers. In this case, the attackers can
isolate the node by dropping all data packets, thus achieving the
same effect as dropping checksums. Our DART scheme can pro-
vide additional resiliency against checksum dropping by flooding
the checksum not only among the set of forwarder nodes, but also
among the nodes that are near forwarder nodes (e.g., within two
hops).

Size of the security parameters. As shown in Theorems 1 and
2, we can reduce the false negative probability of the verification by
using a large field size q or a large security parameter b. However,
using a large field size also results in large symbol sizes, causing
larger network overhead (since the ratio n/m increases for a fixed
packet size). Security parameter b allows us to increase the security
of the scheme without increasing the field size.

For a typical field size of q = 28, selecting b = 2 is sufficient.
With individual packet verification, if an attacker injects more than
2562 = 65, 536 packets, then on average, only one polluted packet
will be forwarded more than one hop away. Our experiments con-
firm that selecting b = 2 is sufficient to contain pollution attacks.

6. THE EDART SCHEME
In our DART scheme, valid packets received by a node are un-

necessarily delayed until the next checksum arrives. Ideally, nodes
should delay only polluted packets for verification, whereas unpol-
luted packets should be mixed and forwarded without delay. How-
ever, nodes do not know which packets are polluted before receiv-
ing a checksum packet and are faced with a dilemma: Imprudent
forwarding may pollute a large portion of the network, while over-
strict verification will unnecessarily delay valid packets.

We propose EDART, an adaptive verification scheme which al-
lows nodes to optimistically forward packets without verifying them.
As in DART, nodes verify packets using the periodic checksums.
But in EDART, only nodes near the attacker tend to delay packets
for verification, while nodes farther away tend to forward packets
without delaying. Therefore, pollution is contained to a limited re-
gion around the attacker and correct packets are forwarded without
delay in regions without attackers. A major advantage of EDART
is that, when no attacks exist in the network, the packets are deliv-
ered without delay, incurring almost no impact on the system per-
formance. Below, we describe EDART and provide bounds on the
attack impact, the attack success frequency, and the packet delivery
delay in the network.

6.1 Scheme Description
In EDART, each node is in one of two modes, forward mode or

verify mode. In verify mode, a node delays received packets until
they can be verified using the next checksum. In forward mode,
a node mixes and forwards received packets immediately with-
out verification, except if the packet has traveled more than a pre-
determined number of hops since its last verification. The limited
scope of any unverified packets ensures that the maximum number
of hops a polluted packet can travel is bounded. As in DART, upon
receipt of a checksum, nodes always verify any buffered unverified
packet whose receive time is before the checksum creation time.

Nodes start in the forward mode at system initialization. A node

switches to the verify mode upon detecting a verification failure.
The amount of time a node stays in the verify mode is a decreasing
function of its distance to an attacker node, so that nodes near an
attacker tend to verify packets, while nodes farther away tend to
forward packets without delay.

The detailed pseudo-code for EDART is presented in Algorithm 1.
Each network coded packet contains a new field, hv , which records
the number of hops the packet has traveled since its last verifica-
tion. Each node maintains a variable Cv (the verification counter),
indicating the amount of time that the node will stay in the ver-
ify mode (e.g., Cv = 0 means that the node is in the forward
mode). A node also maintains two sets of packets, forward_set
and delay_set. Packets in forward_set can be combined to form
coded packets, while packets in delay_set are held for verification.

At system initialization, each node starts in the forward mode
(i.e., Cv = 0) and both forward_set and delay_set are empty.

Upon receiving a coded packet, a node adds the packet to the
delay_set if the node is in the verify mode (i.e., Cv > 0) or if
the packet has traveled more than δ hops since its last verification
(i.e., if hv > δ, where δ is a pre-determined system parameter).
Otherwise, the packet is added to the forward_set for immediate
forwarding. A new coded packet is formed by combining pack-
ets in the forward_set. The hv field of the new packet is set to
hmax + 1, where hmax is the maximum hv among all packets that
are combined to form this new packet.

Upon receiving a checksum packet, a node verifies all unverified
packets in both forward_set and delay_set. If all packets pass the
verification, it decrements Cv by one (unless it is already 0). If
there are packets that fail the verification, the node increments Cv
byα(1− hmin

δ
), where hmin is the minimum hv of all the packets that

fail the verification and α is a pre-determined system parameter.
For all packets that pass the verification, their hv field is reset to 0.

Note that the hv field does not require integrity protection. On
the one hand, if the attacker sets hv large, then the polluted pack-
ets are only propagated over a small number of hops. On the other
hand, if the attacker sets hv small, then the neighbors of the attacker
will stay in the verify mode longer after checksum verification, pre-
venting pollution from the attacker node for a longer duration of
time. In the next section, we show that regardless of how attackers
may set the hv value, the overall attack impact is still bounded.
6.2 Security Analysis

We now analyze the properties of EDART, first in the context of
one attacker, and then extend the analysis to the case of multiple
attackers. We refer to the time between two consecutive checksum
creation events as a time interval. To measure the severity of a
pollution attack, we define the following metrics:

pollution scope: The number of hops traveled by a polluted packet
before being discarded, which captures the maximum impact caused
by a single polluted packet. We also consider the average pollution
scope which captures the impact of an attack averaged over time.

pollution success frequency: The frequency of pollution attacks
with scope greater than one. Note that an attack with pollution
scope of one hop has no impact on the network, as the polluted
packet is dropped immediately by the first hop neighbors of the
attacker.

To measure the effectiveness of EDART in minimizing packet
delivery delay we define unnecessary delay as the number of ad-
ditional time intervals a node stays in the verify mode, compared
to an ideal scheme where only the direct neighbors of an active at-
tacker are in the verify mode and all other nodes are in the forward
mode.

In EDART, attackers can only increase the pollution scope of an
attack at the cost of decreasing their pollution success frequency

Algorithm 1 Adaptive Verification Scheme
Executed at system initialization
1: Cv = 0; forward_set = ∅; delay_set = ∅

Executed on receiving packet p
1: if (Cv > 0 or hv ≥ δ) then add p to delay_set
2: else add p to forward_set

Executed to output a packet
1: Select a subset of packets from forward_set to form a coded

packet as required by the particular network coding system.
2: Set hmax to be maximum hv in the selected packets
3: For the coded packet, set hv = hmax + 1

Executed on receiving checksum (CHK, s, t)

1: Verify all unverified safe packets in both forward_set and
delay_set against CHK

2: Set hv = 0 for all verified packets
3: if there exist invalid packets that failed verification then
4: Set hmin as the minimum hv in all packets that failed verifi-

cation
5: Cv = Cv + α(1− hmin

δ
)

6: else if Cv > 0 then
7: Cv = Cv − 1

and vice-versa: Setting hv to a low value for a polluted packet
will result in a larger pollution scope, but the direct neighbors will
isolate the attacker for a longer period. Hence, the overall severity
of the attack is bounded. We now present properties that precisely
capture the effectiveness of the EDART scheme for the case of one
attacker.

PROPERTY 1. The maximum pollution scope of an attack is upper-
bounded by δ + 1.

PROOF. Each honest node increments by one the hv field of its
newly coded packets. Then, clearly, a polluted packet that was for-
warded by δ honest nodes will have hv ≥ δ; thus, it will be verified,
detected and dropped by the next honest node.

PROPERTY 2. The average pollution scope per time interval is
upper-bounded by δ/α.

PROOF. Let h be the minimum hv value of polluted packets sent
by an attacker in the current time interval. Then, the maximum
pollution scope of polluted packets in this time interval is δ − h.
Upon receiving the first checksum, all the direct neighbors of the
attacker will detect verification failures, and increment their Cv by
α(1 − h

δ
). Thus, they will stay in the verify mode for at least

α(1− h
δ

) time intervals. As long as all the neighbors of the attacker
are in the verify mode, all the polluted packets generated by the
attacker will be detected and dropped at the first hop, thus causing
no pollution effect on the network. Therefore, the average pollution
scope per time interval is at most (δ − h)/(α(1 − h

δ
) + 1) <

(δ − h)/(α(1− h
δ

)) = δ/α.

PROPERTY 3. The maximum pollution success frequency is upper-
bounded by δ/α.

PROOF. When an attacker sends polluted packets with hv = h
in some time interval, for the next α(1− h

δ
) time intervals its pol-

lution attacks will be ineffective (polluted packets will be verified
and dropped by its first-hop neighbors). Thus, its pollution success
frequency is at most 1/(α(1 − h

δ
) + 1). To maximize this value,

it sets h = δ − 1, resulting in the maximum success frequency of
1/(α(1− δ−1

δ
) + 1) < δ/α.

A

Y

X
Protected node

Node in verify mode

Node in forward mode

Attacker
B C

Y

X

B C

Polluted packet
(a) (b)

A

f

f

f

v

vf

v

Figure 2: (a) Attacker X attacks first and nodes A and B re-
ceive polluted packets; (b) In the following time interval, A and
B switch to verify mode, and attacker Y starts attacking. Y ’s
polluted packets are immediately dropped by node B and fur-
ther nodes (node C) are protected. Thus, the strength of Y ’s
attack is diminished by X’s attack.

PROPERTY 4. Let h be the minimum hv value of polluted pack-
ets sent by an attacker. Nodes at i hops away from the attacker (for
2 ≤ i ≤ δ − h − 1) have unnecessary delay of α(1 − h+i

δ
) time

intervals. Nodes more than δ − h − 1 hops away do not have un-
necessary delay.

PROOF. Since the hv value is incremented at each hop, nodes
that are i hops away from the attacker (with 2 ≤ i ≤ δ − h − 1)
stay in the verify mode for α(1 − h+i

δ
) time intervals. Nodes that

are more than δ−h−1 hops away do not switch to the verify mode
since polluted packets are verified and dropped by nodes δ−h away
from attacker.

Multi-attacker case: With multiple attackers, the attack strength
per attacker in terms of maximum pollution scope, average pollu-
tion scope, and maximum success frequency is still bounded as in
Properties 1, 2, and 3. To see this, we examine two different cases.
First, we consider attackers that are far apart from each other (e.g.,
over 2δ hops away) such that a honest node is only in the pollution
scope of one attacker. In this case, we can view the network subdi-
vided into smaller areas, and in each smaller area there is only one
attacker, thus the bounds in Properties 1, 2, and 3 still hold. Second,
we consider attackers positioned such that some honest nodes are
affected by multiple attackers. The reaction of such honest nodes is
driven by their closest attacker. As shown in the example of Fig. 2,
the effectiveness per attacker is reduced, because nearby attackers
cancel the effects of each other. Thus, Properties 1, 2, and 3 also
hold in this case. Our experiments in Sec. 7 confirm that EDART
remains effective against pollution attacks in the presence of mul-
tiple attackers.

6.3 Selection of δ and α

δ is defined as the number of hops after which a coded packet is
always verified. α is a parameter that controls the amount of time
a node stays in the verify mode. By Properties 1, 2, and 3, the
scope and success frequency of an attack are directly proportional
to δ and inversely proportional to α, thus we can increase attack
resiliency by selecting a small δ and a large α. However, a small δ
and a large α result in a larger packet delay: A small δ causes valid
packets to travel only a small number of hops before being delayed
for verification, and a large α causes a larger unnecessary delay
in the presence of attacks (Property 4). Thus, we need to balance
between attack resiliency and packet delivery delay when selecting
δ and α.

For systems that can tolerate large delivery latency, such as large
file transfers in mesh networks or code updates in sensor networks,
we can use a small δ and a large α to increase the system resiliency.
On the other hand, for systems that are sensitive to delivery latency,
such as video or audio streaming, we can use a large δ and a small
α to reduce delay. We also note that in a benign network, the value
of δ determines the delivery latency. Thus, in a network in which
attacks are rare, we can use a large δ to reduce delivery latency in
normal cases, and use a large α to limit the attack impact when
under attack.

Figure 3: Roofnet topology and link qualities

7. EXPERIMENTAL EVALUATION
We show through simulations the impact of pollution attacks on

an unprotected system and the high cost of current cryptographic-
based solutions. We then perform an evaluation of our defense
schemes. Our experiments are based on the well-known MORE
protocol [3], a network coding-based routing protocol for wire-
less mesh networks. We selected MORE because it is one of the
best known network coding based routing protocols for wireless
networks and the source code is publicly available. We use the
real-world link quality measurements from Roofnet [38], an exper-
imental 802.11b/g mesh network in development at MIT. Roofnet
has also been widely used in other research papers [22,52–55] as a
representative wireless mesh network testbed.

7.1 MORE in a Nutshell
MORE is a routing protocol for wireless mesh networks that uses

network coding to achieve increased performance. MORE sends
data in generations of n packets. For each generation, the source
continuously broadcasts coded packets of native packets from the
current generation until it receives an acknowledgment from the
destination; the source then moves on to the next generation. The
source includes in the header of each coded packet the forwarder
set, which is a set of nodes that participate in forwarding packets;
this set is obtained based on each node’s distance to the destination.

A forwarder node stores an overheard packet only if the packet
is linearly independent with previously stored packets. The recep-
tion of a new coded packet also triggers the node to broadcast `
new coded packets, where ` is determined based on the node’s rel-
ative distance to the destination compared to other nodes. The new
coded packets are generated from the stored coded packets previ-
ously received for the same generation.

When the destination receives n linearly independent coded pack-
ets, it can decode the generation and recover the native packets,
upon which it sends an acknowledgment to the source to indicate
that it can start sending the next generation.

7.2 Experimental Methodology
Simulation Setup. Our experiments are performed with the Glo-

mosim simulator [56] configured with 802.11 as the MAC layer
protocol. We use realistic link quality measurements for the phys-
ical layer of Glomosim to determine the link loss rate. Specifi-
cally, we use the real-world link quality trace data from the Roofnet
testbed, publicly available at [38]. The network consists of 38
nodes, and the topology and link qualities are shown in Fig. 3. The
raw bandwidth is 5.5Mbps.

We assume the clocks of nodes in the network are loosely syn-
chronized, with the maximum clock drift between any node and
the source being ∆ = 100ms3. We use RSA [58] digital signatures

3Current secure clock synchronization schemes [50, 57] can achieve clock drift in

with 1024-bit keys and simulate delays to approximate the perfor-
mance of a 1.3 GHz Intel Centrino processor.

We use the MORE unicast protocol to demonstrate our schemes.
In each experiment, we randomly select a pair of nodes as the
source and destination. The source starts to transfer a large file
to the destination 100 seconds after the experiment starts for a du-
ration of 400 seconds. The CDF results shown in our graphs are
taken over 200 randomly selected source-destination pairs.

MORE Setup. We use the default MORE setup as in [3]: The
finite field for network coding is F28 , the generation size n is 32
packets, and the packet size is 1500B.

Attack Scenario. We vary the number of attackers from 1 to
10 (out of a total of 38 nodes). Since in MORE only forwarder
nodes and nodes in the range of a forwarder node can cause packet
pollution, we select attackers at random among these nodes. If the
total number of such nodes is less than the specified number of
attackers, we select all of them as attackers.

The attackers inject polluted packets, but follow the protocol oth-
erwise. To examine the impact of the attack, we define pollution
intensity (PI) as the average number of polluted packets injected
by the attacker for each packet it receives. Thus, it captures the
frequency of pollution attacks from an attacker. We vary PI to ex-
amine the impact of different levels of attack intensity.

DART and EDART Setup. We set the checksum parameter b =
2, which results in a checksum size of 64 bytes. The source broad-
casts a checksum packet after broadcasting every 32 data packets4.
We use the pipelining technique described in Sec. 5.3, with the
pipeline size of 5. For EDART, we use δ = 8 and α = 20. These
parameters are experimentally selected to suit the small scale of the
network and to balance between overhead, throughput, and latency.

As a baseline, we use a hypothetical ideal defense scheme re-
ferred to as Ideal, where the polluted packets are detected with
zero cost and immediately dropped by a node. Note that under
benign conditions, the Ideal scheme behaves the same as the origi-
nal MORE protocol. We compare our schemes with Ideal using the
same pipeline size to examine the latency caused by delayed packet
verification.

Metrics. In our experiments, we measure throughput, latency
and overhead (bandwidth and computation). Throughput is mea-
sured as the average receiving rate at which the destination receives
data packets (after decoding). Latency is measured as the delay in
receiving the first packet (decoded) at the destination. The only
bandwidth overhead incurred by our scheme is the dissemination of
checksum packets. We measure the bandwidth overhead as the av-
erage bandwidth overhead per node among all forwarder nodes that
forward checksum packets. Since intermediate nodes perform only
digital signature and checksum verification, both of which incur
small overhead (checksum verification overhead is demonstrated in
our micro-benchmark below), we measure the computational over-
head as the number of digital signatures per second performed by
the source for signing checksum packets. The overhead measure-
ment does not include the overhead due to time synchronization.

7.3 Impact of Pollution Attacks
To demonstrate the severity of pollution attacks on network cod-

ing, we evaluate the impact of the attack conducted by a single
attacker. Fig. 4 shows the throughput of MORE in a network with
only one attacker with various pollution intensities. In the no at-

the order of microseconds. We use a much larger clock drift to demonstrate that our
schemes only require loose clock synchronization.
4This does not mean there is only one checksum per generation. In MORE, the source
keeps broadcasting coded packets for a generation (usually more than 32 packets) until
the destination is able to decode the entire generation of packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Throughput (kbps)

No Attack
PI: 1.00
PI: 0.20
PI: 0.10
PI: 0.05

Figure 4: The throughput CDF in the presence of a single at-
tacker for various pollution intensities (PIs). Even when the at-
tacker injects only one polluted packet every 20 received pack-
ets (PI=0.05%), the impact of the attack is still very significant.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Throughput (kbps)

No defense
Crypto-based Defense

Figure 5: Impracticality of previous work: Throughput CDF
of original MORE and of MORE with cryptographic-based de-
fense in a benign network. Even when no attack takes place,
previous schemes have a very high overhead that makes them
impractical.

tack case, we observe that all the flows have a throughput greater
than 500kbps, with median at around 1000kbps. In the attack case
with pollution intensity of 1, the throughput of around 80% of all
flows goes to zero, and 97% of all flows have throughput less than
500kbps. Even when the pollution intensity is very small at 0.05
(i.e., the attacker only injects, on average, one polluted packet per
20 packets received), the throughput of most flows still degrades
significantly, with around 60% of all flows having a throughput be-
low 500kbps. Therefore, we conclude that pollution attacks are
extremely detrimental to the system performance, even when per-
formed very infrequently and by only one attacker.

7.4 Limitations of Previous Solutions
We use a benign scenario to show that previous cryptographic-

based solutions are not practical for wireless networks. Protocols
that add a significant overhead to the system, even when no attack
occurs, provide little incentive to be used.

We set up our experiments to strongly favor the cryptographic-
based solutions as follows. We only account for computational
overhead at the intermediate nodes, and ignore all other overhead,
such as the computational overhead at the source and the band-
width overhead required to disseminate digital signatures and/or
homomorphic hashes. We also use a large symbol size of 20 bytes
(hence m = 1500/20 = 75) to favor these schemes in reduc-
ing their computational overhead. Any practical network coding
system requires n � m so that the network overhead of network
coding is small. With the generation size n = 32 and m = 75,
the relative network overhead is already around ρ = 42%. We also
discount such large overhead of network coding for these schemes.
Finally, we use batch verification, such that each node can batch
verify a set of packets at the cost of one verification, and use the
pipelining technique (with pipeline size of 5) described in Sec. 5.3
to further boost the performance of such schemes.

Fig. 5 shows the throughput CDF of strongly-favored cryptographic-
based schemes and the original MORE protocol in a network with

Size parameter (b value) 1 2 3
Generation time (ms) 0.475 0.957 1.432

Per packet verification time (ms) 0.188 0.388 0.507
Batch verification time (ms) 0.492 1.319 2.458

Table 1: Computational cost for checksum generation and ver-
ification for different checksum sizes. Batch verification time is
for verifying 32 packets.

no attackers. We see that even when being exceedingly favored,
the large computational overhead of these schemes still results in
significant throughput degradation, with 80% of the flows have
throughput 100kbps or less5 and the median throughput degrades
by 96%. Hence, we conclude they are impractical for wireless mesh
networks.

7.5 Evaluation of DART and EDART
We present an evaluation of the performance of our proposed de-

fenses, DART and EDART. We first perform micro-benchmarks to
evaluate the computational cost of checksum generation and verifi-
cation. We then evaluate the performance of our defense schemes
for benign networks and for networks under various pollution at-
tack intensities. Finally, we examine their bandwidth and compu-
tational overhead.

Micro-benchmarks. We evaluate the computational cost of check-
sum generation and verification on a computer with 1.3 GHz Intel
Centrino processor, and use the random number generator in the
OpenSSL library (version 0.9.8e) for generating the random check-
sum coefficients. Table 1 summarizes the results for generating and
verifying checksums of different sizes.

Benign networks. Fig. 6 shows the throughput and latency of
our schemes in a benign network with no attackers, as compared to
the MORE protocol. In Fig. 6(a), we see that DART incurs some
throughput degradation (around 9% degradation when comparing
median throughputs), whereas EDART incurs almost no degrada-
tion.

Fig. 6(b) provides insights into the throughput degradation of
DART by showing the scatter plot of throughput for DART with
respect to the MORE protocol. We see that the throughput degrada-
tion is more severe for flows with smaller throughput, while flows
with higher throughput are less affected by DART. This is because
the throughput degradation of DART is primarily caused by the
checksum authentication delay at intermediate nodes. Flows with
smaller throughput typically have a longer path length, hence they
incur a larger aggregate authentication delay and consequently higher
throughput degradation.

In Fig. 6(c), we observe a similar pattern for the latency of DART
and EDART. DART incurs an additional 0.4 second in median la-
tencies compared to the Ideal scheme with the same pipeline size,
while EDART incurs almost no additional latency. For similar rea-
sons to the throughput, we also observe that for DART, the latency
overhead is larger for flows that already have a large latency.

In summary, when no attacks take place, both of our schemes
have throughput over 20 times higher than cryptographic-based
schemes and cause minimal degradation on system performance.
The performance of EDART is almost identical to the Ideal scheme.

Networks under attack. We examine the effectiveness of our
defense against different number of pollution attackers. Fig. 7 shows
the throughput CDF for the case of 1, 5, and 10 attackers with pollu-
tion intensity of 0.2. We see that across different number of attack-
ers, the throughput only degrades slightly compared to the Ideal
scheme. EDART improves the throughput over DART, especially
5Some flows have throughput greater than the maximum throughput shown in Sec. 5
because we discounted the network coding overhead in the results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Throughput (kbps)

Ideal
DART

EDART

(a) Throughput CDF

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

D
A

R
T

 (
k

b
p

s)

MORE (kbps)

(b) Throughput scatter plot

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Latency (s)

Ideal
DART

EDART

(c) Latency CDF
Figure 6: The throughput and latency of DART and EDART under benign case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Throughput (kbps)

Ideal
DART

EDART

(a) 1 attacker

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Throughput (kbps)

Ideal
DART

EDART

(b) 5 attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Throughput (kbps)

Ideal
DART

EDART

(c) 10 attackers
Figure 7: Throughput CDF of our defense schemes in the presence of pollution attackers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
u
m

u
la

ti
v
e

F
ra

ct
io

n
 o

f
F

lo
w

s

Latency (s)

Ideal
DART

EDART

Figure 8: Latency CDF of DART and EDART
in the presence of 5 pollution attackers

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10

B
an

d
w

id
th

 (
k
b
p
s)

Number of Attackers

DART
EDART

(a) Bandwidth overhead

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

S
ig

n
at

u
re

s
p
er

 s
ec

o
n
d

Number of Attackers

DART
EDART

(b) Computational overhead at the
source

Figure 9: Bandwidth and computational overhead of DART and EDART

for low throughput flows in the one attacker case. In Fig. 7(a), the
throughput improvement of EDART over DART is most signifi-
cant for flows with throughput below the median, which typically
traverse many forwarder nodes. In EDART a single attacker only
influences a small portion of the forwarder nodes to delay packets,
accounting for the greater throughput improvement.

Fig. 8 shows the latency of DART and EDART in the case of 5
attackers with the pollution intensity of 0.2. The figures for the 1
and 10 attackers scenarios are similar and were omitted. We see
that the median latency increase of DART and EDART over the
Ideal scheme is around 0.5 seconds. This confirms that the overall
latency due to checksum verification is small.

An apparent anomaly is that EDART does not have a much smaller
latency than DART, although in EDART nodes forward packets op-
timistically without delay. This is because the latency metric ac-
counts for the delay of the first generation. In EDART, the first
generation of packets will be delayed as in DART because, al-
though nodes start in the forward mode, the propagation of the
initial polluted packets causes all forwarder nodes to switch to the
verify mode. However, for all later generations, only neighbors of
the attackers delay packets in EDART. Thus, the delay of later gen-
erations is smaller, leading to the improved throughput of EDART
over DART.

We also examined the throughput and latency for other pollu-
tion intensities, all of which show similar results as with the pollu-
tion intensity of 0.2. For larger pollution intensities, the congestion
effect of polluted packets also causes a certain level of through-

put degradation; however, our defense mechanisms still maintain a
level of performance similar to the Ideal scheme.

Overhead. Figs. 9(a) and 9(b) show the bandwidth and com-
putational overhead of our defense schemes, respectively. Both
the bandwidth and computational overhead remain at a stable level
across different number of attackers, 18kbps per forwarder node
and 5 signatures per second at the source, respectively. This is be-
cause our checksum generation and dissemination is independent
of the number of attackers. The bandwidth overhead of 18kbps is
less than 2% of the throughput achieved by the system on average.

It may also be counter-intuitive that both the bandwidth and com-
putational overhead decreases slightly when the number of attack-
ers increases. The reason is that the frequency that the source dis-
seminates packets decreases slightly when there are more attackers,
due to the congestion effect of the polluted packets. This results in
slightly fewer checksums being generated and disseminated.

8. CONCLUSION
In this paper, we present two new and practical defense schemes,

DART and EDART, against pollution attacks in intra-flow network
coding systems for wireless mesh networks. DART combines ran-
dom linear transformations with time asymmetry in checksum ver-
ification to efficiently prevent packet pollution. EDART incorpo-
rates optimistic packet forwarding to reduce delivery latency and
improve system performance. Besides providing a detailed secu-
rity analysis and analytical bounds for our schemes, we demon-
strate their practicality through simulations that use a well-known

network coding routing protocol for wireless mesh networks and
real-life link quality measurements from a representative testbed
for mesh networks. Our results demonstrate that:

• The effect of pollution attacks is devastating in mesh networks
using intra-flow network coding. Without any protection, a sin-
gle attacker can reduce the throughput of 80% of all flows to
zero.

• Previous solutions are impractical for wireless mesh networks.
Even when no attackers are present in the system, the large over-
head of previous cryptographic-based schemes result in as much
as 96% degradation in the system throughput.

• Our schemes provide an efficient defense against pollution at-
tacks and incur only a small computational and bandwidth over-
head. When no attackers are present, DART incurs a small per-
formance degradation, while EDART achieves almost the same
performance as the original MORE protocol. When the system
is under attack, both schemes lead to a performance level similar
to a hypothetical Ideal defense scheme.

9. REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,”

Information Theory, IEEE Transactions on, vol. 46, no. 4, pp. 1204–1216, 2000.
[2] S. Katti, D. Kabati, W. Hu, H. Rahul, and M. Medard, “The importance of

being opportunistic: Practical network coding for wireless environments,” in In
Proc. of Allerton Conf. on Commun. Control and Computing, Oct. 2005.

[3] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure for
randomness in wireless opportunistic routing,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 169–180, 2007.

[4] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution,” in In Proc. IEEE Infocom, Mar. 2005.

[5] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran, “The
benefits of network coding for peer-to-peer storage systems,” in Third Workshop
on Network Coding, Theory, and Applications, 2007.

[6] C.Fragouli and A.Markopoulou, “A network coding approach to overlay
network monitoring,” in Allerton 2005.

[7] C. Fragouli and A. Markopoulou, “Network coding techniques for network
monitoring: a brief introduction,” in Intl Zurich Seminar on Commun., 2006.

[8] T. Ho, B. Leong, Y.-H. Chang, Y. Wen, and R. Koetter, “Network monitoring in
multicast networks using network coding,” in ISIT, 2005.

[9] M. Effros, T. Ho, and S. Kim, “A tiling approach to network code design for
wireless networks,” in IEEE Information Theory Workshop, 2006.

[10] J. Jin, T. Ho, and H. Viswanathan, “Comparison of network coding and
non-network coding schemes for multi-hop wireless networks,” in ISIT 2006.

[11] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity of
wireless erasure networks,” IEEE Trans. on Information Theory, vol. 52, 2006.

[12] S. Deb and M. Medard, “Algebraic gossip: A network coding approach to
optimal multiple rumor mongering,” IEEE Trans. on Info. Theory, 2006.

[13] J. Widmer and J.-Y. L. Boudec, “Network coding for efficient communication
in extreme networks,” in WDTN 2005.

[14] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “Further results on coding for
reliable communication over packet networks,” in ISIT, 2005.

[15] Y. W. P. A. Chou and S.-Y. Kung, “Minimum-energy multicast in mobile ad hoc
networks using network coding,” IEEE Transactions on Communications, 2005.

[16] D. S. Lun, N. Ratnakar, R. Koetter, M. M. edard, E. Ahmed, and H. Lee,
“Achieving minimum cost multicast: A decentralized approach based on
network coding,” in Proceeding of IEEE Infocom, 2005.

[17] J. Widmer, C. Fragouli, and J.-Y. L. Boudec, “Energy-efficient broadcasting in
wireless ad-hoc networks,” in Netcod 2005, Italy, April 2005.

[18] K. Jain, “On the power (saving) of network coding,” in Allerton, 2005.
[19] T. Ho, “On constructive network coding for multiple unicasts,” in 44th annual

Allerton Conference on Communication, Control and Computing, 2006.
[20] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Médard, “Network

coding for multiple unicasts: An approach based on linear optimization,” in
Proceedings of the International Symposium on Information Theory, 2006.

[21] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “Xors in
the air: practical wireless network coding,” SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 4, pp. 243–254, 2006.

[22] B. Radunovic, C. Gkantsidis, S. G. P. Key, W. Hu, and P. Rodriguez, “Multipath
code casting for wireless mesh networks,” Microsoft Research, Technical
Report MSR-TR-2007-68, March 2007.

[23] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard, “Codecast: a
network-coding-based ad hoc multicast protocol,” IEEE Wireless Comm., 2006.

[24] M. Médard, M. Effros, T. Ho, and D. R. Karger, “On coding for non-multicast
networks,” in Allerton, 2003.

[25] I.-H. Hou, Y.-E. Tsai, T. Abdelzaher, and I. Gupta, “Adapcode: Adaptive
network coding for code updates in wireless sensor networks,” in INFOCOM,
2008.

[26] L. Li, R. Ramjee, M. Buddhikot, and S. Miller, “Network coding-based
broadcast in mobile ad-hoc networks,” Proc. of INFOCOM 2007.

[27] C. Fragouli, J. Widmer, and J.-Y. Le Boudec, “A network coding approach to
energy efficient broadcasting: From theory to practice,” INFOCOM 2006.

[28] J. Dong, R. Curtmola, R. Sethi, and C. Nita-Rotaru, “Toward secure network
coding in wireless networks: Threats and challenges,” in NPSec, 2008.

[29] D. Charles, K. Jain, and K. Lauter, “Signatures for network coding,” 40th
Annual Conference on Information Sciences and Systems, 2006.

[30] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-based
scheme for securing network coding against pollution attacks,” in Proceedings
of INFOCOM 08, Phoenix, AZ, April 2008.

[31] F. Zhao, T. Kalker, M. Medard, and K. Han, “Signatures for content distribution
with network coding,” ISIT 2007.

[32] Q. Li, D.-M. Chiu, and J. Lui, “On the practical and security issues of batch
content distribution via network coding,” Proc. of ICNP ’06, Nov. 2006.

[33] M. Krohn, M. Freedman, and D. Mazieres, “On-the-fly verification of rateless
erasure codes for efficient content distribution,” Security and Privacy, 2004.
Proceedings. 2004 IEEE Symposium on, pp. 226–240, 9-12 May 2004.

[34] C. Gkantsidis and P. Rodriguez Rodriguez, “Cooperative security for network
coding file distribution,” Proc. of INFOCOM 2006.

[35] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger, “Byzantine
modification detection in multicast networks using randomized network
coding,” ISIT 2004.

[36] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard, “Resilient
network coding in the presence of byzantine adversaries,” INFOCOM 2007.

[37] D. Wang, D. Silva, and F. R. Kschischang, “Constricting the adversary: A
broadcast transformation for network coding,” Allerton 2007, 2007.

[38] “MIT roofnet.” http://pdos.csail.mit.edu/roofnet/doku.php.
[39] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear subspace:

Signature schemes for network coding,” in Proc. of PKC ’09, 2009.
[40] D. Silva, F. Kschischang, and R. Koetter, “A rank-metric approach to error

control in random network coding,” IEEE Inf. Theory for Wireless Ntwks, 2007.
[41] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in random

network coding,” Information Theory, IEEE Transactions on, 2008.
[42] R. W. Yeung and N. Cai, “Network error correction, part i: basic concepts and

upper bounds,” Commun. Inf. Syst., vol. 6, no. 1, pp. 19–36, 2006.
[43] N. Cai and R. W. Yeung, “Network error correction, part ii: lower bounds,”

Commun. Inf. Syst., vol. 6, no. 1, pp. 37–54, 2006.
[44] P. Chou and Y. Wu, “Network coding for the internet and wireless networks,”

Signal Processing Magazine, IEEE, vol. 24, no. 5, pp. 77–85, Sept. 2007.
[45] Y. Lin, B. Li, and B. Liang, “Efficient network coded data transmissions in

disruption tolerant networks,” in Proc. of INFOCOM 2008.
[46] T. Cui, L. Chen, and T. Ho, “Energy efficient opportunistic network coding for

wireless networks,” in Proceedings of INFOCOM 08, Phoenix, AZ, April 2008.
[47] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA broadcast

authentication protocol,” RSA CryptoBytes, vol. 5, no. Summer, 2002.
[48] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure source

authentication for multicast,” in Proc. of NDSS ’01, 2001.
[49] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins: security

protocols for sensor networks,” Wireless Networks, vol. 8, no. 5, 2002.
[50] K. Sun, P. Ning, and C. Wang, “Secure and resilient clock synchronization in

wireless sensor networks,” JSAC, vol. 24, no. 2, Feb. 2006.
[51] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses against pollution

attacks in intra-flow network coding for wireless mesh networks,” Purdue
University, Technical Report, 2009.

[52] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path
metric for multi-hop wireless routing,” in Proc. of ACM MobiCom 2003.

[53] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 4, pp. 121–132, 2004.

[54] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evaluation of
an unplanned 802.11b mesh network,” in Proc. of ACM MobiCom 2005.

[55] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless
networks,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, pp. 69–74, 2004.

[56] “Glomosim,” http://pcl.cs.ucla.edu/projects/glomosim/.
[57] K. Sun, P. Ning, and C. Wang, “Tinysersync: secure and resilient time

synchronization in wireless sensor networks,” in Proc. of ACM CCS 2006.
[58] Digital Signature Standard (DSS). National Institute for Standards and

Technology (NIST), 2006, no. FIPS 186-3.

